JPH11142354A - Method for evaluating interior quality of fruit - Google Patents

Method for evaluating interior quality of fruit

Info

Publication number
JPH11142354A
JPH11142354A JP30458797A JP30458797A JPH11142354A JP H11142354 A JPH11142354 A JP H11142354A JP 30458797 A JP30458797 A JP 30458797A JP 30458797 A JP30458797 A JP 30458797A JP H11142354 A JPH11142354 A JP H11142354A
Authority
JP
Japan
Prior art keywords
relaxation time
fruit
time
sugar concentration
watermelon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30458797A
Other languages
Japanese (ja)
Inventor
Kazunari Saito
一功 斉藤
Seiji Hayashi
征治 林
Takashi Miki
孝史 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP30458797A priority Critical patent/JPH11142354A/en
Publication of JPH11142354A publication Critical patent/JPH11142354A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable nondestructive and speedy evaluation of a sugar concentration, etc., of fruit, by measuring longitudinal relaxation time and traverse relaxation time of a nucleus of an atom present in a certain region of fruit by a nuclear magnetic resonance method, and evaluating the interior quality of the fruit on the basis of each relaxation time and a ratio between both relaxation time. SOLUTION: A watermelon 15 is placed at an approximate center of a bore of a main coil 1, and a longitudinal relaxation time T1 and a traverse relaxation time T2 of an atomic nucleus of hydrogen contained in a water molecule at the center region of the watermelon 15 are measured through the user of an MRI device. At this time, a stimulated echo method is used for the measurement to obtain an NMR signal while changing echo time and repetition time. Then through the use of the longitudinal relaxation time T1, the transverse relaxation time T2, and a ratio between both relaxation time T1/T2, sugar concentration is predicted by an equation for predicting sugar concentration; sugar concentration =-10.35×T1-5.3×T2-8.5×T1/T2+20.5. By this, it is possible to evaluate sugar concentration nondestructively without being affected by temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、西瓜、メロン等の
様に、果肉における糖度や熟成度等の内部品質が外から
判別できない果実の内部品質を、非破壊的に且つ迅速に
評価する方法に関し、殊に本発明方法は、果実生産業者
の出荷ラインや青果流通販売業者の入荷検査ライン等で
適用され、果実の等級分類および熟成度判定による製品
の出荷タイミングの適正化を図る上で有用な内部品質評
価方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for non-destructively and quickly evaluating the internal quality of fruits, such as watermelon and melon, whose internal quality such as sugar content and ripening degree cannot be discriminated from the outside. In particular, the method of the present invention is applied to a shipping line of a fruit producer or a stock inspection line of a fruit and vegetable distributor, and is useful in optimizing the shipping timing of a product by classifying fruits and judging maturity. Internal quality assessment method.

【0002】[0002]

【従来の技術】西瓜、メロン等の様に、果肉における糖
度や熟成度等の内部品質が外から判別できない果実で
は、その出荷タイミングの判断は、従来から人間の経験
と勘に頼って行われているのが一般的である。例えば、
西瓜においては、その外皮をこつこつと叩いてその音で
判定したり、蔕の部分の柔らかさで判定する等の方法が
採用されている。しかしながら、これらの判定方法で
は、個人的な能力に依存すると共に、大量の果実を扱う
出入荷ラインにおいては複数の人間が作業をするので、
その個人差によって商品の判定にばらつきが生じ、需要
者側からの不満が発生することが多い。
2. Description of the Related Art For fruits such as watermelons and melons whose internal qualities, such as sugar content and ripening, cannot be discerned from the outside, the timing of shipping is conventionally determined based on human experience and intuition. That is common. For example,
In watermelons, a method is employed in which the sound is determined by tapping the outer skin of the watermelon, or the softness of the chin is used. However, these judgment methods depend on personal ability, and a plurality of people work on the stocking line handling a large amount of fruit.
Variations in the determination of the product occur due to the individual differences, and dissatisfaction from the consumer side often occurs.

【0003】特に、西瓜やメロン等の様に比較的高価な
果実では、消費者は単品買いすることが多く、商品に対
するイメージはたまたま購入した商品で決定されてしま
う傾向にある。上記の様な比較的高価な果実では、需要
者側から価格相応の味が当然に要求されるが、不味い果
実を需要者が購入してしまった場合には、それがたとえ
確率的に極めて低いものであっても、商品全体のイメー
ジは悪化してしまい、生産者に対する信用をなくすばか
りか、販売競争力も失ってしまうことになる。更に、近
年の様に生産者が独自ブランドを付けて、商品への付加
価値を付けることが好まれる状況下では、商品のイメー
ジ悪化は生産者に決定的な打撃を与えかねない。こうし
たことから近年では、各種の測定技術を応用した果実の
各種評価法が検討されている。
[0003] In particular, for relatively expensive fruits such as watermelons and melons, consumers often buy a single product, and the image of the product tends to be determined by the product purchased. In the case of relatively expensive fruits as described above, consumers must naturally demand a price commensurate with the price, but if the consumer purchases unsavory fruits, it will be extremely low in probability. Even if it is a product, the image of the whole product will be deteriorated, and not only will the trust in the producer be lost, but also the sales competitiveness will be lost. Further, in a situation where it is preferable that producers attach their own brands and add value to commodities as in recent years, deterioration of the image of commodities may have a decisive impact on producers. For these reasons, recently, various evaluation methods for fruits using various measurement techniques have been studied.

