JPH11142260A - Heating value measuring instrument for glass solidification - Google Patents

Heating value measuring instrument for glass solidification

Info

Publication number
JPH11142260A
JPH11142260A JP31226197A JP31226197A JPH11142260A JP H11142260 A JPH11142260 A JP H11142260A JP 31226197 A JP31226197 A JP 31226197A JP 31226197 A JP31226197 A JP 31226197A JP H11142260 A JPH11142260 A JP H11142260A
Authority
JP
Japan
Prior art keywords
heat flux
container
solidified
vitrified
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31226197A
Other languages
Japanese (ja)
Inventor
Harunori Koizumi
治徳 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP31226197A priority Critical patent/JPH11142260A/en
Publication of JPH11142260A publication Critical patent/JPH11142260A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a new heating value measuring instrument which can accurately find the total heating value of a glass solidified body by greatly reducing its heat flux measurement error. SOLUTION: This instrument includes a flank heat flux measurement part 4 equipped with side heat flux sensors 10 which measure heat flux on the flank of a solidified body container 2 vertically in stages so that they are allowed to freely come closer and leave one another, and a bottom heat flux measurement part 5 equipped with a bottom heat flux sensor 16 which measure the heat flux at the bottom of the solidified body container 2. Consequently, the heat flux can be measured not only on the flank of the solidified container 2, but also from the bottom part of the solidified body container 2, so the measurement error can be greatly decreased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高熱を発生するガ
ラス固化体の発熱量を遠隔で測定するための発熱量測定
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a calorific value measuring device for remotely measuring the calorific value of a vitrified body that generates high heat.

【0002】[0002]

【従来の技術】従来、原子力発電所から出た使用済燃料
は、再処理工場で再利用可能なウランやプルトニウム
と、廃棄処分される核分裂生成物に分離された後、核分
裂生成物は高レベル放射性廃液として、ガラス原料と共
に高温で溶かし合わされた後、キャニスターと称される
ステンレス製の筒状容器内に入れられてガラス固化体と
して安定化処理されるようになっている。
2. Description of the Related Art Conventionally, spent fuel from a nuclear power plant is separated into uranium and plutonium which can be reused in a reprocessing plant and fission products to be discarded, and then the fission products have a high level. After being melted together with the glass raw material at a high temperature as a radioactive waste liquid, it is placed in a stainless steel cylindrical container called a canister and is stabilized as a vitrified body.

【0003】そして、このガラス固化体は、その後しば
らく崩壊熱によって高温に発熱していることから、屋外
に建設されたガラス固化体貯蔵建屋内で約30〜50年
間程度貯蔵保管されながら自然冷却された後、地中深く
埋設処分されることが計画されている。
[0003] Since the vitrified material has been heated to a high temperature due to decay heat for a while, it is naturally cooled while being stored and stored for about 30 to 50 years in a vitrified material storage building constructed outdoors. After that, it is planned to be buried deep underground.

【0004】そして、現在、この使用済燃料の再処理は
外国の再処理工場に委託しており、再処理に際して発生
したガラス固化体は、ウランやプルトニウムと我が国に
返還され、最終的には国内の処理施設で処分されるよう
になっている。そのため、外国の再処理工場で発生した
ガラス固化体は、我が国に輸送された後、保管処分を受
ける前に、我が国の保安規定に基づき、国内のガラス固
化体検査室で外観検査、発熱量検査、寸法測定、重量測
定、閉じ込め検査、表面汚染検査、放射能量測定等の種
々の測定、検査が行われることになっている。
[0004] At present, reprocessing of this spent fuel is outsourced to a foreign reprocessing plant, and the vitrified material generated during the reprocessing is returned to Japan with uranium and plutonium, and ultimately, domestically. It is to be disposed of at a processing facility. Therefore, after the vitrified waste generated in a foreign reprocessing plant is transported to Japan and before being stored and disposed of, the appearance and calorific value of the vitrified waste should be inspected in a domestic vitrified glass inspection room in accordance with Japanese security regulations. Various measurements and inspections such as dimensional measurement, weight measurement, confinement inspection, surface contamination inspection, and radioactivity measurement are to be performed.

