JPH11139835A - Production of synthetic quartz - Google Patents

Production of synthetic quartz

Info

Publication number
JPH11139835A
JPH11139835A JP30259797A JP30259797A JPH11139835A JP H11139835 A JPH11139835 A JP H11139835A JP 30259797 A JP30259797 A JP 30259797A JP 30259797 A JP30259797 A JP 30259797A JP H11139835 A JPH11139835 A JP H11139835A
Authority
JP
Japan
Prior art keywords
gel
synthetic quartz
water
ozone
silicon alkoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30259797A
Other languages
Japanese (ja)
Inventor
Kenichi Yoshie
建一 吉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP30259797A priority Critical patent/JPH11139835A/en
Publication of JPH11139835A publication Critical patent/JPH11139835A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Silicon Compounds (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To industrially advantageously produce high purity and high quality synthetic quartz powder by mixing a silicon alkoxide with water, crushing and drying the resultant gel and carrying out treatment in an atmosphere of gaseous ozone and firing. SOLUTION: A silicon alkoxide is mixed with water or a water-alcohol mixture in a molar ratio of 1:3 to 1:20 and the resultant mixture is allowed to react to form gel. This gel is aged at >=40 deg.C for <=1 hr, crushed to about 10 μm to 5 mm with a suitable crusher, dried at <=300 deg.C and treated by contact with ozone in a solid-vapor contact device such as a kiln, a fluidized bed, a moving bed or a shelf type contact unit in an atmosphere of gaseous ozone having 3-100 g/m<3> concn. at 100-300 deg.C. The ozone treated gel is heated to 1,000-1,300 deg.C at 10-2,000 deg.C/hr rate in dry air and fired by holding at the temp. until the amt. of residual silanol is reduced to <=500 ppm to obtain the objective synthetic quartz powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体分野および光ファ
イバー分野で使用される超高純度石英ガラス製品の原料
として好適な石英ガラス粉に関する。より詳しくはシリ
コンアルコキシドと水(又は水の代わりに水とアルコー
ルの混合溶液)を混合して生成したゲルを粉砕乾燥した
後オゾンガス中で処理しこれを焼成することによって合
成石英を製造する方法に関するものである。このような
合成石英製造方法により低温で脱炭素を行えるので焼成
後に生成する品質上問題となる炭素由来の黒色粒子を著
しく低減できるだけでなく微量の炭素も除去できるので
高温での溶融時の発泡減少が少ない優れた合成石英を得
ることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz glass powder suitable as a raw material for ultra-high purity quartz glass products used in the fields of semiconductors and optical fibers. More particularly, the present invention relates to a method for producing a synthetic quartz by mixing and drying a gel formed by mixing silicon alkoxide and water (or a mixed solution of water and alcohol instead of water), treating the gel in ozone gas, and calcining the resultant. Things. Such a synthetic quartz production method enables decarbonization at low temperatures, so that not only black particles derived from carbon, which is a problem in quality generated after firing, can be significantly reduced, but also a small amount of carbon can be removed, so that foaming during melting at high temperatures is reduced. It is possible to obtain an excellent synthetic quartz having a small amount.

【0002】[0002]