【0004】[0004]

【発明が解決しようとする課題】これまで検討されてい
る果実の内部品質評価方法は、光学的な原理を利用した
方法が主流を占めており、その代表的な方法としては、
林檎に近赤外光を照射し、その反射スペクトルから林檎
の糖度や酸味を判定する方法が提案されている。しかし
ながらこの方法では、林檎の様に外皮が比較的薄くて近
赤外光が果肉に届く果実においては、良好な判定結果が
得られるのであるが、西瓜やメロン等の様に外皮が比較
的厚い果実には適用できないという欠点がある。またこ
の方法では、外皮付近の品質しか測定できず、果実の熟
成度を判定する上で重要な内部の品質は評価できないと
いう欠点もある。
Among the methods for evaluating the internal quality of fruits that have been studied so far, methods using the optical principle occupy the mainstream.
A method has been proposed in which an apple is irradiated with near-infrared light and the sugar content and the sourness of the apple are determined from its reflection spectrum. However, in this method, a good judgment result can be obtained for a fruit whose outer skin is relatively thin such as an apple and near-infrared light reaches the pulp, but the outer skin is relatively thick such as a watermelon and a melon. It has the disadvantage that it cannot be applied to fruits. In addition, this method has the disadvantage that only the quality near the outer skin can be measured, and the internal quality important for judging the degree of ripening of the fruit cannot be evaluated.

【0005】また光学的な原理を利用した他の方法とし
て、果実を破壊して果肉を取り出し、これを搾った果汁
の屈折率を光学的に測定する方法が提案されている。こ
の方法は、水の中に溶けている溶質の量が増えると溶液
全体の誘電率が増大し、これによって光の屈折率が大き
くなることを利用したものである。この方法は、屈折式
糖度測定法と呼ばれるものであり、果実の糖度を比較的
容易に測定できる方法として一般的に採用されている。
またこの方法を実施する装置として屈折式糖度計(後記
実施例参照)が市販されており、この装置で測定される
糖度はBrix% の単位で表されている。
As another method utilizing the optical principle, there has been proposed a method in which fruit is destroyed to extract pulp, and the refractive index of juice squeezed from the pulp is optically measured. This method utilizes the fact that as the amount of solute dissolved in water increases, the dielectric constant of the entire solution increases, thereby increasing the refractive index of light. This method is called a refraction type sugar content measurement method, and is generally adopted as a method that can relatively easily measure the sugar content of fruits.
As a device for performing this method, a refraction type refractometer (see Examples described later) is commercially available, and the refraction measured by this device is expressed in units of Brix%.

【0006】しかしながら、この方法では、果実の切断
作業に時間を要し、且つオンラインでの適用が困難なこ
と、および評価しようとする果実を破壊する必要がある
等の問題があった。特に、果実を破壊することは、高価
な果実においては最も嫌われる点であり、また全数検査
に適用することは不可能である。
[0006] However, this method has problems that it takes a long time to cut the fruit, it is difficult to apply the method online, and it is necessary to destroy the fruit to be evaluated. In particular, destruction of fruit is the most hated point of expensive fruit and cannot be applied to 100% inspection.

【0007】一方、非破壊的に果汁の状態を調査する手
段として、従来から化学分析の分野で適用されている核
磁気共鳴分光法(MRS法)が注目される様になってき
ている。この方法は、例えば特開昭59−136643
号に示されている様に、果汁に含まれるぶどう糖や果糖
等の分子中の水素原子の核磁気共鳴周波数が、分子の種
類によって全て異なること、および各分子の濃度に比例
した核磁気共鳴信号が得られること等を利用して、果汁
中の糖の種類と割合を測定するものである。
On the other hand, as means for nondestructively examining the state of fruit juice, nuclear magnetic resonance spectroscopy (MRS), which has been conventionally applied in the field of chemical analysis, has been receiving attention. This method is described in, for example,
As shown in the figure, the nuclear magnetic resonance frequencies of hydrogen atoms in molecules such as glucose and fructose contained in fruit juice are all different depending on the type of molecule, and nuclear magnetic resonance signals proportional to the concentration of each molecule Is used to measure the type and ratio of sugar in the juice.

【0008】この方法は、搾り取られた果汁の様に、そ
の中の分子が比較的自由に運動できる試料に対しては、
良好な結果が得られる。しかしながら、果肉中に分散し
た果汁成分の様に、分子が細胞の間隙等の小さな領域に
閉じ込められている場合には分子運動が制限されて核磁
気共鳴信号の半値幅が広がる為に、各成分の信号を分離
することが困難になり、現実に果汁成分比を求めること
はできない。
[0008] This method is used for a sample, such as squeezed juice, in which the molecules therein can move relatively freely.
Good results are obtained. However, when the molecule is confined in a small area such as a cell gap, such as a juice component dispersed in the pulp, the molecular motion is restricted and the half width of the nuclear magnetic resonance signal is expanded, so that each component is , It becomes difficult to separate the signals, and the fruit juice component ratio cannot be actually obtained.

【0009】本発明者らは、かねてより上記のような課
題を解決するために様々な角度から検討を重ねてきた。
そしてまず、果汁に含まれる水分子中の水素原子核につ
いて、核磁気共鳴法によって測定される縦緩和時間(T
1)および横緩和時間(T2)と、光学的な方法によっ
て測定される果汁の糖度との間には相関々係があること
を見出した(特開平8−313461号)。この技術
は、果実内の特定領域の縦緩和時間(T1)と横緩和時
間(T2)を求め、これらを下記(1)式に適用するこ
とによって、西瓜の糖度を評価するものである。 糖度=A×縦緩和時間(T1)+B×横緩和時間(T2)+C …(1) (但し、A,B,Cは、いずれも定数)
The present inventors have long studied from various angles in order to solve the above problems.
First, for the hydrogen nuclei in the water molecules contained in the juice, the longitudinal relaxation time (T
It has been found that there is a correlation between 1) and the transverse relaxation time (T2) and the sugar content of the juice measured by an optical method (Japanese Patent Application Laid-Open No. 8-313461). This technique evaluates the sugar content of watermelon by calculating the longitudinal relaxation time (T1) and the lateral relaxation time (T2) of a specific region in a fruit and applying these to the following equation (1). Sugar content = A × longitudinal relaxation time (T1) + B × lateral relaxation time (T2) + C (where A, B, and C are constants)

【0010】しかしながら本発明者が上記技術を適用
し、西瓜の中心部分における糖度の評価について更に検
討したところ、条件によっては希望する精度で糖度を評
価することができないことが判明した。即ち、果実の温
度の違いによっては、その測定精度が大幅に変動するこ
とが分ったのである。こうした理由については、次の様
に考えることができた。
However, the present inventor has applied the above technique and further studied the evaluation of the sugar content in the central part of the watermelon. As a result, it has been found that the sugar content cannot be evaluated with desired accuracy depending on the conditions. That is, it was found that the measurement accuracy fluctuated greatly depending on the difference in the temperature of the fruit. The reasons could be considered as follows.

