JPH11142333A - Light responsive particle densitometer - Google Patents

Light responsive particle densitometer

Info

Publication number
JPH11142333A
JPH11142333A JP9303175A JP30317597A JPH11142333A JP H11142333 A JPH11142333 A JP H11142333A JP 9303175 A JP9303175 A JP 9303175A JP 30317597 A JP30317597 A JP 30317597A JP H11142333 A JPH11142333 A JP H11142333A
Authority
JP
Japan
Prior art keywords
light
suspended particles
light emitting
time
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9303175A
Other languages
Japanese (ja)
Other versions
JP3898307B2 (en
Inventor
Atsushi Wada
淳 和田
Masaru Sudo
勝 須藤
Hidetake Togawa
英丈 戸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Chemical Industry Co Ltd
Original Assignee
Nitto Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Chemical Industry Co Ltd filed Critical Nitto Chemical Industry Co Ltd
Priority to JP30317597A priority Critical patent/JP3898307B2/en
Publication of JPH11142333A publication Critical patent/JPH11142333A/en
Application granted granted Critical
Publication of JP3898307B2 publication Critical patent/JP3898307B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable the obtaining of concentration in a simple method, by outputting a light reception signal as a binary rectangular wave corresponding to time when an optical axis is blocked by suspended particles and time when the optical axis is not blocked according to changes in the reception of light from a light emitting part, and integrating outputted light reception signals. SOLUTION: Light is emitted by a light emitting part 1 connected to a d.c. power source 6 and is received by a light receiving part 2. Obtained light reception signals are integrated by an integrating circuit B. A voltage lower than a voltage corresponding to output at the time of the total blocking of light is outputted by the integrating circuit B according to a period of time during which light from the light emitting part 1 is blocked, and the ratio of the outputted voltage to a reference voltage indicates the ratio of blocking time in a predetermined time. When suspended particles in a fluid pass the optical axis between the light emitting part 1 and the light receiving part 2 in this way, an output voltage Vout becomes a low voltage. In the case of the absence of suspended particles, the output voltage Vout is at a high electric potential. Therefore, the voltage Vout is expressed as a binary rectangular wave due to the presence or absence of suspended particles in the optical axis. Expressing the output voltage Vout in a rectangular wave eliminates errors even at the time when the light emitting part 1 and the light receiving part 2 are stained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流体中の懸濁固体
粒子の量を計測する個体粒子濃度計に関し、特に粒子の
大きさが0.1mm以上の懸濁粒子の測定に適した懸濁粒
子濃度計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid particle concentration meter for measuring the amount of suspended solid particles in a fluid, and more particularly to a suspension suitable for measuring suspended particles having a particle size of 0.1 mm or more. It relates to a particle concentration meter.

【0002】[0002]

【従来の技術】測定の対象となる流体中に含まれる粒子
の濃度測定としては、光や超音波を流体中に連続的に透
過させ、この光や超音波が流体中を通過する際にその流
体中に含まれる粒子によって減衰させられることから、
この減衰率を用いて懸濁粒子濃度を求める濁度計があ
り、主として10μm以下の懸濁粒子濃度の測定に用い
られている。
2. Description of the Related Art In measuring the concentration of particles contained in a fluid to be measured, light or ultrasonic waves are continuously transmitted through the fluid, and when the light or ultrasonic waves pass through the fluid, the light or ultrasonic waves are transmitted. Because it is attenuated by particles contained in the fluid,
There is a turbidity meter for determining the concentration of suspended particles using this attenuation rate, and is mainly used for measuring the concentration of suspended particles of 10 μm or less.

【0003】[0003]

【発明が解決しようとする課題】上記の従来装置の例で
は、濁度計において、懸濁物粒子の大きさが10μm以
下程度の場合では、光または超音波の減衰度と懸濁粒子
濃度の間に満足のいく相関関係が得られるが、近年、比
較的大きな懸濁粒子の濃度測定の必要性も多くなってき
ているにもかかわらず、懸濁粒子の直径が0.1mm以
上の大きさになると、上記の相関関係が崩れ始め、さら
に0.5mm以上の大きさの懸濁粒子では、上記の方法
による測定では、得られた懸濁粒子濃度の信頼性は大き
く低下するという問題があった。
In the above-mentioned conventional apparatus, when the size of the suspended particles is about 10 μm or less in the turbidimeter, the attenuation of light or ultrasonic waves and the concentration of the suspended particles are reduced. Although a satisfactory correlation is obtained between the particles, the diameter of the suspended particles has a size of 0.1 mm or more, despite the increasing need for measuring the concentration of relatively large suspended particles in recent years. , The above-mentioned correlation starts to break down. Further, in the case of suspended particles having a size of 0.5 mm or more, the reliability of the obtained suspended particle concentration is greatly reduced in the measurement by the above method. Was.

