JPH11137908A - Deaerator - Google Patents

Deaerator

Info

Publication number
JPH11137908A
JPH11137908A JP31919897A JP31919897A JPH11137908A JP H11137908 A JPH11137908 A JP H11137908A JP 31919897 A JP31919897 A JP 31919897A JP 31919897 A JP31919897 A JP 31919897A JP H11137908 A JPH11137908 A JP H11137908A
Authority
JP
Japan
Prior art keywords
water
pump
chamber
degassing
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31919897A
Other languages
Japanese (ja)
Other versions
JP3961649B2 (en
Inventor
Hideyuki Tabuchi
秀幸 田淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP31919897A priority Critical patent/JP3961649B2/en
Publication of JPH11137908A publication Critical patent/JPH11137908A/en
Application granted granted Critical
Publication of JP3961649B2 publication Critical patent/JP3961649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum deaerator by which almost continuous water passing deaeration can be performed by a synergistic effect of low temperature boiling in a vacuum vessel and cavitation by ultrasonic waves, being not dependent on environmental conditions such as seasonal changes, and the removal of dissolved gas can be attained without chemical infection or heating. SOLUTION: This deaerator has a water introducing cylinder 15 for giving vacuum low temperature boiling and cavitation to water with which it is filled, ultrasonic vibrator transducers for radiating ultrasonic waves for causing cavitation to the water within the water introducing cylinder 15, a deaeration chamber 7 evacuated by a vacuum pump 17, a centrifugal pump 3 for sending the water in the water introducing cylinder 15 to the deaeration chamber 7, and a water sending means for water stored in the deaeration chamber 7 to the outside. The centrifugal pump 3 sucks water from an area adjacent to the axial center of the upper end of the water introducing cylinder 15 while generating a rising rotational vortex of the axial center along about the axial direction of the water introducing cylinder to the water within the water introducing cylinder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、上水、中水あるい
は下水中の溶存気体を除去する脱気装置、特に連続的処
理にも対応可能でコンパクト化可能な脱気装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deaerator for removing dissolved gas from tap water, intermediate water or sewage, and more particularly to a deaerator which can be used in continuous processing and can be made compact.

【0002】[0002]

【従来の技術】イオン交換樹脂筒に水を通すことにより
炭酸塩硬度を下げて軟水化することは例えばボイラ給水
設備などでよく知られている。この場合、イオン交換樹
脂筒に導入する水に酸化物が溶解していると、強酸・弱
酸性陽イオン交換樹脂の場合は酸化による不可逆膨潤を
起こし、また陰イオン交換樹脂の場合は酸化によって交
換基が分解したり不可逆膨潤を起こしたりするので、通
水に際しては水中に酸化物が溶解または混在していない
ことを確認しないとイオン交換樹脂の耐久性を左右する
大きな問題を引き起しかねない。例えば、配管のライニ
ングの疵から溶出した鉄イオンや銅イオンが水中の溶存
酸素との反応で銹となって混在している場合、それらの
触媒的な働きでイオン交換樹脂が酸化されて劣化する。
2. Description of the Related Art It is well known that water is passed through an ion-exchange resin cylinder to reduce carbonate hardness and soften water, for example, in a boiler water supply system. In this case, if the oxide is dissolved in the water introduced into the ion exchange resin cylinder, irreversible swelling due to oxidation occurs in the case of a strong acid / weakly acidic cation exchange resin, and exchange occurs by oxidation in the case of an anion exchange resin. Since the group is decomposed or irreversible swelling, it may cause a serious problem that affects the durability of the ion exchange resin unless the oxide is dissolved or mixed in the water when passing water. . For example, when iron ions and copper ions eluted from the flaws in the lining of the piping are mixed as rust due to the reaction with dissolved oxygen in water, the ion exchange resin is oxidized and deteriorated by their catalytic action. .

【0003】そこで従来から、通水に酸化物の溶解ある
いは混在が認められるような場合、あるいはそれが生じ
る可能性がある場合には、イオン交換樹脂に通水する前
に水に脱スケールおよび腐食防止などの目的で前処理を
施すことが常識的に行なわれている。
[0003] Therefore, conventionally, when dissolution or mixing of oxides is found in water flow, or when it is likely to occur, descaling and corrosion of water are performed before water flow through the ion exchange resin. It is common sense to perform pretreatment for the purpose of prevention or the like.

【0004】最も一般的なこの種の前処理は、溶存酸素
除去用の毒性の強いヒドラジンなどの脱酸剤とpHを高
めるための清缶剤とを配合した薬品を水に投入する薬注
方式である。
[0004] The most common pretreatment of this type is a chemical injection method in which a chemical compounding a deoxidizing agent such as hydrazine, which is highly toxic for removing dissolved oxygen, and a cleaning agent for increasing pH is added to water. It is.

【0005】また薬注によらない方式として、水中に溶
存している酸素・炭酸ガス・遊離塩素などを高真空度の
容器内で脱気する真空脱気方式も知られており、バッチ
処理方式だけでなく、大量処理のためにエジェクターと
サイクロンを組み合わせた多段連続真空脱気方式も知ら
れている。
[0005] As a method which does not rely on chemical injection, a vacuum degassing method in which oxygen, carbon dioxide, free chlorine, and the like dissolved in water are degassed in a container having a high vacuum degree is also known. In addition, a multistage continuous vacuum degassing system combining an ejector and a cyclone for mass processing is also known.