【0011】上記の発明においては果実の温度変動につ
いては全く考慮しなかったのであるが、例えば「パルス
およびフーリエ変換NMR」(ファラー、ベッカー著;
吉岡書店、1976年)によれば、縦緩和時間(T1)
および横緩和時間(T2)は分子運動と密接に関連して
いることが示されており、一方分子運動は温度に敏感に
反映することが知られているから、温度が縦緩和時間
(T1)および横緩和時間(T2)の値に影響を与える
ことが十分に予想される。
In the above invention, the temperature fluctuation of the fruit was not considered at all, but for example, "Pulse and Fourier Transform NMR" (Farrer, Becker;
According to Yoshioka Shoten, 1976), the longitudinal relaxation time (T1)
And the transverse relaxation time (T2) have been shown to be closely related to molecular motion, whereas molecular motion is known to be sensitive to temperature, so that the temperature is reduced by the longitudinal relaxation time (T1). It is fully expected to affect the value of the lateral relaxation time (T2).

【0012】本発明はこうした状況の下になされたもの
であって、その目的は、果実における糖度、酸度および
熟成度等の内部品質を、果実の温度の影響を受けること
なく、非破壊的に且つ迅速に評価するための有用な方法
を提供することにある。
The present invention has been made under such circumstances, and its object is to non-destructively control the internal qualities such as sugar content, acidity and ripening of fruits without being affected by the temperature of the fruits. Another object of the present invention is to provide a useful method for quick evaluation.

【0013】[0013]

【課題を解決するための手段】上記目的を達成し得た本
発明とは、果実内の或る1つの領域を選び、核磁気共鳴
法によって当該領域に存在する或る原子の原子核の縦緩
和時間(T1)および横緩和時間(T2)を測定し、こ
れらの各緩和時間と、両緩和時間の比に基づいて果実の
内部品質を非破壊的に評価する点に要旨を有する果実の
内部品質評価方法である。また本発明方法は、果実が西
瓜であるときに特に効果的であり、また内部品質として
の糖度を評価する方法として最も有効である。
Means for Solving the Problems The present invention which has achieved the above object is to select a certain region in a fruit and to longitudinally relax a nucleus of a certain atom present in the region by a nuclear magnetic resonance method. Time (T1) and transverse relaxation time (T2) are measured, and the internal quality of the fruit has the point of non-destructively evaluating the internal quality of the fruit based on each of these relaxation times and the ratio of the two relaxation times. This is an evaluation method. The method of the present invention is particularly effective when the fruit is watermelon, and is most effective as a method for evaluating the sugar content as an internal quality.

【0014】[0014]

【発明の実施の形態】本発明者らは、まず西瓜に含まれ
る水分子の縦緩和時間(T1)と横緩和時間(T2)の
温度依存性について検討を重ねた。その結果、いずれの
緩和時間(T1,T2)も温度依存性を示し、特に縦緩
和時間(T1)は、強い温度依存性を示すことが判明し
た。図1は、各緩和時間(T1,T2)の温度依存性を
示すグラフであるが、この結果から次のことが明らかで
ある。即ち、前記(1)式における定数A,BおよびC
は、実は温度の関数として表されるのである。このこと
から容易に理解される様に、上記した様な技術では、温
度の影響を強く受けることになる。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors first studied the temperature dependence of the longitudinal relaxation time (T1) and the transverse relaxation time (T2) of water molecules contained in watermelon. As a result, it was found that each of the relaxation times (T1, T2) exhibited temperature dependence, and particularly, the longitudinal relaxation time (T1) exhibited strong temperature dependence. FIG. 1 is a graph showing the temperature dependence of each relaxation time (T1, T2). The following is clear from the results. That is, the constants A, B and C in the above equation (1)
Is actually expressed as a function of temperature. As can be easily understood from this, the above-described technique is strongly affected by temperature.

【0015】こうした状況の下では、生産地の近傍に設
けられる選果場の様に、温度制御設備がない場所におい
ては、日毎に(極端な場合には、時間毎に)上記(1)
式における定数A〜Cが変動するので、上記した技術は
そのままでは適用できないことになる。もちろん原理的
には、果実の内部の温度を測定できれば、この技術の適
用は可能と考えられる。つまり、縦緩和時間(T1)お
よび横緩和時間(T2)と温度の関係を予め求めてお
き、様々な温度下で測定された縦緩和時間(T1)と横
緩和時間(T2)の値を、ある基準温度での値に換算す
れば、温度の影響を補正して糖度が正確に求められるこ
とになる。しかしながら、実際問題として果実内部の温
度を正確に測定することは困難であり、またこの温度を
測定する為に用いられる放射温度計等に要する設備コス
トも高くなるという問題がある。
In such a situation, in a place where there is no temperature control equipment, such as a fruit sorting place provided near the production site, every day (in extreme cases, every hour), the above (1)
Since the constants A to C in the equations fluctuate, the above technique cannot be applied as it is. Of course, in principle, it would be possible to apply this technique if the temperature inside the fruit could be measured. That is, the relationship between the longitudinal relaxation time (T1) and the lateral relaxation time (T2) and the temperature is obtained in advance, and the values of the longitudinal relaxation time (T1) and the lateral relaxation time (T2) measured at various temperatures are calculated as follows: If the value is converted into a value at a certain reference temperature, the influence of the temperature is corrected, and the sugar content can be accurately obtained. However, as a practical problem, it is difficult to accurately measure the temperature inside the fruit, and there is a problem that equipment costs required for a radiation thermometer and the like used for measuring the temperature also increase.