【0004】また、上記の従来の方法では、懸濁粒子を
含まない流体中での透過光量もしくは超音波の音量を基
礎とし、これに比較しての減衰率から濃度を計算してい
るために、濃度測定処理中にもし発光部、受光部の表面
等に汚れが生じた場合には受光部の受光量から求めた減
衰率が、流体中透過による減衰をそのまま示すことには
ならず、減衰率に狂いを生じるため、発光部、受光部の
表面を常に清浄に保つ必要があるなど煩雑な処理を必要
とするという問題がある。
Further, in the above-mentioned conventional method, the concentration is calculated from the attenuation rate based on the amount of transmitted light or the volume of ultrasonic waves in a fluid containing no suspended particles. If the surface of the light-emitting unit and light-receiving unit becomes contaminated during the concentration measurement process, the attenuation rate calculated from the amount of light received by the light-receiving unit does not indicate the attenuation due to transmission through the fluid. Since the rate is deviated, there is a problem that complicated processing is required such that the surfaces of the light emitting unit and the light receiving unit need to be always kept clean.

【0005】本発明はこのような事情に鑑みてなされた
もので、直径が0.1mm以上という比較的大きな懸濁
粒子であっても、また、懸濁粒子の大きさが一定でない
場合にも懸濁粒子濃度を正確に計測でき、さらに検出部
に汚れを生じても測定性能に影響を与えずに測定できる
懸濁粒子濃度計を得るために、発光部からの光の受光の
変化に対応して、懸濁粒子が光路を遮断した時と遮断し
ない時にそれぞれ対応する2値からなる矩形波として受
光信号を出力して、これを積算することにより、遮断時
の時間比率から求めた遮断確率が処理対象の懸濁粒子の
濃度に精度よく比例することを見出したために、高価な
コンピュータや高精度のクロックなどを用いずに簡便な
方法で濃度を求めることのできる、平滑回路を用いた光
応答型粒子濃度計を提供することを目的とする。
The present invention has been made in view of such circumstances, and is intended for use in the case of relatively large suspended particles having a diameter of 0.1 mm or more, and even when the size of the suspended particles is not constant. In order to obtain a suspended particle concentration meter that can accurately measure the concentration of suspended particles and that does not affect the measurement performance even if the detection unit becomes dirty, it responds to changes in light reception from the light emitting unit Then, when the suspended particles interrupt the light path and when the light path is not interrupted, the received light signal is output as a binary rectangular wave corresponding to each, and by integrating the signals, the interruption probability obtained from the time ratio at the interruption is output. Found that the concentration was accurately proportional to the concentration of the suspended particles to be treated, so that the light using a smoothing circuit that could determine the concentration by a simple method without using an expensive computer or a high-precision clock was used. Responsive particle densitometer The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明は、
発光部と、該発光部の発光面に対向する位置において受
光面を上記発光面に向けて設置され、上記発光部から発
せられた光を受光して電気信号に変換し、これを出力す
る受光部と、上記受光部の出力する電気信号を積算する
積算計とを具備してなる光応答型粒子濃度計である。請
求項2記載の発明は、請求項1記載の光応答型粒子濃度
計において上記積算計は、平滑回路からなることを特徴
としている。請求項3記載の発明は、請求項1記載の光
応答型粒子濃度計において上記発光部と上記受光部との
間隔は3〜20mmであり、上記発光部と上記受光部との
間の光路の直径は測定対象の粒子の直径の20倍以下で
あることを特徴としている。
According to the first aspect of the present invention,
A light-emitting unit, a light-receiving surface facing the light-emitting surface at a position facing the light-emitting surface of the light-emitting unit, receiving light emitted from the light-emitting unit, converting the light into an electric signal, and outputting the electric signal And an integrator for integrating the electric signal output from the light receiving unit. According to a second aspect of the present invention, in the photoresponsive particle concentration meter according to the first aspect, the integrator comprises a smoothing circuit. According to a third aspect of the present invention, in the photoresponsive particle densitometer according to the first aspect, an interval between the light emitting unit and the light receiving unit is 3 to 20 mm, and an optical path between the light emitting unit and the light receiving unit is set. The diameter is not more than 20 times the diameter of the particle to be measured.