【従来の技術】近年、光ファイバーや半導体産業などに
おいて使用される各種ガラス製の治具・ルツボなどにつ
いてはその構成ガラス材料の純度に関して非常に厳しい
管理が行われている。これらの用途に適用される高純度
なガラス製品の製造方法としては、従来はシリコンアル
コキシドと水、場合によってはアルコールをさらに混合
して攪拌し加水分解ゲル化し、これを粉砕乾燥焼成させ
て合成石英を得る方法が一般的に用いられる。例えば'S
ol-gel Science, The Physics and Chemistry of Si-Ge
l Processing, C.Jeffrey Brinker and George W. Sche
rer 著 Academic Press, Inc.1990'に詳細な記述があ
る。ゲル化条件によってはコロイド粒子が生成するので
これを沈降させ回収しさらに高温で焼成し一度燒結体が
得られるが、これを粉砕する方法によっても合成石英石
英が得られる(例えば特開平2-80329 )。これらの方法
によれば、出発原料となるアルコキシシランは容易に蒸
留精製することができるため高純度の合成石英粉を得る
ことができる。
2. Description of the Related Art In recent years, with respect to various glass jigs and crucibles used in the optical fiber and semiconductor industries, etc., very strict control has been performed on the purity of constituent glass materials. As a method for producing high-purity glass products applied to these applications, conventionally, silicon alkoxide and water, and in some cases, alcohol are further mixed and stirred to hydrolyze and gelate, which is then crushed, dried and calcined to produce synthetic quartz. Is generally used. For example, 'S
ol-gel Science, The Physics and Chemistry of Si-Ge
l Processing, C. Jeffrey Brinker and George W. Sche
A detailed description can be found in Academic Press, Inc. 1990 'by rer. Depending on the gelling conditions, colloidal particles are formed, which are settled, collected, and fired at a high temperature to obtain a sintered body once. However, a synthetic quartz quartz can also be obtained by pulverizing the sintered body (see, for example, JP-A-2-80329). ). According to these methods, the alkoxysilane as a starting material can be easily distilled and purified, so that high-purity synthetic quartz powder can be obtained.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
方法においては焼成後に黒色の炭素質がゲル内部に残留
することがしばしばあり、溶融時の発泡などの深刻な問
題となる。この黒色物ははいったん生成するとその後の
1000℃以上の温度域での焼成を長時間実施しても除
くことが難しい。従ってこのような焼成時の黒色物生成
を抑制する手段としてまずあらかじめゲル内のアリコキ
シ残量が少ないゲル化条件をえらび、あるいは十分に多
孔質化しゲル内部へのガス拡散パスが十分ある様にする
ことなどが必要となる。さらにこれに加えてゲル化後乾
燥して焼成する際、300℃以上600℃以下の温度で
長時間焼成することが必要であった。この操作は主とし
てゲル化乾燥後の多孔質粒子内に含まれる炭素成分を取
り除くことが目的である。しかしゲル化時の生成粒子の
内細孔が十分に発達していない物があるとこれの細孔が
低温で封孔し炭素が細孔内に取り残され黒色化する問題
があった。また、黒色化しないまでも数ppm以下の微
量炭素が残る場合がありこれを除くには長時間の焼成処
理が必要であった。これらの処理においては、封孔の問
題によって処理温度には上限があり、製造コスト、品質
の両面から問題となっていた。
However, in the above method, black carbonaceous material often remains in the gel after firing, which causes serious problems such as foaming during melting. Once formed, this black matter is difficult to remove even after subsequent firing in a temperature range of 1000 ° C. or higher for a long time. Therefore, as means for suppressing the formation of black matter at the time of sintering, first, a gelation condition in which the amount of alikoxy remaining in the gel is small is selected in advance, or the gel is sufficiently porous so that there is a sufficient gas diffusion path into the gel. Things are needed. In addition to this, when drying after gelation and firing, it was necessary to fire at a temperature of 300 ° C. or more and 600 ° C. or less for a long time. The purpose of this operation is mainly to remove the carbon component contained in the porous particles after gelation and drying. However, there is a problem that if there is a substance in which the inner pores of the formed particles during gelation are not sufficiently developed, these pores are sealed at a low temperature, carbon is left in the pores, and blackening occurs. In addition, a trace amount of carbon of several ppm or less may remain even before blackening, and a long-time calcination treatment was required to remove this. In these treatments, the treatment temperature has an upper limit due to the problem of sealing, which has been a problem in terms of both production cost and quality.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
め鋭意検討を重ねた結果、本発明者らはゲル化乾燥後の
多孔質ゲル粒子をオゾンガスと接触させることにより封
孔させることなく従来は脱炭素に長時間を要し黒色化し
やすかった細孔構造が未発達の低比表面積ゲルにおいて
も十分に早い脱炭素を低温で行い黒色化させることなく
容易に焼成可能であることを見い出した
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the porous gel particles after gelation and drying have been brought into contact with ozone gas without being sealed with ozone gas. Found that the pore structure, which took a long time to decarbonize and easily blackened, could be easily fired without blackening by performing decarburization sufficiently quickly at low temperature even in an undeveloped low specific surface area gel