【0016】そこで本発明者らは、内部温度に影響され
ることなく、果実の内部品質を正確に把握することので
きる技術について更に検討を進めた。その結果、果実内
の或る2つの領域を選び、磁気共鳴法によって該2つの
領域に存在する或る原子の原子核の縦緩和時間(T1)
および横緩和時間(T2)を測定し、これら各緩和時間
同士の測定値の比に基づいて果実の内部品質を評価すれ
ば、果実温度の影響が低減できることを見出し、その技
術的意義が認められたので先に出願している(特願平8
−113679号)。
Therefore, the present inventors have further studied a technique capable of accurately grasping the internal quality of a fruit without being affected by the internal temperature. As a result, two certain regions in the fruit are selected, and the longitudinal relaxation time (T1) of the nucleus of a certain atom present in the two regions is determined by the magnetic resonance method.
And measuring the lateral relaxation time (T2) and evaluating the internal quality of the fruit based on the ratio of the measured values of each relaxation time, it was found that the effect of the fruit temperature could be reduced, and its technical significance was recognized. Therefore, the application was filed earlier (Japanese Patent Application No. 8
No. 113679).

【0017】しかしながら、この発明においても若干の
改良すべき余地が認められた。即ち、この方法では1つ
の試料について、2つの領域に存在する或る原子の原子
核の縦緩和時間(T1)と横緩和時間(T2)を測定す
るものであるので、オンラインで実用化するに当たって
測定時間が長くなるという問題があった。
However, there is still room for improvement in the present invention. That is, in this method, the longitudinal relaxation time (T1) and the transverse relaxation time (T2) of the nucleus of a certain atom existing in two regions are measured for one sample. There was a problem that time was long.

【0018】こうした状況の下で本発明者らは、上記方
法における問題を解決するべく、更に鋭意研究を重ね
た。その結果、果実内の或る1つの領域を選び、核磁気
共鳴法によって当該領域に存在する或る原子の原子核の
縦緩和時間(T1)および横緩和時間(T2)を測定
し、これらの各緩和時間と、両緩和時間の比に基づいて
果実の内部品質を非破壊的に評価する様にすれば、測定
時間を短くできると共に、内部温度に影響されることな
く、果実の内部品質を正確に把握することのできること
を見出し、本発明を完成した。
Under these circumstances, the present inventors have conducted further intensive studies to solve the problems in the above method. As a result, a certain region in the fruit is selected, and the longitudinal relaxation time (T1) and the transverse relaxation time (T2) of the nucleus of a certain atom present in the region are measured by the nuclear magnetic resonance method. Non-destructive evaluation of the internal quality of the fruit based on the relaxation time and the ratio of the two relaxation times can shorten the measurement time and accurately measure the internal quality of the fruit without being affected by the internal temperature. The present inventors have found that the present invention can be grasped and completed the present invention.

【0019】ところで本発明では、縦緩和時間(T1)
と横緩和時間(T2)の値を測定する対象については、
果実内の或る1つの領域に存在する或る原子の原子核で
あれば良く、特に限定するものではなく、当該原子とし
ては例えば炭素や水素等が挙げられる。但し、測定時間
の短縮を図るという観点からすれば、測定対象は、水素
原子核であることが好ましい。また同じ水素原子核で
も、上記と同じ理由から、水分子に属するものであるこ
とが好ましい。即ち、水は果汁成分中で最大の比率を有
するものであり、そこから得られる核磁気共鳴信号は他
のどの部分からのものより大きくなり、測定時間を短縮
できるのである。また測定対象を水分子の水素原子核と
すれば、他の糖成分等からの信号を相対的に無視するこ
とができ、測定システムを簡略化できるという利点もあ
る。
In the present invention, the longitudinal relaxation time (T1)
And the target for measuring the value of the lateral relaxation time (T2),
The nucleus of a certain atom existing in a certain region in the fruit may be used, and is not particularly limited. Examples of the atom include carbon and hydrogen. However, from the viewpoint of shortening the measurement time, the measurement target is preferably a hydrogen nucleus. It is preferable that the same hydrogen nucleus belongs to a water molecule for the same reason as described above. That is, water has the largest ratio among the juice components, and the nuclear magnetic resonance signal obtained therefrom is greater than that from any other part, and the measurement time can be reduced. Further, if the measurement target is a hydrogen nucleus of a water molecule, there is an advantage that signals from other sugar components and the like can be relatively neglected, and the measurement system can be simplified.

【0020】本発明によれば、縦緩和時間(T1)と横
緩和時間(T2)を測定する箇所が1つの領域で良いの
で、測定時間が大幅に短縮することができ、オンライン
での実用化に十分対応できることになる。
According to the present invention, since the location where the longitudinal relaxation time (T1) and the lateral relaxation time (T2) are measured may be in one area, the measurement time can be greatly reduced, and practical application online. Will be able to respond sufficiently.

【0021】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following Examples are not intended to limit the present invention, and any design change in the spirit of the foregoing or the following is not limited to the present invention. It is included in the technical scope.