【0007】[0007]

【発明の実施の形態】以下、本発明の一実施形態による
光応答型粒子濃度計を図面を参照しつつ説明する。図1
は、同実施形態による光応答型粒子濃度計を用いたシス
テムの概観図である。本図において、符号1は、発光部
であり、LED(発光ダイオード)の発光素子そのもの
でもよいし、発光素子からの光を導いた光ファイバの端
部でもよい。符号2は、受光部であり、フォトトランジ
スタなどの受光素子そのものでもよいし、発光素子から
の光を受光素子に導く光ファイバの端部であってもよ
い。この受光部2には直流低電圧Vcが供給され、発光
部1と受光部2とで検出部Aを構成する。符号3は、測
定対象の懸濁粒子を含んだ流体であり、これは容器5の
内部に置かれる。符号4は、撹拌器であり、容器5中の
流体3をこれによって撹拌し、懸濁粒子の密度を均一に
し、測定の精度を高める。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a photoresponsive particle concentration meter according to an embodiment of the present invention will be described with reference to the drawings. FIG.
FIG. 3 is an outline view of a system using the photoresponsive particle densitometer according to the embodiment. In this drawing, reference numeral 1 denotes a light emitting unit, which may be a light emitting element itself of an LED (light emitting diode) or an end of an optical fiber that guides light from the light emitting element. Reference numeral 2 denotes a light receiving unit, which may be a light receiving element itself such as a phototransistor or an end of an optical fiber for guiding light from the light emitting element to the light receiving element. The light receiving unit 2 is supplied with a DC low voltage Vc, and the light emitting unit 1 and the light receiving unit 2 constitute a detecting unit A. Reference numeral 3 denotes a fluid containing suspended particles to be measured, which is placed inside the container 5. Reference numeral 4 denotes a stirrer, which stirs the fluid 3 in the container 5 to make the density of the suspended particles uniform and increase the accuracy of the measurement.

【0008】符号6は、発光部1に一定電圧を供給する
直流電源である。符号Bは、積分回路であり、コンデン
サ7と固定抵抗8aと可変抵抗8bとから構成される。
受光部2からの出力が可変抵抗8bの可変接点部に接続
される。該可変抵抗8bの端部は固定抵抗8aの一端に
接続されると共に、出力Voutとして外部に出力さ
れ、これが本光応答型粒子濃度計の出力となる。上記固
定抵抗8aの他端は接地される。また、固定抵抗8aと
並列に、出力Voutと接地電位との間にコンデンサ7
が接続される。可変抵抗8bの接点の位置を調節するこ
とにより出力Voutの振幅値を調節する。
Reference numeral 6 denotes a DC power supply for supplying a constant voltage to the light emitting unit 1. Reference numeral B denotes an integration circuit, which includes a capacitor 7, a fixed resistor 8a, and a variable resistor 8b.
An output from the light receiving section 2 is connected to a variable contact section of the variable resistor 8b. The end of the variable resistor 8b is connected to one end of the fixed resistor 8a and is output to the outside as an output Vout, which is the output of the present photoresponsive particle densitometer. The other end of the fixed resistor 8a is grounded. A capacitor 7 is connected between the output Vout and the ground potential in parallel with the fixed resistor 8a.
Is connected. The amplitude value of the output Vout is adjusted by adjusting the position of the contact point of the variable resistor 8b.

【0009】次に、本実施形態の動作を説明する。ま
ず、直流電源6を接続して発光部より光を流体中に発
し、これを受光部2において、例えば光電スイッチ回路
等を用いて、受光する。こうして得られた受光部からの
信号をRC平滑回路のような積分回路Bを用いて積算す
る。この積分回路によって、発光部1からの光が遮断さ
れた時間に応じて全遮断時の出力に相当する電圧(基準
電圧)より低い電圧が出力され、この電圧の基準電圧に
対する比率が所定時間内における遮断時間の比率を示
す。即ち、出力値は懸濁個体粒子の通過時間の比率を示
し、これは粒子の大きさが均一でなくとも、懸濁液単位
体積中の粒子総体積に対応する。
Next, the operation of this embodiment will be described. First, the DC power supply 6 is connected, light is emitted from the light emitting unit into the fluid, and the light is received in the light receiving unit 2 using, for example, a photoelectric switch circuit or the like. The signal from the light receiving unit thus obtained is integrated using an integrating circuit B such as an RC smoothing circuit. The integration circuit outputs a voltage lower than a voltage (reference voltage) corresponding to the output when the light from the light emitting unit 1 is cut off, and the ratio of this voltage to the reference voltage within a predetermined time. Shows the ratio of the cut-off time in. That is, the output value indicates the ratio of the passage time of the suspended solid particles, which corresponds to the total volume of particles in the unit volume of the suspension, even if the size of the particles is not uniform.