【0006】また、この他にも、例えば特公平2−11
319号、特公平2−12640号あるいは特公平6−
38959号公報には、静電場または振動電場を与える
タンク中で水中のミネラル成分をイオン解離させて浮遊
スケールとして析出除去する際にタンク内を減圧して脱
気することが教示されている。
In addition, for example, Japanese Patent Publication No. 2-11
No. 319, No. 2-1640 or No. 6
Japanese Patent No. 38959 teaches that when a mineral component in water is ion-dissociated in a tank for applying an electrostatic field or an oscillating electric field to precipitate and remove as a floating scale, the inside of the tank is depressurized and degassed.

【0007】[0007]

【発明が解決しようとする課題】薬注方式は、脱酸剤の
毒性の問題から病院や食品工場での採用には適さないこ
とは勿論、イオン交換樹脂筒の上流で薬注を行なうと、
その分だけ水中の不純物が増加するのでイオン交換樹脂
にとっては負荷の増加となるばかりでなく、自然と薬注
量が増加する傾向があり、適正な薬品投入量の監視には
管理面で困難を伴うことや、薬品使用量がかさむなどの
諸問題があるので、薬剤使用に付加価値が見込まれる厳
正に管理された工場などでの用途以外には一般的ではな
い。
The chemical injection method is not suitable for use in hospitals and food factories because of the toxicity of the deoxidizing agent. Of course, when the chemical injection is performed upstream of the ion exchange resin cylinder,
The amount of impurities in water increases by that amount, which not only increases the load on the ion exchange resin, but also tends to naturally increase the amount of chemical injection, making it difficult to monitor the appropriate amount of chemicals in management. However, it is not common except for uses in strictly controlled factories and the like where added value is expected for the use of chemicals because of problems such as the accompanying use and increase in the amount of chemicals used.

【0008】真空脱気方式は衛生面からは問題ない方式
であるが、生活給水の水処理やビル建物等での赤水対策
としては真空度の管理に難点があり、例えば、水中の溶
存酸素は大気圧と水温又は気温などが季節によって大き
く変化するため、常に一定の脱気圧性能を維持させるに
は、真空圧力の調整だけでは管理ができない。このた
め、真空脱気方式は未だ広く普及するには至っていない
が、比較的容易に扱えるのはバッチ処理方式の真空脱気
装置である。しかしながら、バッチ処理方式の真空脱気
装置は、処理が非連続であるので処理量が限られ、多量
の水を処理する必要がある場合には大規模な設備としな
ければならず、設備維持費用が多額となるので一般的で
はない。
[0008] The vacuum degassing method is a method that does not pose a problem from a sanitary point of view, but has a difficulty in controlling the degree of vacuum as a treatment of domestic water supply or a measure against red water in a building or the like. Since the atmospheric pressure and the water temperature or the temperature greatly change depending on the season, it is not possible to maintain a constant deaeration performance only by adjusting the vacuum pressure. For this reason, the vacuum deaeration system has not yet become widespread, but a batch processing type vacuum deaerator can be relatively easily handled. However, the batch processing type vacuum deaerator has a limited amount of processing because the processing is discontinuous, and when a large amount of water needs to be processed, it must be a large-scale equipment, and equipment maintenance cost is required. It is not common because it is expensive.

【0009】一方、例えば食品工場などのように連続多
量処理が要求される場合には、運転操作および保守に専
門的な煩雑さが要求されるエジェクターとサイクロンを
組み合わせた多段連続真空脱気方式が採用され、時間当
たりの処理量も充分な設備が実用化されているが、設置
面積が大きく、設備費用及び維持費用が大きいので、処
理による付加価値が見込める産業用途向きであり、一般
の共同住宅やオフィスビルなどにおける水処理設備の脱
気装置としては管理面も含めて経済的に引き合わず、採
用は現実的ではない。
On the other hand, when continuous large-volume treatment is required as in a food factory, for example, a multi-stage continuous vacuum degassing system combining an ejector and a cyclone that requires specialized and complicated operation and maintenance is required. Equipment that has been adopted and has a sufficient amount of processing per hour has been put to practical use.However, since the installation area is large, the equipment cost and maintenance cost are large, it is suitable for industrial use where added value can be expected by processing, and it is suitable for general apartments. As a deaerator for water treatment facilities in offices and office buildings, etc., it is not practical to adopt it economically, including in terms of management.

【0010】また中空糸膜脱気法をイオン交換樹脂筒の
上流で実行する方式も知られているが、この場合は、水
中の金属イオンが中空糸膜の表面で酸化され、この酸化
物が膜に付着して脱気通路の閉塞により機能不全に陥
り、膜の頻繁な交換を余儀なくされる結果、付加価値の
高い用途以外ではランニングコストが嵩んで経済的に引
き合わないという欠点がある。
It is also known to carry out a hollow fiber membrane deaeration method upstream of an ion exchange resin cylinder. In this case, metal ions in water are oxidized on the surface of the hollow fiber membrane, and this oxide is removed. As a result, the membrane adheres to the membrane and malfunctions due to obstruction of the deaeration passage, and frequent replacement of the membrane is required. As a result, running costs are high except for high value-added applications, and there is a drawback that it cannot be economically justified.