【0022】[0022]

【実施例】図2は、本発明方法を実施するために構成さ
れるMRI装置例のブロック図、図3は、該装置を適用
したときのタイミングチャートである。尚ここでは、ボ
アの中心軸をz軸、この直線に直交する鉛直上向き方向
をy軸、同じく水平方向をx軸に選んで説明を進める。
FIG. 2 is a block diagram of an example of an MRI apparatus configured to carry out the method of the present invention, and FIG. 3 is a timing chart when the apparatus is applied. Here, the center axis of the bore will be referred to as the z-axis, the vertically upward direction orthogonal to this straight line will be referred to as the y-axis, and the horizontal direction will be referred to as the x-axis.

【0023】図2において、1は超電導磁石によって構
成され静磁場を形成する主コイル、2はz軸方向、y軸
方向、x軸方向の夫々の方向に磁場勾配を形成するため
の3つの勾配磁場コイル、3は90度パルスの送信およ
びNMR信号の検出を行うプローブコイルを夫々示す。
また前記プローブコイル3に関連して、信号の送受信を
効率良く行なうためのマッチングネットワーク4、微小
なNMR信号を増幅させるためのプリアンプ5、大振幅
の90度パルスが入るのを防ぐためのデュプレクサ6が
夫々設けられている。
In FIG. 2, reference numeral 1 denotes a main coil formed of a superconducting magnet to form a static magnetic field, and 2 denotes three gradients for forming a magnetic field gradient in each of a z-axis direction, a y-axis direction, and an x-axis direction. Magnetic field coils 3 and probe coils 3 respectively transmit a 90-degree pulse and detect an NMR signal.
In connection with the probe coil 3, a matching network 4 for efficiently transmitting and receiving signals, a preamplifier 5 for amplifying a small NMR signal, and a duplexer 6 for preventing a 90-degree pulse with a large amplitude from entering. Are provided respectively.

【0024】受信機7では、プリアンプ5からの信号を
更に増幅して位相検波を行なって、制御信号処理用コン
ピュータ8に送出する。前記3つの勾配磁場コイル2
は、3台の勾配増幅器9を介して、前記制御信号処理用
コンピュータ8によって制御され、図3に示したタイミ
ングチャートに従って所定の磁場勾配を発生する。送信
用増幅器10、シンセサイザー11、変調器12および
波形発生回路13は、選択性90度パルスを作るための
ものである。
The receiver 7 further amplifies the signal from the preamplifier 5 to perform phase detection, and sends the signal to the control signal processing computer 8. The three gradient magnetic field coils 2
Is controlled by the control signal processing computer 8 via three gradient amplifiers 9 and generates a predetermined magnetic field gradient according to the timing chart shown in FIG. The transmitting amplifier 10, the synthesizer 11, the modulator 12, and the waveform generating circuit 13 are for generating a 90-degree selective pulse.

【0025】本発明者らは、上記MRI装置を用い、前
記主コイル1のボアのほぼ中央に西瓜15を置き、西瓜
の中心部の領域における水分子に含まれる水素原子核の
縦緩和時間(T1)および横緩和時間(T2)を測定し
た。このとき測定には、スティミュレイテッドエコー法
(STEAM法)において、エコー時間TEと繰り返し
時間TRを変えながら(図3参照)、NMR信号を得る
方法を採用した。この手順は次に示す通りである。
Using the above-described MRI apparatus, the present inventors place a watermelon 15 approximately in the center of the bore of the main coil 1, and set the longitudinal relaxation time (T1) of hydrogen nuclei contained in water molecules in the central region of the watermelon. ) And transverse relaxation time (T2) were measured. At this time, in the stimulated echo method (STEAM method), a method of obtaining an NMR signal while changing the echo time TE and the repetition time TR (see FIG. 3) was employed. This procedure is as follows.

【0026】西瓜15はz軸方向の静磁場中に置かれて
いるので、西瓜15の果汁の水素原子核スピンが形成す
るマクロな磁気モーメントは、はじめはz軸に平行な軸
の回理に歳差運動をしている。まずz軸方向のスライス
領域を限定するために、z軸方向の勾配磁場aを印加し
ながら、制御信号処理用コンピュータ8の指示を受け
て、シンセサイザー11、変調器12、波形発生回路1
3および送信用増幅器10によって作られる選択性90
度パルスを印加する。この操作で、z軸に直交する特定
スライス面のスピンのみが90度向きを変える。続けて
同様の操作をx軸方向に勾配磁場dおよびy軸方向に勾
配磁場fを印加しながら行なえば、3つの直交するスラ
イスが重なる立方体の領域の磁気モーメントのみが27
0度回転し、3つのうちの2つのスライスが重なる領域
のスピンは180度回転することになる。
Since the watermelon 15 is placed in a static magnetic field in the z-axis direction, the macroscopic magnetic moment formed by the hydrogen nucleus spin of the fruit juice of the watermelon 15 is initially due to the rotation of the axis parallel to the z-axis. Doing a differential movement. First, in order to limit the slice area in the z-axis direction, while applying a gradient magnetic field a in the z-axis direction, under the control of the control signal processing computer 8, the synthesizer 11, the modulator 12, the waveform generation circuit 1
3 and the selectivity 90 created by the transmitting amplifier 10
A degree pulse is applied. By this operation, only the spin on the specific slice plane orthogonal to the z-axis changes the direction by 90 degrees. Subsequently, if the same operation is performed while applying a gradient magnetic field d in the x-axis direction and a gradient magnetic field f in the y-axis direction, only the magnetic moment in the cubic region where three orthogonal slices overlap is reduced to 27.
The spin in the region where the two slices of the three slices overlap by 0 degree will be rotated by 180 degrees.