【0010】こうして、発光部〜受光部の光軸上を流体
中の懸濁粒子が通過すると、これによって光軸上の光は
遮られ、従って出力電圧Voutは低電位となる。上記
光軸上に懸濁粒子が存在しない場合は、出力電圧は高電
位であるので、よって、出力電圧Voutをグラフ表示
すると、上記光軸上の懸濁粒子の有無によって2値を持
つ矩形波として表される。
Thus, when the suspended particles in the fluid pass on the optical axis of the light-emitting portion to the light-receiving portion, the light on the optical axis is thereby blocked, and the output voltage Vout becomes low. When no suspended particles are present on the optical axis, the output voltage is at a high potential. Therefore, when the output voltage Vout is graphically displayed, a rectangular wave having a binary value depending on the presence or absence of the suspended particles on the optical axis. It is expressed as

【0011】発光部1から発せられた光を受ける受光部
2の出力を光電スイッチ(図示せず)によって処理する
ことにより、出力される電圧の経時的変動は、懸濁粒子
が光路を遮断した時と、しない時にそれぞれ対応する2
値からなる間欠的な直流パルス電圧(矩形波)となる。
これは、周期が無作為に変化するものであり、その例を
図2に示してある。ここでは、横軸が時間、縦軸が電圧
であり、電圧が`0`(低電位)の時には、発光部と受
光部との間の光路を懸濁粒子が遮断しており、また、電
圧が`1`(高電位)の時には、上記光路中に懸濁粒子
が存在していないことになる。
The output of the light receiving section 2 receiving the light emitted from the light emitting section 1 is processed by a photoelectric switch (not shown), so that the output voltage varies with time, and the suspended particles interrupt the optical path. 2 for when and when not
It becomes an intermittent DC pulse voltage (rectangular wave) consisting of a value.
This is one in which the period changes randomly, an example of which is shown in FIG. Here, the horizontal axis represents time, the vertical axis represents voltage, and when the voltage is {0} (low potential), suspended particles interrupt the optical path between the light emitting unit and the light receiving unit. Is {1} (high potential), it means that there are no suspended particles in the optical path.

【0012】このように2値からなる矩形波にすること
により、アナログによる減衰率を用いる時のような問題
が無くなり、上述のように発光部、受光部が汚れたとき
にも、それに起因する誤差はほとんどなくなる。
By using a rectangular wave of two values in this way, the problem of using an analog attenuation factor is eliminated, and even when the light emitting portion and the light receiving portion are contaminated as described above, the problem is caused. The error is almost eliminated.

【0013】図3に平均直径0.5mmの懸濁粒子として
固定化菌体を用いた有機化合物反応装置における固定化
菌体の濃度と積算回路からの出力電圧との関係が示され
る。ここでは、横軸に固定化菌体濃度(%)が、縦軸に
検出出力積算値(V)がとられる。この図3から明らか
なように、懸濁物の濃度に精度良く比例する。図3にお
いては、固定化菌体濃度が4〜8%の範囲で優れた相関
関係を示しているが、感度を低下させるとより低濃度で
の相関性が高まるので、感度調整により所望の濃度範囲
での相関を得ることができる。
FIG. 3 shows the relationship between the concentration of immobilized cells and the output voltage from the integrating circuit in an organic compound reactor using immobilized cells as suspended particles having an average diameter of 0.5 mm. Here, the horizontal axis represents the immobilized bacterial cell concentration (%), and the vertical axis represents the detection output integrated value (V). As is clear from FIG. 3, the concentration is accurately proportional to the concentration of the suspension. FIG. 3 shows an excellent correlation when the concentration of the immobilized cells is in the range of 4 to 8%. However, when the sensitivity is lowered, the correlation at a lower concentration is increased. A correlation in the range can be obtained.