【0011】また、中空糸膜をイオン交換樹脂の下流で
使用することも単に溶存酸素の除去には効果があるが、
この場合も、例えばボイラ設備では蒸気リターン配管や
循環温水配管から溶解した金属イオン成分が酸化されて
中空糸膜面に付着固化し、目詰まりをおこすので、中空
糸膜の全面交換作業を比較的早期に行なうことが余儀な
くされる欠点が避けられない。
The use of a hollow fiber membrane downstream of an ion exchange resin is also effective for simply removing dissolved oxygen.
In this case as well, for example, in a boiler facility, metal ion components dissolved from a steam return pipe or a circulating hot water pipe are oxidized and adhere to and solidify on the hollow fiber membrane surface, causing clogging. The disadvantages that must be taken early are inevitable.

【0012】尚、真空脱気処理に併用して処理水を加熱
沸騰することにより、水中のトリハロメタンやトリクロ
ロエチレン等の塩化物による発癌性物質またはO−15
7をはじめとする有害菌を同時に除去することも知られ
ているが、給湯系での煮沸は可能であっても、冷水を供
給する給水系では煮沸・冷却のエネルギー消費を考える
と現実性に乏しい。
By heating and boiling the treated water in combination with the vacuum degassing treatment, a carcinogenic substance such as trihalomethane or trichlorethylene in the water or O-15 is produced.
It is also known that harmful bacteria such as 7 can be removed at the same time. However, even if boiling in a hot water supply system is possible, in a water supply system that supplies cold water, considering the energy consumption of boiling and cooling, it is realistic. poor.

【0013】従って本発明の課題は、季節変化などの環
境条件に左右されずに減圧容器内での低温沸騰と超音波
によるキャビテーションとの相乗作用によってほぼ連続
的な通水脱気を可能とする新規な真空脱気装置を提供す
ることである。
Accordingly, an object of the present invention is to enable substantially continuous deaeration of water through synergy between low-temperature boiling in a decompression vessel and cavitation by ultrasonic waves without being affected by environmental conditions such as seasonal changes. It is to provide a new vacuum deaerator.

【0014】また、薬注を不要とし、或いは、加熱する
ことなく溶存気体の除去を果たすことのできる脱気装置
を提供することなども本発明の別の課題である。
Another object of the present invention is to provide a deaerator which can eliminate dissolved gas without the need for chemical injection or without heating.

【0015】[0015]

【課題を解決するための手段】上述の課題を解決するた
め、本発明による脱気装置は、給水口から導入されて内
部を満たした水に減圧低温沸騰と空洞化現象を与える導
水筒と、導水筒の内部の水に空洞化現象誘発のための超
音波を照射する超音波振動子と、真空ポンプで減圧され
た脱気室と、導水筒内の水を脱気室に送り込むポンプ手
段と、脱気室内に貯えられた水を外部へ送水する送水手
段とを備え、特に前記ポンプ手段は、導水筒の内部の水
に導水筒のほぼ軸方向に沿った軸心の上昇回転渦流を発
生させつつ導水筒上端の軸心近傍領域から吸水して吐出
水を前記脱気室内に放水飛散させる渦巻ポンプからなる
ことを特徴とする。
In order to solve the above-mentioned problems, a deaerator according to the present invention is provided with a water-guiding cylinder for applying reduced-pressure low-temperature boiling and cavitation to water introduced from a water supply port and filled therein. An ultrasonic oscillator that irradiates ultrasonic waves for inducing cavitation to water inside the water guide tube, a degassing chamber depressurized by a vacuum pump, and pump means for sending water in the water guide tube to the degassing chamber. Water supply means for supplying water stored in the degassing chamber to the outside, and the pump means generates a rising rotational vortex of an axial center substantially along the axial direction of the water guide tube in the water inside the water guide tube. The pump is characterized in that the pump comprises a centrifugal pump that absorbs water from a region near the axis of the upper end of the water guide tube and discharges and scatters discharged water into the degassing chamber.

【0016】好ましくは、前記渦巻ポンプは羽根車外周
部からの吐出水を脱気室内に直接放射する横向き吐出口
を有する立軸形の半径流もしくは斜流形タービンポンプ
またはボリュートポンプからなり、該ポンプは導水筒の
上端部にほぼ同軸状に直結され、前記吐出口は前記脱気
室内に直接開口される。
Preferably, the centrifugal pump comprises a vertical shaft type radial flow or mixed flow turbine pump or a volute pump having a lateral discharge port for directly discharging discharge water from an outer peripheral portion of the impeller into the deaeration chamber. Is substantially directly coaxially connected to the upper end of the water guide tube, and the discharge port is directly opened into the degassing chamber.

【0017】また、脱気室は前記渦巻ポンプからの放水
を受けてこれを飛散させる衝合壁を有することが望まし
い。
It is preferable that the degassing chamber has an abutment wall for receiving water discharged from the volute pump and scattering the water.