【0005】[0005]

【発明が解決しようとする課題】ところで、これら測
定、検査のうち、発熱量測定方法としては、現在、固化
体容器を回転台状に載置し、これを回転させながらその
側面に複数の熱流束センサを接触させて側面からの熱流
束(単位時間当たり、単位面積の面を横切って移動する
熱量)を上下多段に測定することにより、ガラス固化体
の全発熱量を算出するようになっている。
Among these measurements and inspections, the calorific value measurement method currently includes mounting a solidified container on a turntable, and rotating a solid container on a side surface of the container while rotating the container. By contacting the flux sensor and measuring the heat flux from the side surface (the amount of heat moving across a unit area per unit time per unit time) in upper and lower stages, the total heat generation of the vitrified body is calculated. I have.

【0006】しかしながら、このような測定方法では、
底部からの熱流束を測定することができないため、ガラ
ス固化体の全発熱量を正確に計測することが困難であっ
た。また、固化体容器とその内部に収容されている発熱
体(高レベル放射性廃棄物)との間に隙間が発生してい
る場合には、熱伝導が良好に行われないため、その測定
値に大きな誤差が生ずることがあった。
However, in such a measuring method,
Since the heat flux from the bottom cannot be measured, it has been difficult to accurately measure the total calorific value of the vitrified body. Also, if there is a gap between the solidified container and the heating element (high-level radioactive waste) contained in the container, heat transfer is not performed well, Large errors sometimes occurred.

【0007】そこで、本発明はこのような課題を有効に
解決するために案出されたものであり、その目的はガラ
ス固化体の熱流束測定誤差を大幅に小さくしてその全発
熱量を正確に求めることができる新規な発熱量測定装置
を提供するものである。
Accordingly, the present invention has been devised in order to effectively solve such a problem, and an object of the present invention is to significantly reduce the measurement error of the heat flux of the vitrified body and to reduce the total calorific value thereof. And a novel calorific value measuring device that can be obtained.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明は、筒状をした固化体容器内に高レベル放射性
廃棄物からなる発熱体を収容したガラス固化体の発熱量
を測定するための装置において、上記固化体容器側面の
熱流束を上下多段に測定すべく複数の側部熱流束センサ
を近接離間自在に備えた側面熱流束測定部と、上記固化
体容器底部の熱流束を測定すべく底面熱流束センサを昇
降自在に備えた底面熱流束測定部とからなるものであ
る。
In order to solve the above-mentioned problems, the present invention measures the calorific value of a vitrified body in which a heating element made of high-level radioactive waste is accommodated in a cylindrical solidified body container. In the apparatus for, the side heat flux measurement unit provided with a plurality of side heat flux sensors so as to be able to approach and separate freely in order to measure the heat flux on the side of the solidified container in multiple stages, and the heat flux on the bottom of the solidified container. And a bottom heat flux measuring unit provided with a bottom heat flux sensor for measurement.

【0009】従って、本発明装置は、固化体容器の側面
のみならず、固化体底部からの熱流束も測定することが
できるため、ガラス固化体の全発熱量を正確に算出する
ことができる。
Therefore, the device of the present invention can measure not only the side surface of the solidified body container but also the heat flux from the bottom of the solidified body, so that the total calorific value of the vitrified body can be accurately calculated.

【0010】[0010]

【発明の実施の形態】次に、本発明を実施する好適一形
態を添付図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.