【0014】上記において、発光部1と受光部2との間
隔は2〜20mmであることが望ましく、5〜10mmであ
ることがより好ましい。また、発光部1から出て受光部
に到達する光の光路の直径は測定対象の懸濁粒子径の2
0倍以下であることが好ましい。
In the above description, the distance between the light emitting section 1 and the light receiving section 2 is preferably 2 to 20 mm, and more preferably 5 to 10 mm. The diameter of the optical path of the light that exits from the light emitting unit 1 and reaches the light receiving unit is 2 times the diameter of the suspended particles to be measured.
It is preferably 0 times or less.

【0015】以上のように本発明による実施形態による
処理と、受光部で得られる矩形波を測定対象の流体中の
懸濁粒子による光の遮断に応じて、受光部から出力され
る無秩序な間隔の信号をコンピュータに入力して、積算
値を求め、これから懸濁粒子の濃度を求める計算を行う
方法とを比較してみると、本発明による処理は、コンピ
ュータを占有しないために測定装置全体の可搬性に優
れ、また、抵抗とコンデンサとからなる受動素子による
積分回路を用いるために、屋外で測定を行う場合にも電
源の確保や外部環境からの保護装置が必要ないという長
所を持つ。
As described above, the processing according to the embodiment of the present invention and the irregular wave output from the light receiving unit according to the interruption of the light by the suspended particles in the fluid to be measured by the rectangular wave obtained by the light receiving unit. Is compared with a method of calculating the integrated value and calculating the concentration of suspended particles from the signal by inputting the signal to a computer. It is excellent in portability, and has an advantage that, even when performing measurements outdoors, there is no need to secure a power source or to use a protection device from the external environment because an integrating circuit using a passive element including a resistor and a capacitor is used.

【0016】また、受光部からの受光信号を通常のパル
ス変換器を用いて処理する場合に比べると、本測定対象
のようなものは発生するパルス幅が一定ではないので、
パルス変換器によるものよりも、本発明によると精度あ
る測定が可能となる。
Further, compared with the case where the light receiving signal from the light receiving section is processed by using a normal pulse converter, the pulse width generated in the object such as the object to be measured is not constant.
According to the present invention, a more accurate measurement can be performed than by a pulse converter.

【0017】[0017]

【発明の効果】以上説明したように、この発明による光
応答型粒子濃度計によれば、直径0.1mm以上の懸濁粒
子の濃度を高精度に測定することができ、その際に発光
部や受光部の多少の汚れ等による測定誤差を生ぜず、コ
ンピュータのような外部装置を測定対象の個体濃度測定
槽毎に設ける必要がなく、よって安価にかつ簡便に懸濁
個体粒子濃度を測定することができる。さらに、コンピ
ュータを占有しないために測定装置全体の可搬性に優
れ、また、抵抗とコンデンサとからなる受動素子による
積分回路を用いるために、屋外で測定を行う場合にも電
源の確保や外部環境からの保護装置が必要ないという長
所を持つ。
As described above, according to the photoresponsive particle concentration meter according to the present invention, the concentration of suspended particles having a diameter of 0.1 mm or more can be measured with high accuracy. It does not cause measurement errors due to contamination of the light-receiving unit or the like, and eliminates the need to provide an external device such as a computer for each individual concentration measuring tank to be measured, and thus can measure the concentration of suspended solid particles inexpensively and easily. be able to. Furthermore, since the computer is not occupied, the entire measurement device is excellent in portability.In addition, since an integrating circuit using passive elements consisting of a resistor and a capacitor is used, even when performing measurement outdoors, it is necessary to secure a power supply and to protect the external environment. It has the advantage that no protective device is required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態による光応答型粒子濃度
計のブロック図である。
FIG. 1 is a block diagram of a photoresponsive particle densitometer according to an embodiment of the present invention.

【図2】 本発明の一実施形態による光応答型粒子濃度
計により測定された、矩形波の出力信号である。
FIG. 2 is a square wave output signal measured by a photoresponsive particle densitometer according to an embodiment of the present invention.