【0018】更に、送水手段からの水の少なくとも一部
を導水筒へ循環させる循環系を更に備えていてもよい。
Further, a circulation system for circulating at least a part of the water from the water supply means to the water pipe may be further provided.

【0019】本発明の脱気装置では、減圧された脱気室
の内部で導水筒内の水に減圧低温沸騰と超音波による空
洞化現象を誘発させ、水中の溶存気体を渦巻ポンプによ
り水と共に気泡として脱気室に導き、脱気室からその減
圧源に吸引捕集して脱気するので、脱気のための減圧を
水の導入に利用できるほか、処理水を煮沸させるための
加熱エネルギーは不要である。
In the degassing apparatus of the present invention, the water in the water guide tube is induced to decompress at low temperature and boil due to ultrasonic waves in the degassing chamber, and the dissolved gas in the water is mixed with the water by the vortex pump. The air is led to the degassing chamber as air bubbles, and the air is collected and suctioned from the degassing chamber to its decompression source to degas, so that the decompression for degassing can be used for introducing water, and the heating energy for boiling the treated water. Is unnecessary.

【0020】ところで、冬季のように導水筒内の水温が
低いときは水の粘性が大きくなり、低温の水中で発生し
た気泡と水は強い粘性力をもつので、速やかに且つ容易
に脱気することが困難になりがちであるが、本発明の脱
気装置では、導水筒の水に空洞化現象を誘発するための
超音波振動エネルギーを照射して給水管から導水筒内に
導入された水にキャビテーションを生起せしめるための
超音波振動子が備えられている。
By the way, when the water temperature in the water pipe is low as in winter, the viscosity of the water increases, and the bubbles and water generated in the low-temperature water have a strong viscous force. Although it tends to be difficult, in the deaerator of the present invention, the water introduced into the water pipe from the water supply pipe by irradiating ultrasonic vibration energy to induce cavitation in the water in the water pipe. Is provided with an ultrasonic transducer for generating cavitation.

【0021】従って水が真空圧のみにより減圧沸騰を起
こす場合よりも減圧の程度が少なくても、超音波振動エ
ネルギーによるキャビテーション現象で水に空洞化現象
が誘発され、この空洞に水中の溶存気体が気泡となって
捕捉され、それが渦巻ポンプによる上昇回転渦流の軸心
部に集められながら渦巻ポンプで吸引されて減圧下の脱
気室内に放出されることによって気体として脱気室に放
散されるので、脱気室に接続された減圧源としての真空
ポンプから効果的に脱気することができる。もちろん、
脱気室の減圧を充分低圧にし、それ自体で導水筒内の水
に減圧沸騰を起こす場合にも超音波の照射を併用するこ
とは効果的である。
Therefore, even if the degree of the pressure reduction is smaller than the case where the water causes boiling under reduced pressure only by the vacuum pressure, the cavitation phenomenon by the ultrasonic vibration energy induces a cavitation phenomenon in the water, and the dissolved gas in the water is introduced into the cavity. It is trapped as bubbles, which are collected at the axis of the upward rotating vortex by the vortex pump, are sucked by the vortex pump, and are discharged into the degassing chamber under reduced pressure, and are released as gas to the degassing chamber. Therefore, deaeration can be effectively performed from a vacuum pump connected to the deaeration chamber as a reduced pressure source. of course,
It is effective to use ultrasonic irradiation in combination even when the pressure in the degassing chamber is reduced to a sufficiently low pressure and the water in the water guide tube itself boils under reduced pressure.

【0022】一般に超音波によるキャビテーションは、
音圧が大気圧を超えたときに発生する。そこで、超音波
の音圧を(p)、処理対象の水の密度を(ρ)、粒子の
振動速度を(u)、波の伝播速度を(c)とすれば、p
=ρcuである。また、音波の強度、すなわちパワー密
度(I)は、I=ρcu2 である。
In general, cavitation by ultrasonic waves
Occurs when sound pressure exceeds atmospheric pressure. Therefore, if the sound pressure of the ultrasonic wave is (p), the density of the water to be treated is (ρ), the vibration speed of the particles is (u), and the propagation speed of the wave is (c), p
= Ρcu. Further, the intensity of the sound wave, that is, the power density (I) is I = ρcu 2 .