【0011】図1は本発明に係るガラス固化体の発熱量
測定装置の実施の一形態を示すものである。尚、図中1
は、筒状をしたステンレス製の固化体容器2の内部に、
高レベル放射性廃棄物である発熱体3を収容したガラス
固化体である。
FIG. 1 shows an embodiment of an apparatus for measuring a calorific value of a vitrified body according to the present invention. In addition, 1 in the figure
Is placed inside a cylindrical solidified container 2 made of stainless steel.
It is a vitrified body containing the heating element 3 which is a high-level radioactive waste.

【0012】図示するように、この発熱量測定装置は、
固化体容器2側面の熱流束を測定する側面熱流束測定部
4と、固化体容器底面の熱流束を測定するための底面熱
流束測定部5とから主に構成されており、これら側面熱
流束測定部4、底面熱流束測定部5はベース6上に一体
的に固定されている。
As shown in FIG.
It mainly comprises a side heat flux measuring section 4 for measuring the heat flux on the side surface of the solidified container 2 and a bottom heat flux measuring section 5 for measuring the heat flux on the bottom surface of the solidified container. The measuring unit 4 and the bottom surface heat flux measuring unit 5 are integrally fixed on a base 6.

【0013】この側面熱流束測定部4は、ベース6上に
垂直に立設された支柱7に、ガラス固化体1側に水平に
延びるアーム8を上下多段に複数設けると共に、これら
各アーム8,8,8の先端に、それぞれ駆動機構9,
9,9を介して熱流束センサー10,10,10を設け
たものであり、これら各熱流束センサ10,10,10
によってガラス固化体1の側面からの熱流束を上下多段
に測定できるようになっている。
The side heat flux measuring section 4 is provided with a plurality of arms 8 extending vertically to the vitrified body 1 on a column 7 vertically erected on a base 6 in a vertically multi-stage manner. At the tips of 8, 8 drive mechanisms 9,
Heat flux sensors 10, 10, 10 are provided via 9, 9, and these heat flux sensors 10, 10, 10, 10 are provided.
Thereby, the heat flux from the side surface of the vitrified body 1 can be measured in upper and lower stages.

【0014】また、この駆動機構9の構成としては、図
3に示すように、先端に熱流束センサ10を備えたロッ
ドネジ11と、このロッドネジ11を水平に支持すると
共にその先端をガラス固化体1方向に水平移動する移動
歯車12と、この移動歯車12を従動歯車13を介して
駆動する駆動モータ14とから構成されており、駆動モ
ータ14を正逆いずれかの方向に回転駆動することで、
ロッドネジ11先端の熱流束センサ10をガラス固化体
1の固化体容器2の表面に接触、離間できるようになっ
ている。
As shown in FIG. 3, the drive mechanism 9 has a rod screw 11 provided with a heat flux sensor 10 at the tip thereof, and supports the rod screw 11 horizontally and has a tip attached to the vitrified body 1 as shown in FIG. The driving gear 14 includes a moving gear 12 that horizontally moves in a direction, and a driving motor 14 that drives the moving gear 12 via a driven gear 13. By driving the driving motor 14 in one of forward and reverse directions,
The heat flux sensor 10 at the tip of the rod screw 11 can be brought into contact with or separated from the surface of the solidified body container 2 of the vitrified body 1.