【0027】こうして3つの軸に対する選択操作を行な
った後、時間Te/2が経過すれば、スティミュレーテ
ッドエコー(Stimulated Echo )と呼ばれるエコー信号
を得ることができる。このとき、180度回転した領域
では横磁化が存在しないので、理想的には核磁気共鳴信
号は発生しないことになる。従って、外部で観測された
前記スティミュレーテッドエコー信号は、3つの直交す
るスライスが重なる立方体の領域からのもののみであ
り、この領域が糖度を評価したい領域に一致する様にス
ライス選択を行なえば、特定の領域のみの評価を行うこ
とができる。但し、実際には、スティミュレーテッドエ
コー信号以外のエコー信号が多数発生するので、これを
防止するために、図3における時間Te,Tmの部分
に、任意強度の磁場勾配b,c,eを加えた。尚上記シ
ーケンスで得られるスティミュレーテッドエコー信号の
強度をIとすれば、Iは下記(2)式の如く記載でき
る。 I∝exp(−Te/T2)・exp(−Tm/T1) ・[1−exp(−Tr/T1) …(2)
After time Te / 2 has elapsed after the selection operation for the three axes is performed, an echo signal called stimulated echo (Stimulated Echo) can be obtained. At this time, since there is no transverse magnetization in the region rotated by 180 degrees, no nuclear magnetic resonance signal is ideally generated. Therefore, the stimulated echo signal observed outside is only from a cubic region where three orthogonal slices overlap, and slice selection can be performed so that this region matches the region where the sugar content is to be evaluated. For example, it is possible to evaluate only a specific area. However, in practice, a large number of echo signals other than stimulated echo signals are generated. To prevent this, magnetic field gradients b, c, and e having arbitrary strengths are added at time Te and Tm in FIG. Was added. If the intensity of the stimulated echo signal obtained in the above sequence is I, I can be described as the following equation (2). I @ exp (-Te / T2) .exp (-Tm / T1). [1-exp (-Tr / T1) ... (2)

【0028】本発明者らは、温度の影響を調査する為
に、5℃,10℃,15℃,20℃および25℃の夫々
の温度に予め調整しておいた5個づつ(合計25個)の
西瓜を試料として用い、該試料の中心部の3×3×3
(cm)の立方体領域における水分子に含まれる水素原
子核の縦緩和時間(T1)と横緩和時間(T2)を測定
した。このとき上記縦緩和時間(T1)と横緩和時間
(T2)の測定値の比(T1/T2)についても測定し
た。
In order to investigate the influence of the temperature, the present inventors preliminarily adjusted the temperature to each of 5 ° C., 10 ° C., 15 ° C., 20 ° C., and 25 ° C. (5 in total). ) Is used as a sample, and 3 × 3 × 3 at the center of the sample is used.
The longitudinal relaxation time (T1) and the transverse relaxation time (T2) of hydrogen nuclei contained in water molecules in a (cm) cubic region were measured. At this time, the ratio (T1 / T2) of the measured values of the longitudinal relaxation time (T1) and the lateral relaxation time (T2) was also measured.

【0029】一方、西瓜の糖度は、各緩和時間の測定が
終了した後、試料を破壊して中心部測定領域を取り出
し、屈折式糖度計を用いて測定を行った。25個の試料
について、屈折式糖度計による測定値(観測値)と、縦
緩和時間(T1)、横緩和時間(T2)およびこれら両
緩和時間の比(T1/T2)との重回帰直線を求めたと
ころ、下記(3)式に示す様な関係があることが認めら
れた。尚(3)式の右辺における「糖度」は、縦緩和時
間(T1)、横緩和時間(T2)および両緩和時間の比
(T1/T2)とから求められる予測値である。 糖度=−10.35 ×縦緩和時間(T1)−5.3 ×横緩和時間(T2) −8.5 ×緩和時間比+20.5 …(3)
On the other hand, the sugar content of the watermelon was measured using a refraction type refractometer after the measurement of each relaxation time was completed and the sample was broken to take out the central measurement region. For 25 samples, the multiple regression line between the measured value (observed value) by the refraction refractometer, the longitudinal relaxation time (T1), the transverse relaxation time (T2), and the ratio (T1 / T2) of these two relaxation times was obtained. As a result, it was confirmed that there was a relationship as shown in the following equation (3). The “sugar content” on the right side of the equation (3) is a predicted value obtained from the longitudinal relaxation time (T1), the lateral relaxation time (T2), and the ratio of the two relaxation times (T1 / T2). Sugar content = -10.35 x longitudinal relaxation time (T1)-5.3 x lateral relaxation time (T2)-8.5 x relaxation time ratio + 20.5 ... (3)

【0030】ところで、縦緩和時間(T1)と横緩和時
間(T2)とでは、温度依存性が異なっていることは前
述した通りである。即ち、縦緩和時間(T1)は横緩和
時間(T2)と比べて特に温度依存性が大きく、1℃当
たり約40msから50ms程度変化するが、横緩和時
間(T2)は実質的に温度依存性を示さない(前記図1
参照)。従って、縦緩和時間(T1)と横緩和時間(T
2)の比(T1/T2)は、温度を示す指標になる。本
発明は、こうした原理を利用し、上記両緩和時間の比
(T1/T2)を糖度を予測する式に組み込むことによ
って、温度の影響を除去することに成功したものであ
る。
As described above, the vertical relaxation time (T1) and the horizontal relaxation time (T2) have different temperature dependences. That is, the longitudinal relaxation time (T1) has a particularly large temperature dependency as compared with the transverse relaxation time (T2), and varies from about 40 ms to 50 ms per 1 ° C., but the transverse relaxation time (T2) is substantially temperature dependent. Is not shown (see FIG. 1).
reference). Therefore, the vertical relaxation time (T1) and the horizontal relaxation time (T
The ratio (T1 / T2) of 2) is an index indicating the temperature. The present invention has succeeded in eliminating the influence of temperature by incorporating the above-mentioned principle and incorporating the ratio of the two relaxation times (T1 / T2) into a formula for predicting the sugar content.