【0005】以下、本発明をより詳細に説明する。ゾル
ゲル法の原料としては種々のシリコンアルコキシド使用
できる。好ましくはテトラメトキシシラン、テトラエト
キシシラン、テトラプロポキシシランが用いられる。反
応は上記のテトラアルコキシシランとは水とで乃至水と
アルコールの混合系で行われる。水とシリコンアルコキ
シドのモル比は3:1から20:1好ましくは4:1か
ら15:1であればよい。高純度石英の用途用としては
2から10の間で塩酸や酢酸などの有機酸乃至アンモニ
アや有機アミンなどを用いてPHを調整する事が望まし
い。
Hereinafter, the present invention will be described in more detail. Various silicon alkoxides can be used as a raw material for the sol-gel method. Preferably, tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane are used. The reaction is carried out using the above tetraalkoxysilane with water or a mixed system of water and alcohol. The molar ratio of water to silicon alkoxide may be from 3: 1 to 20: 1, preferably from 4: 1 to 15: 1. For applications of high-purity quartz, it is desirable to adjust the pH between 2 and 10 using an organic acid such as hydrochloric acid or acetic acid, ammonia, or an organic amine.

【0006】生産性の点からはゲル化時間を短くした方
が好ましいのでアルコールの添加量はシリコンアルコキ
シド1モルに対し5モル以下が現実的である。反応温度
は20℃以上80℃以下が通常用いられる。反応圧力は
通常常圧である。反応圧力を例えば5気圧程度に高める
ことは通常の技術として可能である。また、ゲル化後は
反応機内に静置しエージング処理を施すことが通常であ
る。
From the viewpoint of productivity, it is preferable to shorten the gelation time. Therefore, it is realistic that the amount of alcohol added is 5 mol or less per 1 mol of silicon alkoxide. The reaction temperature is usually from 20 ° C to 80 ° C. The reaction pressure is usually normal pressure. It is possible to raise the reaction pressure to, for example, about 5 atm as a usual technique. After the gelling, it is usual that the gel is left standing in a reactor and subjected to an aging treatment.

【0007】これは、ゲルに含まれる未反応成分(モノ
マーやこれの部分加水分解物、二量体や三量体などのオ
リゴマー成分)が反応してゲル構造内に取り込まれる様
にするためである。こうすることによって後の乾燥工程
などでの未反応物の揮散によるロスやスケール発生を抑
制するばかりでなく、ゲル硬度を高め粉砕工程を行いや
すくする事が出来る。このエージングの保持時間は常温
であれば長時間がひつようとなり反応組成によっては1
0時間以上が必要となる。従って工業的規模では40度
以上の温度で1時間以内の保持が好ましい。さらに60
度以上高温とし保持時間を短縮することは通常の技術範
囲内である。
The reason for this is that unreacted components (monomers, partial hydrolysates thereof, and oligomer components such as dimers and trimers) contained in the gel are reacted and incorporated into the gel structure. is there. By doing so, not only loss and scale generation due to volatilization of unreacted substances in the subsequent drying step and the like can be suppressed, but also the gel hardness can be increased and the pulverization step can be easily performed. The retention time of this aging is longer at room temperature and may be 1 depending on the reaction composition.
0 hours or more are required. Therefore, on an industrial scale, holding at a temperature of 40 ° C. or higher for one hour or less is preferable. Further 60
It is within the ordinary technical scope to reduce the holding time by setting the temperature higher than the temperature.

【0008】エージングの後適当な粉砕器で生成したゲ
ルを10ミクロンから5mm程度に粉砕し、300℃以
下で乾燥する。その後オゾン処理を行う。乾燥工程を経
ずアルコールと水を含んだままオゾン処理を行うことも
可能であるが爆発危険を考慮するとあらかじめアルコー
ル分はある程度以上のぞいておくべきである。
After aging, the gel produced by a suitable pulverizer is pulverized to about 10 to 5 mm and dried at 300 ° C. or less. Thereafter, ozone treatment is performed. It is also possible to perform ozone treatment without alcohol and water without passing through a drying step. However, considering the danger of explosion, it is necessary to remove at least a certain amount of alcohol in advance.