【0015】一方、底面熱流束測定部5は、図2に示す
ようにガラス固化体1の底面を載置する回転架台15
と、この回転架台15の中央部に位置する熱流束センサ
16と、この底面熱流束センサを昇降させる昇降機構1
7とから主に構成されている。また、この回転架台15
は、図1に示すようにテーブルベース18上に、ボール
ベアリング19を介してリング状の回転テーブル20を
設けると共に、この回転テーブル20を駆動モータ21
で回転させるようにしたものであり、回転テーブル20
上に載置されたガラス固化体1をその軸部を中心にして
任意に旋回できるようになっている。また、昇降機構1
7は図2に示すように、上端部に熱流束センサ16を備
えたロッドネジ22と、このロッドネジ22を垂直に昇
降する昇降モータ23とから構成されており、熱流束セ
ンサ16を垂直に上昇させてガラス固化体1底面に接触
させてその部分の熱流束を測定できるようになってい
る。
On the other hand, as shown in FIG. 2, the bottom heat flux measuring unit 5 includes a rotating base 15 on which the bottom surface of the vitrified body 1 is mounted.
And a heat flux sensor 16 located at the center of the rotary base 15, and a lifting mechanism 1 for raising and lowering the bottom heat flux sensor.
7 mainly. In addition, this rotating base 15
As shown in FIG. 1, a ring-shaped rotary table 20 is provided on a table base 18 via a ball bearing 19, and this rotary table 20 is connected to a drive motor 21.
The rotary table 20
The vitrified body 1 mounted thereon can be arbitrarily swiveled about its axis. Elevating mechanism 1
As shown in FIG. 2, 7 comprises a rod screw 22 provided with a heat flux sensor 16 at the upper end thereof, and an elevating motor 23 for vertically moving the rod screw 22 vertically. Then, the heat flux is brought into contact with the bottom surface of the vitrified body 1 so that the heat flux at that portion can be measured.

【0016】尚、これら各熱流束センサ10,16とし
ては、ガラス固化体1に対する耐熱性、耐放射性等を有
するものであれば特に限定されるものではないが、例え
ば、E500B、E750、EF、EG(いずれも京都
電子工業株式会社製)等の市販のものをそのまま適用す
ることができる。また、図1中24はガラス固化体1の
状態を遠隔監視するモニターである。
The heat flux sensors 10 and 16 are not particularly limited as long as they have heat resistance, radiation resistance and the like with respect to the vitrified body 1. For example, E500B, E750, EF, Commercially available products such as EG (all manufactured by Kyoto Electronics Industry Co., Ltd.) can be applied as they are. In FIG. 1, reference numeral 24 denotes a monitor for remotely monitoring the state of the vitrified body 1.

【0017】そして、図1に示すように、ガラス固化体
1を図示しない天井クレーンなどによって底面熱流束測
定部5上に載置した後、側面熱流束測定部4の駆動機構
9を駆動して各熱流束センサ10,10,10をガラス
固化体の固化体容器2の側面に接触させて固化体容器2
の側面からの熱流束を測定すると共に、底面熱流束測定
部5の昇降機構17を駆動して熱流束センサ16を固化
体容器2の底面に接触させて固化体容器2底面からの熱
流束を測定することになる。
Then, as shown in FIG. 1, the vitrified body 1 is placed on the bottom heat flux measuring unit 5 by an overhead crane or the like (not shown), and then the driving mechanism 9 of the side heat flux measuring unit 4 is driven. Each of the heat flux sensors 10, 10, 10 is brought into contact with the side surface of the solidified solid container 2 of the vitrified solid to form the solidified solid container 2.
The heat flux from the side of the solidified container 2 is measured by driving the elevating mechanism 17 of the bottom surface heat flux measuring unit 5 to bring the heat flux sensor 16 into contact with the bottom of the solidified container 2. Will be measured.

【0018】従って、固化体容器2と発熱体3との間に
隙間が形成されていても、固化体容器2の熱流束の測定
値の誤差を大幅に減少することができる。特に、図1に
示すように固化体容器2の底面は上方(内側)に窪んで
いるため、その内部の発熱体3は常にその固化体容器2
に接触した状態となっていることから、固化体容器2底
面では常に正確な熱流束を測定することが可能となる。
そして、これら各熱流束センサ10,10,10,16
で得られた測定値を基づいて算出することでガラス固化
体1の全発熱量を正確に知ることが可能となる。
Therefore, even if a gap is formed between the solidified container 2 and the heating element 3, the error in the measured value of the heat flux of the solidified container 2 can be greatly reduced. In particular, as shown in FIG. 1, since the bottom surface of the solidified container 2 is recessed upward (inward), the heating element 3 inside the solidified container 2 is always in the solidified container 2.
, It is possible to always accurately measure the heat flux on the bottom surface of the solidified container 2.
Then, each of these heat flux sensors 10, 10, 10, 16
By calculating based on the measured values obtained in the above, it is possible to accurately know the total calorific value of the vitrified body 1.