【0023】処理対象の水の密度は水中の揮発性成分や
有機物などの不純物含有量で大きく影響を受けることか
ら、本発明では導水筒の好ましくは底面に複数の超音波
振動子を取り付け、振動子の稼動数と駆動電源の電圧電
流制御によって超音波の強度を制御し、真空度が脱気室
内の水の飽和水蒸気圧に達する前に導水筒内の水柱にキ
ャビテーションを発生させて水中の溶存気体を効率的に
気泡化し、この気泡を渦巻ポンプによる上昇回転渦流に
巻き込んでその軸心部に収束させながら導水筒上端から
半径方向に向けて脱気室内に放水飛散させ、この飛散に
よって水中に含まれる微細な気泡を脱気室における真空
脱気で除去するものであり、従って、このような脱気に
よって酸化力の極めて弱い脱気水としたうえで例えばイ
オン交換樹脂筒に送り込むことにより、イオン交換樹脂
の劣化を効果的に防止することも可能である。
Since the density of water to be treated is greatly affected by the content of impurities such as volatile components and organic substances in the water, in the present invention, a plurality of ultrasonic vibrators are preferably mounted on the bottom surface of the water pipe, and The ultrasonic intensity is controlled by controlling the number of operating elements and the voltage and current of the driving power supply, and cavitation is generated in the water column in the water pipe before the degree of vacuum reaches the saturated water vapor pressure of the water in the degassing chamber. The gas is efficiently bubbled, and the bubbles are drawn into the upward rotating vortex by the vortex pump and converge on the axis of the gas, and are discharged from the upper end of the water guide tube in the radial direction into the degassing chamber. The fine bubbles contained are removed by vacuum degassing in a degassing chamber.Thus, such degassing forms degassed water with extremely weak oxidizing power and then, for example, into an ion exchange resin cylinder. By Komu Ri, it is possible to effectively prevent deterioration of the ion exchange resin.

【0024】この超音波振動による脱気の効果の向上は
著しく、従来の一般的な受水槽における水面が大気に開
放された条件下での超音波加振方式とは異なり、本発明
では導水筒内の上部に連通する脱気室が減圧された条件
下で行なわれるので、脱気された水に大気から平衡分圧
に応じた量の気体が再び溶解してしまうことがなく、塩
素臭のないほぼ純水に近い高純度の脱気水を得ることが
できる。
The improvement of the degassing effect by the ultrasonic vibration is remarkable, and unlike the conventional ultrasonic vibration method in which the water surface in a general water receiving tank is open to the atmosphere, the present invention employs a water pipe. Since the degassing chamber communicating with the upper part of the inside is performed under reduced pressure conditions, the gas corresponding to the equilibrium partial pressure does not dissolve again in the degassed water from the atmosphere, and the chlorine odor It is possible to obtain high-purity degassed water which is not nearly pure water.

【0025】特に好ましくは、直立状態の導水筒の底部
から導水筒内に満たされた水に超音波振動の定在波が与
えられるように導水筒の寸法及び超音波振動の周波数を
選定することにより、導水筒内を満たす水柱には超音波
の定在波が形成され、水面で超音波の完全反射が起こる
ので最大の超音波振動エネルギーが伝達され、それによ
りキャビテーションが瞬時に発生し、溶存気体が盛んに
気泡となって水面で破裂し、導水筒内の減圧された上部
脱気空間から外部へ捕集除去され、従って脱気の効率が
更に高くなる。
Particularly preferably, the dimensions of the water guide tube and the frequency of the ultrasonic vibration are selected so that the standing wave of the ultrasonic vibration is given to the water filled in the water guide tube from the bottom of the water guide tube in the upright state. As a result, a standing wave of ultrasonic waves is formed in the water column filling the water pipe, and the maximum ultrasonic vibration energy is transmitted because the ultrasonic waves are completely reflected on the water surface, thereby instantaneously generating cavitation and dissolving The gas vigorously becomes bubbles and ruptures on the water surface, and is collected and removed from the depressurized upper degassing space in the water pipe, thereby further improving the degassing efficiency.

【0026】この場合、導水筒の筒形状は、筒内で発生
する気泡を軸心部に集めて速やかに吸引上昇させるため
に下部よりも上部に行くほど内径が漸減する裁頭円錐筒
とするのがよく、その頂部に渦巻ポンプを直結配置す
る。この渦巻ポンプとしては各種の形式のものを用いる
ことができるが、好ましくは渦室もしくは固定または可
動案内羽根を持たずに羽根車外周部からの吐出水を直接
的に脱気室内へ放射する横向き吐出口を有する立軸半径
流形もしくは立軸斜流形のタービンポンプまたはボリュ
ートポンプを用い、このポンプを導水筒の上端部にほぼ
同軸状に直結し、また吐出口も好ましくは全周に亘って
適切な間隔で配列した複数のスリット状開口で構成して
これを脱気室内に直接開口させ、気泡を含む水がポンプ
周囲の全周から霧状に脱気室へ噴射されるようにするの
がよい。
In this case, the shape of the water guide cylinder is a frusto-conical cylinder whose inner diameter gradually decreases as it goes upward from the lower part in order to collect air bubbles generated in the cylinder at the axial center and to quickly raise the suction. Preferably, a volute pump is directly connected to the top. Various types can be used as the centrifugal pump. Preferably, the centrifugal pump radiates water discharged from the outer periphery of the impeller directly into the degassing chamber without a vortex chamber or a fixed or movable guide blade. Using a vertical radial flow type or vertical mixed flow type turbine pump or volute pump having a discharge port, this pump is directly connected substantially coaxially to the upper end of the water pipe, and the discharge port is also preferably provided over the entire circumference. It is composed of a plurality of slit-shaped openings arranged at various intervals, which are directly opened into the degassing chamber, so that water containing air bubbles is sprayed into the degassing chamber from the entire circumference of the pump in a mist state. Good.