【0009】オゾンガスの濃度は高いほうが良いが3g
/m3 以上であれば十分な酸化速度が得られる。また爆
発性やオゾン発生機器の負荷などを考慮すると100g
/m 3 以下の濃度で発生させることが望ましい。接触時
の温度は酸化速度を十分にとるためには高温の方が望ま
しいが、前述の封孔の観点から自ずとその上限が決定さ
れる。例えば細孔半径が10Å以下の場合500℃が上
限である。またオゾンガスは高温では分解が進むことも
考慮すると現実的には20℃以上400℃以下、好まし
くは100℃以上300℃以下で酸化を実施することが
望ましい。
The higher the concentration of ozone gas, the better, but 3g
/ MThreeIf it is above, a sufficient oxidation rate can be obtained. Another explosion
100g in consideration of emission and load of ozone generator
/ M ThreeIt is desirable to generate at the following concentration. On contact
Temperature should be higher to achieve a sufficient oxidation rate
However, the upper limit is naturally determined from the viewpoint of the aforementioned sealing.
It is. For example, if the pore radius is 10 ° or less,
Limited. Ozone gas can also decompose at high temperatures.
Considering this, in practice, it is preferable that the temperature be between 20 ° C and 400 ° C.
In other words, it is possible to carry out oxidation at
desirable.

【0010】オゾンとの接触はキルン、振動流動層、流
動層、移動層、棚段式接触器、静置式、の装置など種々
の固気接触装置を用いることが出来る。このように処理
されたゲルはさらに乾燥空気雰囲気下2000℃/hr
以下の速度で1000℃以上1300℃以下の温度まで
昇温しこの温度で保持し焼成し合成石英粉を得る。
For contact with ozone, various solid-gas contact devices such as a kiln, a vibrating fluidized bed, a fluidized bed, a moving bed, a plate-type contactor, and a stationary type can be used. The gel thus treated is further subjected to a drying air atmosphere at 2000 ° C./hr.
The temperature is raised to a temperature of 1000 ° C. or more and 1300 ° C. or less at the following speed, and the temperature is held and calcined to obtain a synthetic quartz powder.

【0011】焼成速度は通常500℃/hr以下、好ま
しくは200℃/hr以下、さらに好ましくは50℃/
hr以下が良い。また下限は生産性から考えて10℃/
hr以上とするべきである。これは、焼成過程で細孔が
閉気孔となることを抑制するためである。最高温度での
保持時間次第で残存シラノール量を調整可能である。シ
ラノール量は、石英粉の溶融粘度を低下させるので通常
は500ppm以下にすることが好ましい。以下、実施
例に従い本発明をさらに詳しく本発明を説明する。
The firing rate is generally 500 ° C./hr or less, preferably 200 ° C./hr or less, and more preferably 50 ° C./hr.
hr or less is good. The lower limit is 10 ° C. /
hr or more. This is to prevent the pores from becoming closed pores during the firing process. The amount of residual silanol can be adjusted depending on the holding time at the maximum temperature. The amount of the silanol is usually preferably 500 ppm or less because the melt viscosity of the quartz powder is reduced. Hereinafter, the present invention will be described in more detail with reference to Examples.

【0012】(実施例1)テトラアルコキシシラン15
20ccを640gのメタノールと混合後、塩酸で調整
したPH4の水900ccと混合して環流器つきセパラ
ブルフラスコ内で攪拌しながら常圧下45度で反応させ
ゲル化させた。ゲル化後45度で二時間保持しこれ取り
出した後、900μmのナイロンメッシュに押しつけな
がら粉砕して200℃、10torrの雰囲気下で2時
間乾燥した所、平均粒子径250μmの乾燥ゲル粒子が
得られた。この粒子の比表面積を窒素吸着法で測定した
ところ300m2 /gであった。この時の炭素残量は約
0.2%であった。これを10gとり、500ccの4
つ口フラスコ内でオゾンガスと接触させた。
Example 1 Tetraalkoxysilane 15
After mixing 20 cc with 640 g of methanol, the mixture was mixed with 900 cc of PH4 water adjusted with hydrochloric acid, and reacted at 45 ° C. under normal pressure with stirring in a separable flask equipped with a reflux device to form a gel. After gelling, the mixture was held at 45 ° C. for 2 hours, taken out, and then pulverized while being pressed against a 900 μm nylon mesh, and dried at 200 ° C. under an atmosphere of 10 torr for 2 hours to obtain dried gel particles having an average particle size of 250 μm. Was. The specific surface area of the particles was 300 m 2 / g when measured by a nitrogen adsorption method. At this time, the residual carbon amount was about 0.2%. Take 10g of this and 500cc of 4
It was brought into contact with ozone gas in a one-necked flask.