【0019】また、このガラス固化体1は旋回自在な回
転架台15上に載置されていることから、固化体容器2
と発熱体3との間に大きい隙間が開いているときには、
ガラス固化体1を回転させて適当な位置で計測すること
も可能となり、より誤差の少ない計測を行うことができ
る。
Further, since the vitrified body 1 is mounted on a rotatable rotary base 15, the vitrified body container 2
When there is a large gap between the heating element 3 and
It is also possible to rotate the vitrified body 1 to perform measurement at an appropriate position, so that measurement with less error can be performed.

【0020】尚、本実施の形態では、ガラス固化体1の
側面熱流束を測定するために3つの熱流束センサ10,
10,10を上下多段に設けたが、勿論この数は必要に
応じて増減しても良いことはいうまでもないが、本発明
のようにガラス固化体1の底面の熱流束を計測できれ
ば、その数を減少させることが可能となる。
In the present embodiment, three heat flux sensors 10 and 10 are provided to measure the side heat flux of the vitrified body 1.
Although 10 and 10 are provided in upper and lower stages, it is needless to say that this number may be increased or decreased as needed, but if the heat flux on the bottom surface of the vitrified body 1 can be measured as in the present invention, It is possible to reduce the number.

【0021】[0021]

【発明の効果】以上要するに本発明によれば、ガラス固
化体の側面のみならず、底面の熱流束を測定できるた
め、ガラス固化体の熱流束の測定誤差を大幅に減少する
ことができ、ガラス固化体の全熱量を正確に算出するこ
とが可能となる等といった優れた効果を発揮することが
できる。
In summary, according to the present invention, since the heat flux on the bottom surface as well as the side surface of the vitrified body can be measured, the measurement error of the heat flux of the vitrified body can be greatly reduced, Excellent effects such as the fact that the total amount of heat of the solidified body can be accurately calculated can be exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る発熱量測定装置の実施の一形態を
示す全体図である。
FIG. 1 is an overall view showing an embodiment of a calorific value measuring device according to the present invention.

【図2】本発明に係る底面熱流束測定部の構成を示す斜
視図である。
FIG. 2 is a perspective view showing a configuration of a bottom heat flux measuring unit according to the present invention.

【図3】本発明に係る側面熱流束測定部の構成を示す断
面図である。
FIG. 3 is a cross-sectional view illustrating a configuration of a side heat flux measuring unit according to the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス固化体 2 固化体容器 3 発熱体 4 側面熱流束測定部 5 底面熱流束測定部 10,16 熱流束センサ DESCRIPTION OF SYMBOLS 1 Vitrified body 2 Solidified body container 3 Heating element 4 Side heat flux measurement part 5 Bottom heat flux measurement part 10,16 Heat flux sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 筒状をした固化体容器内に高レベル放射
性廃棄物からなる発熱体を収容したガラス固化体の発熱
量を測定するための装置において、上記固化体容器側面
の熱流束を上下多段に測定すべく複数の側部熱流束セン
サを近接離間自在に備えた側面熱流束測定部と、上記固
化体容器底面の熱流束を測定すべく底面熱流束センサを
昇降自在に備えた底面熱流束測定部とからなることを特
徴とする発熱率測定装置。
1. An apparatus for measuring a calorific value of a vitrified body in which a heating element made of high-level radioactive waste is accommodated in a cylindrical solidified body container, wherein the heat flux on the side surface of the solidified body container is increased and decreased. A side heat flux measuring unit provided with a plurality of side heat flux sensors so as to be close to and separated from each other for multi-stage measurement, and a bottom heat flux provided with a bottom heat flux sensor to be able to move up and down to measure the heat flux on the bottom surface of the solidified container. A heat rate measuring device, comprising: a bundle measuring unit.
【請求項2】 上記底面熱流束測定部が、上記固化体容
器を載置する回転架台と、この回転架台の中央部に位置
する熱流束センサと、この熱流束センサを昇降させる昇
降機構とからなることを特徴とする請求項1記載のガラ
ス固化体の発熱量測定装置。
2. The heat flux measuring unit according to claim 1, wherein the bottom heat flux measuring unit includes a rotary mount on which the solidified container is placed, a heat flux sensor located at a central portion of the rotary mount, and an elevating mechanism for raising and lowering the heat flux sensor. The apparatus for measuring a calorific value of a vitrified body according to claim 1, wherein:
JP31226197A 1997-11-13 1997-11-13 Heating value measuring instrument for glass solidification Pending JPH11142260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31226197A JPH11142260A (en) 1997-11-13 1997-11-13 Heating value measuring instrument for glass solidification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31226197A JPH11142260A (en) 1997-11-13 1997-11-13 Heating value measuring instrument for glass solidification