【0027】立軸形渦巻ポンプの羽根車(ローター)を
一方の端面が閉鎖された片面開放ローターとし、その周
囲の全周に亘って複数のスリット状開口からなる横向き
の吐出口を水流に作用する遠心力の方向と直交する向き
で設けると、ポンプローターの羽根と羽根との間に遠心
力に対抗する逆向きの溝渦流が形成されにくくなり、こ
れにより水流に随伴する気泡が羽根と羽根との間に停滞
することがなく、ポンプ自体の揚水効率を低下させるこ
とがないという利点を得ることができる。もちろん、ロ
ーターの羽根の角度や形状は使用条件に応じて最適設計
可能であることは述べるまでもない。
The impeller (rotor) of the vertical shaft type centrifugal pump is a single-sided open rotor with one end face closed, and a horizontal discharge port formed of a plurality of slit-like openings is formed around the entire circumference to act on the water flow. When provided in a direction perpendicular to the direction of the centrifugal force, it is difficult for the groove vortex of the opposite direction to oppose the centrifugal force to be formed between the blades of the pump rotor and the blades, thereby causing bubbles accompanying the water flow to be generated by the blades and the blades. The advantage is that there is no stagnation during this time, and the pumping efficiency of the pump itself is not reduced. Of course, it goes without saying that the angle and shape of the rotor blades can be optimally designed according to the use conditions.

【0028】内部に導水筒を配置した脱気室内を真空ポ
ンプによって大気圧より減圧された状態におき、導水筒
の給水口から水を内部に吸引させて導水筒内を水で満た
し、渦巻ポンプのローターを回転させると、脱気室内の
真空圧とポンプローターによる吸引によって導水筒内に
回転上昇渦が生じながら水流がポンプから脱気室内に吐
出され、導水筒への吸水と脱気室内への吐出とが連続し
て行われる。このとき減圧沸騰と同時に導水筒内に照射
された超音波によるキャビテーションで導水筒内の水に
盛んに気泡が発生し、この気泡が回転上昇渦流に巻き込
まれる。この場合、気泡は水よりも比重が軽いので殆ど
が上昇回転渦流の軸心部に集まり、渦水流と共にポンプ
ローターの軸心上からポンプに吸い込まれる。
The deaeration chamber in which the water guide tube is disposed is depressurized from the atmospheric pressure by a vacuum pump, and water is sucked into the water feed port from the water supply port to fill the water guide tube with water. When the rotor is rotated, a water flow is discharged from the pump into the deaeration chamber while a rotating upward vortex is generated in the water guide tube due to the vacuum pressure in the deaeration chamber and suction by the pump rotor, and water is absorbed into the water guide tube and enters the deaeration chamber. Is continuously performed. At this time, bubbles are actively generated in water in the water guide tube due to cavitation by ultrasonic waves applied to the water guide tube at the same time as boiling under reduced pressure, and the bubbles are caught in the rotating ascending vortex. In this case, since the air bubbles have a specific gravity lower than that of water, most of the air bubbles collect at the axis of the upward rotating vortex, and are sucked into the pump together with the vortex from the axis of the pump rotor.

【0029】吸い込まれた水と気泡は、ローターの回転
で駆動される水流に作用する遠心力によって互いに分離
された状態で全周の複数のスリット状の吐出口から霧状
になって横向きに脱気室内へ噴射され、脱気室内の真空
圧で気泡が吸引捕集されて脱気が果たされる。脱気され
た水は脱気室内の下部に一時溜められ、必要に応じて外
部ポンプにより脱気室の下部から適宜外部へ取り出され
る。この間、脱気室内の水位を監視し、常に一定の水位
が維持されるように給水系および排水系を電磁弁および
ポンプの動作で制御しても良い。
The sucked water and air bubbles are separated from each other by centrifugal force acting on the water flow driven by the rotation of the rotor, and form a mist from a plurality of slit-shaped discharge ports on the entire circumference to escape laterally. The air is injected into the air chamber, and the air bubbles are sucked and collected by the vacuum pressure in the deaeration chamber to perform the deaeration. The degassed water is temporarily stored in the lower part of the degassing chamber, and is taken out from the lower part of the degassing chamber to the outside as needed by an external pump. During this time, the water level in the degassing chamber may be monitored, and the water supply system and the drainage system may be controlled by the operation of the solenoid valve and the pump so that a constant water level is always maintained.

【0030】渦巻ポンプの吐出口に対面するように脱気
室内に放射水に対する衝合部材を設けることは好ましい
ことであり、この衝合部材として脱気室の壁面自体を利
用することもできる。吐出口から噴射される気泡混じり
の霧状の水が衝合部材に衝突すると、水の随伴して衝突
する気泡が強制的に破壊され、これにより気泡中の気体
が脱気室に開放されるので減圧による気体の捕集が効果
的となり、脱気の効果が一層高くなる。気泡の破裂で分
離した気体は脱気室から真空ポンプなどの減圧源に捕集
吸引され、一方、脱気水は自然落下で脱気室下部に貯留
されるが、この場合、脱気水が下部貯水面に穏やかに導
入されるように鎮静用の案内樋などを脱気室内に配置し
ても良い。
It is preferable to provide an abutting member for radiant water in the degassing chamber so as to face the discharge port of the volute pump, and the wall of the degassing chamber itself can be used as the abutting member. When the atomized water containing bubbles ejected from the discharge port collides with the abutment member, the colliding bubbles are forcibly destroyed along with the water, thereby releasing the gas in the bubbles to the degassing chamber. Therefore, the trapping of gas by depressurization becomes effective, and the degassing effect is further enhanced. The gas separated by the rupture of air bubbles is collected and sucked from the degassing chamber by a decompression source such as a vacuum pump, while the degassed water is naturally dropped and stored in the lower part of the degassing chamber. A guide gutter or the like for sedation may be arranged in the degassing chamber so as to be gently introduced into the lower water storage surface.