【図3】 本発明の一実施形態による光応答型粒子濃度
計を用いた懸濁粒子の濃度と出力電圧との関係を示すグ
ラフである。
FIG. 3 is a graph showing the relationship between the concentration of suspended particles and the output voltage using a photoresponsive particle densitometer according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…発光部 2…受光部 3…流体 4…撹拌器 5…容器 6…直流電源 7…コンデンサ 8a、8b…抵抗 A…検出部 B…積分回路 DESCRIPTION OF SYMBOLS 1 ... Light-emitting part 2 ... Light-receiving part 3 ... Fluid 4 ... Stirrer 5 ... Container 6 ... DC power supply 7 ... Condenser 8a, 8b ... Resistance A ... Detection part B ... Integration circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発光部と、 該発光部の発光面に対向する位置において受光面を上記
発光面に向けて設置され、上記発光部から発せられた光
を受光して電気信号に変換し、これを出力する受光部
と、 上記受光部の出力する電気信号を積算する積算計とを具
備してなる光応答型粒子濃度計。
A light-emitting unit, a light-receiving surface facing the light-emitting surface at a position facing the light-emitting surface of the light-emitting unit, receiving light emitted from the light-emitting unit, converting the light into an electric signal, A photoresponsive particle densitometer comprising: a light receiving unit that outputs the signal; and an integrator that integrates an electric signal output by the light receiving unit.
【請求項2】 上記積算計は、平滑回路からなることを
特徴とする請求項1記載の光応答型粒子濃度計。
2. The photoresponsive particle concentration meter according to claim 1, wherein said integrator comprises a smoothing circuit.
【請求項3】 上記発光部と上記受光部との間隔は3〜
20mmであり、上記発光部と上記受光部との間の光路の
直径は測定対象の粒子の直径の20倍以下であることを
特徴とする請求項1記載の光応答型粒子濃度計。
3. The distance between the light emitting section and the light receiving section is 3 to 3.
2. The photoresponsive particle densitometer according to claim 1, wherein the diameter is 20 mm, and the diameter of an optical path between the light emitting unit and the light receiving unit is 20 times or less the diameter of a particle to be measured.
JP30317597A 1997-11-05 1997-11-05 Photoresponsive particle concentration meter Expired - Lifetime JP3898307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30317597A JP3898307B2 (en) 1997-11-05 1997-11-05 Photoresponsive particle concentration meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30317597A JP3898307B2 (en) 1997-11-05 1997-11-05 Photoresponsive particle concentration meter

Publications (2)

Publication Number Publication Date
JPH11142333A true JPH11142333A (en) 1999-05-28
JP3898307B2 JP3898307B2 (en) 2007-03-28

Family

ID=17917795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30317597A Expired - Lifetime JP3898307B2 (en) 1997-11-05 1997-11-05 Photoresponsive particle concentration meter

Country Status (1)

Country Link
JP (1) JP3898307B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181253A (en) * 2016-12-08 2018-06-19 维美德自动化有限公司 For measuring the method for suspension and measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181253A (en) * 2016-12-08 2018-06-19 维美德自动化有限公司 For measuring the method for suspension and measuring device

Also Published As

Publication number Publication date
JP3898307B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
CN104596990B (en) Double channel optical fiber turbidimetry method and sensor
US6292756B1 (en) Narrow band infrared water fraction apparatus for gas well and liquid hydrocarbon flow stream use
US5828458A (en) Turbidity sensor
US4622465A (en) Arrangement for determining the presence of specific substances in a liquid
GB2047880A (en) Determination of characteristics of segmented fluid
US4841157A (en) Optical backscatter turbidimeter sensor
US3919050A (en) Microparticle analysis
SE8800686L (en) PROCEDURE AND DEVICE FOR DETERMINING THE CONCENTRATION OF A SUBSTANCE CONNECTED TO PARTICLES IN A FLOWING MEDIUM
CN205103129U (en) Novel particulate matter sensor
JPH11142333A (en) Light responsive particle densitometer
CN103645162A (en) System for monitoring suspended solids in water in real time
RU2426982C2 (en) Method of dust detection on electronic hardware pcbs
WO2006033885A1 (en) Turbidity sensor
CN201028995Y (en) Multi-light beam suspended substance concentration measuring apparatus
Chen et al. High-Precision Monitoring System for Turbidity of Drinking Water by Using Scattering Method
CN103267744A (en) turbidity optical detection device based on rectangular prism
RU2235991C1 (en) Noncontact turbidimeter
FI69371C (en) FOER REFRIGERATION FOR OBSERVATION AV DROPP- OCH / ELLERPARTIKELFORMIGT MATERIAL
CN205120535U (en) Particulate matter sensor
CN219178622U (en) Water flow monitoring device and system
CN108195444A (en) A kind of high-accuracy liquid level sensor for sewage
JP3273850B2 (en) Portable radioactive surface contamination detector
JPH0438279Y2 (en)
CN209342608U (en) A kind of newest display surface low general formula transmissometer
RU2308707C2 (en) Detector for detecting oil concentration in water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term