Publications (1)

Publication Number Publication Date
JPH11142260A true JPH11142260A (en) 1999-05-28

Family

ID=18027118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31226197A Pending JPH11142260A (en) 1997-11-13 1997-11-13 Heating value measuring instrument for glass solidification

Country Status (1)

Country Link
JP (1) JPH11142260A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220595A (en) * 2005-02-14 2006-08-24 Univ Of Electro-Communications Living thing detector
JP2011191115A (en) * 2010-03-12 2011-09-29 Isuzu Motors Ltd Heat value measuring container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220595A (en) * 2005-02-14 2006-08-24 Univ Of Electro-Communications Living thing detector
JP2011191115A (en) * 2010-03-12 2011-09-29 Isuzu Motors Ltd Heat value measuring container

Similar Documents

Publication Publication Date Title
US3945245A (en) Method and equipment for detecting deflective nuclear fuel rods
US4728483A (en) Apparatus for integrated fuel assembly inspection system
KR940010232B1 (en) Prcess & device for inspecting control rod clusters for nuclear fuel assemblies
JPS59197890A (en) Inspection machine for reactor fuel assembly
US6879653B2 (en) Method and device for measuring the diameter of a peripheral rod in a fuel assembly of a nuclear reactor
JP6519902B1 (en) Apparatus and method for inspecting surface contamination of used container
JPH11142260A (en) Heating value measuring instrument for glass solidification
CN214374403U (en) Detection system of lead shielding container
JPH0527084A (en) Channel box loading confirming device for fuel assembly
JP2706801B2 (en) Thickness measuring device
JP3544065B2 (en) Simple burnup monitor
JPH0634788A (en) Burn-up measuring device
CN1039495A (en) Be used to monitor the method and apparatus of fuel assembly storeroom sidewall
JPH01191053A (en) Ultrasonic flaw detection traveling device
JPH085778A (en) Dimension and shape measuring device for control rod drive mechanism housing placement part and the like
EP1203381B1 (en) A method and an arrangement for inspection of and measuring at an object
JPS61130867A (en) Remote-controlled automatic ultrasonic flaw detector
JP2000235100A (en) Inspecting device of glass solidified body
JPH11166975A (en) Inspection and measurement device of radioactive waste seal vessel
JPS5848802A (en) Measuring device for thickness of oxide film of nuclear fuel channel
CN207541275U (en) A kind of multi-functional α, β Measurement of surface contamination device
KR20100088219A (en) Radioactivity detecting apparatus
JPH08136362A (en) Apparatus for measuring generating amount of heat of radioactive waste container
KR101776104B1 (en) Lifting apparatus for an inspector of an interior structure of a calandria
CA1081667A (en) Fuel pellet loading apparatus