【0031】本発明者らは、上記の手順の従って、別途
準備した30個の試料(西瓜)について、前記(3)式
で予測される糖度の値(予測値)と屈折式糖度計で測定
した糖度の値(観測値)の関係について調査した。その
結果を、図4に示す。そして図4の結果から、予測値と
実測値との相関係数を求めたところ、0.96という高
い値が得られていることが確認された。
According to the above procedure, the present inventors measured the sugar content value (predicted value) predicted by the formula (3) and the refraction type refractometer for 30 separately prepared samples (watermelon). The relationship between the measured sugar content values (observed values) was investigated. The result is shown in FIG. Then, when the correlation coefficient between the predicted value and the actually measured value was obtained from the results of FIG. 4, it was confirmed that a high value of 0.96 was obtained.

【0032】一方、同じ試料を用い、前記(1)式に従
って糖度の予測値を測定したところ、観測値と予測値と
の相関係数は0.48に止まることが確認された。こう
したことから本発明方法によれば、試料の温度に影響さ
れることなく、短時間で非破壊的に西瓜の糖度が測定で
きることが立証された。
On the other hand, when the predicted value of the sugar content was measured using the same sample according to the above equation (1), it was confirmed that the correlation coefficient between the observed value and the predicted value was only 0.48. From these facts, it was proved that according to the method of the present invention, the sugar content of watermelon can be measured nondestructively in a short time without being affected by the temperature of the sample.

【0033】[0033]

【発明の効果】本発明は以上のように構成されており、
果実の糖度等の内部品質を果実の温度の影響を受けるこ
となく、非破壊的に且つ迅速に評価できる方法が実現で
きた。またこの方法は、果実生産業者の出荷ラインや青
果流通販売業者の入荷検査ライン等で適用されると、果
実の等級分類および熟成度判定による製品の出荷タイミ
ングの適正化を図る上で極めて有用であり、その効果が
大いに期待される。
The present invention is configured as described above.
A method has been realized in which the internal quality such as the sugar content of a fruit can be evaluated nondestructively and quickly without being affected by the temperature of the fruit. In addition, when this method is applied to a shipment line of a fruit producer or a stock inspection line of a fruit and vegetable distributor, it is extremely useful in optimizing the timing of product shipment by classifying fruits and judging the degree of maturity. Yes, its effects are highly expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】縦緩和時間(T1)および横緩和時間(T2)
の温度依存性を示すグラフである。
FIG. 1 is a longitudinal relaxation time (T1) and a lateral relaxation time (T2).
4 is a graph showing the temperature dependence of the present invention.

【図2】本発明方法を実施するために構成されるMRI
装置例のブロック図である。
FIG. 2 shows an MRI configured to carry out the method of the invention.
It is a block diagram of an example of a device.

【図3】図2に示した装置を適用したときのタイミング
チャートである。
FIG. 3 is a timing chart when the device shown in FIG. 2 is applied.

【図4】西瓜について本発明方法で予測した糖度(予測
値)と、実際に絞った果汁から光学式糖度計で測定した
糖度(観測値)との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the sugar content (predicted value) of watermelon predicted by the method of the present invention and the sugar content (observed value) measured by an optical refractometer from fruit juice actually squeezed.

【符号の説明】[Explanation of symbols]

1 主コイル 2 勾配磁場コイル 3 プローブコイル 4 マッチングネットワーク 5 プリアンプ 6 デュプレクサ 7 受信機 8 制御信号処理用コンピュータ 9 勾配増幅器 10 送信用増幅器 11 シンセサイザー 12 変調器 13 波形発生回路 15 西瓜 DESCRIPTION OF SYMBOLS 1 Main coil 2 Gradient magnetic field coil 3 Probe coil 4 Matching network 5 Preamplifier 6 Duplexer 7 Receiver 8 Control signal processing computer 9 Gradient amplifier 10 Transmission amplifier 11 Synthesizer 12 Modulator 13 Waveform generation circuit 15 Watermelon

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 果実内の或る1つの領域を選び、核磁気
共鳴法によって当該領域に存在する或る原子の原子核の
縦緩和時間(T1)および横緩和時間(T2)を測定
し、これらの各緩和時間と、両緩和時間の比に基づいて
果実の内部品質を非破壊的に評価することを特徴とする
果実の内部品質評価方法。
1. A certain region in a fruit is selected, and longitudinal relaxation time (T1) and transverse relaxation time (T2) of a nucleus of a certain atom present in the region are measured by nuclear magnetic resonance. A non-destructive evaluation of the internal quality of the fruit based on each relaxation time and the ratio of the two relaxation times.
【請求項2】 果実が西瓜である請求項1に記載の評価
方法。
2. The evaluation method according to claim 1, wherein the fruit is a watermelon.
【請求項3】 糖度を評価するものである請求項1また
は2に記載の評価方法。
3. The evaluation method according to claim 1, wherein the sugar content is evaluated.
JP30458797A 1997-11-06 1997-11-06 Method for evaluating interior quality of fruit Withdrawn JPH11142354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30458797A JPH11142354A (en) 1997-11-06 1997-11-06 Method for evaluating interior quality of fruit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30458797A JPH11142354A (en) 1997-11-06 1997-11-06 Method for evaluating interior quality of fruit

Publications (1)

Publication Number Publication Date
JPH11142354A true JPH11142354A (en) 1999-05-28

Family

ID=17934800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30458797A Withdrawn JPH11142354A (en) 1997-11-06 1997-11-06 Method for evaluating interior quality of fruit

Country Status (1)