【0013】フラスコは金属製マントルヒーターで20
0度に保ち、またオゾンガスは18g/m3 の濃度で発
生させ2l/minの流量でフラスコ内に導入し4時間
処理した。オゾン発生機は荏原実業(株)製「LABO
OZONAIZER OZSD−3000A」を用い
た。処理後の粒子の炭素量は0.01%以下であった。
石英製ボートに2gをとって800℃に加熱したシリコ
ニット管状炉内に5分間かけて徐々に導入した。2時間
800℃に保持して取り出したところ目視では全く黒色
粒子がなかった。
The flask is a metal mantle heater with 20
The temperature was kept at 0 °, and ozone gas was generated at a concentration of 18 g / m 3 , introduced into the flask at a flow rate of 2 l / min, and treated for 4 hours. The ozone generator is "LABO" manufactured by Ebara Jitsugyo Co., Ltd.
OZONAIZER OZSD-3000A "was used. The carbon content of the particles after the treatment was 0.01% or less.
2 g of a quartz boat was gradually introduced into a silicone furnace heated to 800 ° C. over 5 minutes. When the sample was taken out while being kept at 800 ° C. for 2 hours, no black particles were visually observed.

【0014】(実施例2)テトラアルコキシシラン15
20ccをPH7の水900ccと混合して環流器つき
セパラブルフラスコ内で攪拌しながら常圧下45度で反
応させゲル化させた。ゲル化後45℃で2時間保持しこ
れ取り出した後、900μmのナイロンメッシュに押し
つけながら粉砕して200℃10torrの雰囲気下で
2時間乾燥した所、平均粒子径250μmの乾燥ゲル粒
子が得られた。この粒子の比表面積を窒素吸着法で測定
したところ600m2 /gであった。この時の炭素残量
は約0.13%であった。この粒子を10gとり500
ccの4つ口フラスコ内でオゾンガスと接触させた。
Example 2 Tetraalkoxysilane 15
20 cc of the mixture was mixed with 900 cc of PH7 water and reacted at 45 ° C. under normal pressure with stirring in a separable flask equipped with a reflux condenser to form a gel. After gelation, the mixture was held at 45 ° C. for 2 hours, taken out, and then pulverized while being pressed against a 900 μm nylon mesh, and dried at 200 ° C. in an atmosphere of 10 torr for 2 hours. As a result, dried gel particles having an average particle diameter of 250 μm were obtained. . When the specific surface area of the particles was measured by a nitrogen adsorption method, it was 600 m 2 / g. At this time, the residual carbon amount was about 0.13%. Take 10 g of these particles and 500
It was brought into contact with ozone gas in a cc four-necked flask.

【0015】フラスコは金属製マントルヒーターで15
0℃に保ち、またオゾンガスは0.3g/m3 の濃度で
発生させ1l/minの流量でフラスコ内に導入し2時
間処理した。オゾン発生機は荏原実業(株)製「LAB
O OZONAIZER OZSD−3000A」を用
いた。処理後の粒子の炭素量は約0.09%であった。
The flask was heated with a metal mantle heater.
The temperature was kept at 0 ° C., and ozone gas was generated at a concentration of 0.3 g / m 3 , introduced into the flask at a flow rate of 1 l / min, and treated for 2 hours. The ozone generator is "LAB" manufactured by Ebara Jitsugyo Co., Ltd.
O OZONAIZER OZSD-3000A "was used. The carbon content of the treated particles was about 0.09%.

【0016】(比較例1)実施例−1で作成した乾燥ゲ
ル粒子をオゾン処理なしで実施例1の方法で800℃に
急速加熱したところ黒色粒子が全体の約50%発生し
た。
(Comparative Example 1) When the dried gel particles prepared in Example 1 were rapidly heated to 800 ° C by the method of Example 1 without ozone treatment, about 50% of the black particles were generated.

【0017】[0017]