【0031】更に、脱気室下部の貯水部と導水筒の給水
口との間を例えば開閉弁と送水ポンプとを含む外部配管
系で接続して閉ループの循環系を形成することは好まし
いことであり、この場合、渦巻ポンプの吸込量Qを給水
口への新水の単位時間当たりの給水量Q1と循環系に流
れる循環水の単位時間当たりの循環流量Q2との和に等
しく設定し(即ち、Q=Q1+Q2)、新水の給水量Q
1と循環流量Q2との比m(但し、m=Q2/Q1)が
1より大きくなるような条件で装置を稼働させると、脱
気室内に溜まった水を繰り返し脱気処理することができ
るので、残留する溶存気体が究極まで無くなった高脱気
水を得ることも可能となる。
Furthermore, it is preferable that a closed loop circulation system is formed by connecting the water reservoir below the degassing chamber and the water supply port of the water pipe by an external piping system including, for example, an on-off valve and a water pump. In this case, the suction amount Q of the centrifugal pump is set equal to the sum of the supply amount Q1 of fresh water to the water supply port per unit time and the circulation flow rate Q2 of circulating water flowing through the circulation system per unit time (ie, , Q = Q1 + Q2), fresh water supply Q
If the apparatus is operated under conditions such that the ratio m (where m = Q2 / Q1) of 1 to the circulation flow rate Q2 is greater than 1, water accumulated in the degassing chamber can be repeatedly degassed. In addition, it becomes possible to obtain highly degassed water in which the residual dissolved gas is completely eliminated.

【0032】[0032]

【発明の実施の形態】図1は本発明の好適な実施の形態
を模式的に示しており、主装置は真空ポンプ17で内部
を減圧された脱気室7と、脱気室内に縦に配置された導
水筒15と、導水筒の底部に取り付けられた複数の超音
波振動子12と、導水筒の頂部に設置された立軸形渦巻
ポンプ3とを備え、給水管9から電磁弁18、イゼクタ
ー13及び手動開閉バルブ26を介して導水筒15に導
入された水を渦巻ポンプ3により横向きの吐出口4から
脱気室7へ噴射して送り込み、脱気室7内に蓄えられた
脱気水を送水ポンプ10によって外部へ送水し、その一
部を分配筐22から手動開閉バルブ27を介してイゼク
ター13により給水系へ戻して循環系を形成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 schematically shows a preferred embodiment of the present invention, in which a main unit is a degassing chamber 7 whose inside is depressurized by a vacuum pump 17, and is vertically inserted into the degassing chamber. A water pipe 15 is provided, a plurality of ultrasonic vibrators 12 attached to the bottom of the water pipe, and a vertical shaft pump 3 installed at the top of the water pipe. The water introduced into the water guide tube 15 via the ejector 13 and the manual opening / closing valve 26 is ejected from the lateral discharge port 4 to the deaeration chamber 7 by the volute pump 3 and is sent to the deaeration chamber 7. Water is supplied to the outside by the water supply pump 10, and a part of the water is returned from the distribution casing 22 to the water supply system by the ejector 13 via the manual opening / closing valve 27 to form a circulation system.

【0033】導水筒15は、その底面よりも上方に距離
をおいた位置に下部給水口25を備えた略裁頭円錐形の
ものであり、給水管9から止水弁18、イゼクター13
及びバルブ26を介して導入される水で内部が満たさ
れ、この内部を満たした水に減圧低温沸騰と空洞化現象
を与える。この導水筒15の底部には、導水筒内の水に
超音波を照射して空洞化現象を誘発するための超音波振
動子12が複数配置されており、各振動子はパワーボッ
クス19により駆動されている。
The water pipe 15 is a generally frusto-conical shape having a lower water supply port 25 at a position above the bottom surface thereof.
Then, the inside is filled with water introduced through the valve 26, and the water filling the inside is given a reduced-pressure low-temperature boiling and cavitation phenomenon. A plurality of ultrasonic transducers 12 for irradiating ultrasonic waves to water in the water guide cylinder to induce a cavitation phenomenon are arranged at the bottom of the water guide cylinder 15, and each vibrator is driven by a power box 19. Have been.