Country Link
JP (1) JPH11142354A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7880467B2 (en) 2005-06-09 2011-02-01 Aspect Magnet Technologies Ltd. Packed array of MRI/NMR devices and an MRI/NMR method of analyzing adjacent lines of goods simultaneously
CN102866372A (en) * 2011-07-08 2013-01-09 西门子公司 Methods for calibrating frequency of magnetic resonance device and corresponding magnetic resonance device
CN103278514A (en) * 2013-05-02 2013-09-04 浙江大学 Modeling method of detection model for internal quality of fruit
CN103792247A (en) * 2012-11-02 2014-05-14 上海理工大学 Low-field nuclear magnetic resonance detection method for frying use limit of soybean oil
CN103954681A (en) * 2014-04-28 2014-07-30 深圳市柳迪科技有限公司 Device and method for testing fruit interior quality
CN104950005A (en) * 2014-03-26 2015-09-30 中国科学院大连化学物理研究所 Qualitative analysis method for distinguishing water contents of lightly dried sea cucumber, salt dried sea cucumber and expanded sea cucumber
CN105464654A (en) * 2015-12-15 2016-04-06 中国石油天然气股份有限公司 Method and device for determining saturation exponent of tight sandstone
CN106501294A (en) * 2016-09-22 2017-03-15 大连工业大学 The method of temperature spot and time point in situ detection quail egg heating process of setting
JP2018538510A (en) * 2016-10-17 2018-12-27 国▲網▼重慶市電力公司電力科学研究院 Nuclear magnetic resonance detection system for detecting the aging degree of composite insulators
US10345251B2 (en) 2017-02-23 2019-07-09 Aspect Imaging Ltd. Portable NMR device for detecting an oil concentration in water
US11300531B2 (en) 2014-06-25 2022-04-12 Aspect Ai Ltd. Accurate water cut measurement

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7880467B2 (en) 2005-06-09 2011-02-01 Aspect Magnet Technologies Ltd. Packed array of MRI/NMR devices and an MRI/NMR method of analyzing adjacent lines of goods simultaneously
CN102866372A (en) * 2011-07-08 2013-01-09 西门子公司 Methods for calibrating frequency of magnetic resonance device and corresponding magnetic resonance device
US9335395B2 (en) 2011-07-08 2016-05-10 Siemens Aktiengesellschaft Magnetic resonance system and method for frequency calibration of the magnetic resonance system
CN103792247B (en) * 2012-11-02 2016-03-23 上海理工大学 The low-field nuclear magnetic resonance detection method of soybean oil frying operating limit
CN103792247A (en) * 2012-11-02 2014-05-14 上海理工大学 Low-field nuclear magnetic resonance detection method for frying use limit of soybean oil
CN103278514A (en) * 2013-05-02 2013-09-04 浙江大学 Modeling method of detection model for internal quality of fruit
CN104950005A (en) * 2014-03-26 2015-09-30 中国科学院大连化学物理研究所 Qualitative analysis method for distinguishing water contents of lightly dried sea cucumber, salt dried sea cucumber and expanded sea cucumber
CN103954681A (en) * 2014-04-28 2014-07-30 深圳市柳迪科技有限公司 Device and method for testing fruit interior quality
US11300531B2 (en) 2014-06-25 2022-04-12 Aspect Ai Ltd. Accurate water cut measurement
CN105464654A (en) * 2015-12-15 2016-04-06 中国石油天然气股份有限公司 Method and device for determining saturation exponent of tight sandstone
CN106501294A (en) * 2016-09-22 2017-03-15 大连工业大学 The method of temperature spot and time point in situ detection quail egg heating process of setting
JP2018538510A (en) * 2016-10-17 2018-12-27 国▲網▼重慶市電力公司電力科学研究院 Nuclear magnetic resonance detection system for detecting the aging degree of composite insulators
US10345251B2 (en) 2017-02-23 2019-07-09 Aspect Imaging Ltd. Portable NMR device for detecting an oil concentration in water

Similar Documents

Publication Publication Date Title
Ruan et al. Water in foods and biological materials
Pereira et al. Classification of intact fresh plums according to sweetness using time-domain nuclear magnetic resonance and chemometrics
JHA et al. Non-destructive techniques for quality evaluation of intact fruits and vegetables
Gonzalez et al. Detection and monitoring of internal browning development in ‘Fuji’apples using MRI
Zhang et al. Assessment of pomegranate postharvest quality using nuclear magnetic resonance
Chen et al. Maturity evaluation of avocados by NMR methods
US5190039A (en) Apparatus and method for monitoring body organs
Pedersen et al. Application of the NMR-MOUSE to food emulsions
Hills Applications of low-field NMR to food science
Bizzani et al. Non-invasive spectroscopic methods to estimate orange firmness, peel thickness, and total pectin content
Hitchman et al. Monitoring attenuation and the elastic properties of an apple with laser ultrasound
JPH11142354A (en) Method for evaluating interior quality of fruit
CA2848372A1 (en) Detecting hazardous materials in containers utilizing nuclear magnetic resonance based measurements
Tao et al. Magnetic resonance imaging provides spatial resolution of Chilling Injury in Micro-Tom tomato (Solanum lycopersicum L.) fruit
Arefi et al. Mealiness detection in agricultural crops: destructive and nondestructive tests: a review
Hou et al. Prediction of firmness and pH for “golden delicious” apple based on elasticity index from modal analysis
Cho et al. Sugar content measurement in fruit tissue using water peak suppression in high resolution 1H magnetic resonance
Hara et al. Effect of Raman exposure time on the quantitative and discriminant analyses of carotenoid concentrations in intact tomatoes
Andersen et al. Spectroscopic characterization of low-and non-fat cream cheeses
Cho et al. Nondestructive sugar content measurements of intact fruit using spin-spin relaxation time (t2) measurements by pulsed 1h magnetic resonance
Sun et al. Nondestructive detection of melamine in milk powder by terahertz spectroscopy and correlation analysis algorithm
Di Caro et al. Hazelnut oil classification by NMR techniques
Moraes et al. Noninvasive analyses of food products using low-field time-domain NMR: a review of relaxometry methods
Keener et al. Evaluation of low field (5.40-MHz) proton magnetic resonance measurements of Dw and T2 as methods of nondestructive quality evaluation of apples
JPH09297113A (en) Method of evaluating internal quality of fruit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050201