【発明の効果】本発明により、高純度高品質の合成石英
粉を工業的有利に生産可能となる。
According to the present invention, synthetic quartz powder of high purity and high quality can be industrially advantageously produced.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】シリコンアルコシキドと水とを混合し生成
したゲルを粉砕、乾燥後、オゾンガス雰囲気中で処理を
行った後焼成することを特徴とする合成石英の製造方法
1. A method for producing synthetic quartz, comprising: crushing and drying a gel formed by mixing silicon alkoxide and water; treating the gel in an ozone gas atmosphere; and firing.
【請求項2】シリコンアルコシキドと水及びアルコール
とを混合し生成したゲルを粉砕、乾燥後、オゾンガス雰
囲気中で処理を行った後焼成することを特徴とする合成
石英の製造方法
2. A method for producing synthetic quartz, comprising: crushing and drying a gel formed by mixing silicon alkoxide, water and alcohol, performing a treatment in an ozone gas atmosphere, and then firing.
【請求項3】オゾンガスの濃度が3g/m3 以上、10
0g/m3 以下である請求項1又は2に記載の合成石英
の製造方法
3. An ozone gas concentration of 3 g / m 3 or more,
The method for producing synthetic quartz according to claim 1, wherein the amount is 0 g / m 3 or less.
【請求項4】オゾンガス雰囲気中での処理の際の温度が
100℃以上、300℃以下である請求項1乃至3のい
ずれかに記載の合成石英の製造方法
4. The method for producing synthetic quartz according to claim 1, wherein the temperature in the treatment in an ozone gas atmosphere is 100 ° C. or more and 300 ° C. or less.
JP30259797A 1997-11-05 1997-11-05 Production of synthetic quartz Pending JPH11139835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30259797A JPH11139835A (en) 1997-11-05 1997-11-05 Production of synthetic quartz

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30259797A JPH11139835A (en) 1997-11-05 1997-11-05 Production of synthetic quartz

Publications (1)

Publication Number Publication Date
JPH11139835A true JPH11139835A (en) 1999-05-25

Family

ID=17910901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30259797A Pending JPH11139835A (en) 1997-11-05 1997-11-05 Production of synthetic quartz

Country Status (1)

Country Link
JP (1) JPH11139835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008332A1 (en) * 2001-07-19 2003-01-30 Mitsubishi Chemical Corporation High purity quartz powder and method for production thereof, and formed glass article from the powder
JP2006188412A (en) * 2004-12-28 2006-07-20 General Electric Co <Ge> Process for treating synthetic silica powder and synthetic silica powder treated by the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008332A1 (en) * 2001-07-19 2003-01-30 Mitsubishi Chemical Corporation High purity quartz powder and method for production thereof, and formed glass article from the powder
US7063826B2 (en) 2001-07-19 2006-06-20 Mitsubishi Chemical Corporation High-purity quartz powder, process for producing the same, and glass molding
US7427387B2 (en) 2001-07-19 2008-09-23 Mitsubishi Chemical Corporation High-purity quartz powder, process for producing the same, and glass molding
JP2006188412A (en) * 2004-12-28 2006-07-20 General Electric Co <Ge> Process for treating synthetic silica powder and synthetic silica powder treated by the same

Similar Documents

Publication Publication Date Title
US10106423B2 (en) Method for preparing ultrahigh-purity silicon carbide powder
EP0630863A1 (en) Process for producing synthetic quartz glass powder
US6071838A (en) Silica gel, synthetic quartz glass powder, quartz glass shaped product molding, and processes for producing these
KR20210096141A (en) Silica-alumina composition with improved stability and method for preparing same
US6316050B1 (en) Method of producing hydrophobic pyrogenically produced oxides
JPH11139835A (en) Production of synthetic quartz
KR102293576B1 (en) fabrication Method of high purity large size α-phase silicon carbide powder
JPH07206451A (en) Production of synthetic quartz glass
KR101549477B1 (en) Manufacturing Method of High Purity SiC Powder
JP2020040868A (en) Method for producing synthesized quartz powder
EP0801026B1 (en) Process for producing synthetic quartz powder
KR102377938B1 (en) Manufacturing method of aluminum nitride using porous carbon crucible
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
JPH11268923A (en) Production of silica gel, synthetic quartz glass powder and quartz glass molding
JPH0416502A (en) Production of boron nitride
JPH02120214A (en) Production of aluminum nitride powder
JPH10297914A (en) Production of both silica gel particle and synthetic qualtz
JPS5918106A (en) Preparation of silicon aluminum oxynitride type powdery raw material
KR102622058B1 (en) Manufacturing method of high purity quartz powder
KR100722379B1 (en) A method of preparing transparent silica glass
JPH0483711A (en) Production of anhydrous silica
JPH03141108A (en) Production of aluminum nitride powder
JP3936751B2 (en) Manufacturing method of synthetic quartz glass powder
JPH0450132A (en) Purification of silica-based raw material
JPH03279263A (en) Production of aluminum nitride powder