【0034】渦巻ポンプ3は、導水筒15の頂部に直接
取付けられたローターケーシング2内で回転するロータ
ー(羽根車)1を備えており、このローター1は上面が
閉鎖円板20で閉鎖された下面開放型の放射状配置の羽
根車からなり、導水筒15と同軸の軸心でモーター6に
よって回転駆動される。ケーシング2の周壁には等間隔
で複数のスリット状開口からなる横向きの吐出口4が設
けられており、そこから吐出される霧状の水流が脱気室
7内に直接放射され、脱気室の内周壁に霧状の吐出水流
が衝合するようになっている。
The centrifugal pump 3 has a rotor (impeller) 1 which rotates in a rotor casing 2 directly attached to the top of a water guide tube 15, and the upper surface of the rotor 1 is closed by a closing disk 20. It is composed of a radially arranged impeller of an open bottom type, and is driven to rotate by a motor 6 around an axis coaxial with the water guide tube 15. On the peripheral wall of the casing 2, there are provided horizontal discharge ports 4 each having a plurality of slit-shaped openings at equal intervals, and a mist-like water flow discharged from the discharge ports 4 is directly radiated into the deaeration chamber 7, and the deaeration chamber is formed. The mist-like discharge water stream is brought into contact with the inner peripheral wall of the nozzle.

【0035】本実施例の渦巻ポンプ3は、導水筒15の
内部の水に対して導水筒のほぼ軸方向に沿った軸心の上
昇回転渦流を発生させつつ導水筒上端の軸心近傍領域か
ら吸水し、羽根車外周部からの吐出水を吐出口4から脱
気室7内に直接放射する立軸形のタービンポンプである
が、同様の機能を果たす限りにおいてボリュートポンプ
であってもよい。
The centrifugal pump 3 of the present embodiment generates an upward rotating vortex of an axial center substantially along the axial direction of the water guide tube with respect to the water inside the water guide tube 15 from the region near the shaft center at the upper end of the water guide tube. Although it is a vertical-shaft turbine pump that absorbs water and radiates water discharged from the outer periphery of the impeller directly from the discharge port 4 into the deaeration chamber 7, a volute pump may be used as long as the same function is performed.

【0036】本装置は作動状態においては真空ポンプ1
7によって脱気室7内が高真空状態に保たれており、真
空ポンプ17からの排気は大気中に放散されている。こ
の状態で電磁弁18を開くと、図示しない受水槽から給
水管9を経て送られてくる水がイゼクター13とバルブ
26を介して給水口25から減圧状態下の導水筒15内
に吸引される。導水筒15内に水が満たされた状態で導
水筒15の底部に配置された超音波振動子12から予め
定められた周波数の超音波を導水筒内の水に照射する
と、導水筒15内の水にキャビテーションによる空洞化
現象が誘起されて水中に溶けている気体が気泡14とし
て分離する。この気泡発生には減圧下における低温沸騰
現象も寄与する。
The apparatus is operated in a vacuum pump 1
The inside of the degassing chamber 7 is maintained in a high vacuum state by 7, and the exhaust from the vacuum pump 17 is diffused into the atmosphere. When the electromagnetic valve 18 is opened in this state, water sent from a water receiving tank (not shown) via the water supply pipe 9 is sucked from the water supply port 25 via the injector 13 and the valve 26 into the water guide cylinder 15 under a reduced pressure state. . When the ultrasonic wave at a predetermined frequency is applied to the water in the water guide tube from the ultrasonic oscillator 12 arranged at the bottom of the water guide tube 15 in a state where the water guide tube 15 is filled with water, Cavitation is induced in the water by cavitation, and the gas dissolved in the water is separated as bubbles 14. The low-temperature boiling phenomenon under reduced pressure also contributes to this bubble generation.

【0037】このとき渦巻ポンプ3をモーター6によっ
て動作させると、ローター1の回転によって導水筒15
内の水に導水筒の軸方向に沿った軸心の上昇回転渦流が
発生し、この渦流が気泡を巻込んで軸心に集めながらロ
ーター1の軸心近傍から気泡と共に吸引されてローター
の閉鎖円板20に沿って径方向へ向かい、ローター1の
羽根の間に気泡を滞留させることなく遠心力によってケ
ーシング2の周壁の複数のスリット状吐出口4から横向
きに高速の噴流となって脱気室7内へ放射される。
At this time, when the centrifugal pump 3 is operated by the motor 6, the rotation of the rotor 1 causes
An upward rotating vortex of the axial center along the axial direction of the water guide cylinder is generated in the water inside, and this vortex is sucked together with the air bubbles from near the axial center of the rotor 1 while entraining the air bubbles and collecting them at the axial center, thereby closing the rotor. The gas flows radially along the disk 20 and is degassed as a high-speed jet laterally from the plurality of slit-shaped discharge ports 4 of the peripheral wall of the casing 2 by centrifugal force without causing air bubbles to stay between the blades of the rotor 1. Radiated into the chamber 7.

【0038】この場合、高速の噴流はスリット状吐出口
4を通過する時にスリットのエッジで切断を受けるの
で、脱気室へは霧状のジェット流として飛散放射され、
これが更に脱気室の内壁に衝合することによって水滴中
に捕えられたままの微細な気泡も自ら分離され、従って
これらの開放された水が真空ポンプ17により吸引捕集
されて装置外へ排気される。
In this case, the high-speed jet flow is cut at the edge of the slit when passing through the slit-shaped discharge port 4, and is scattered and radiated to the degassing chamber as a mist-like jet flow.
This further abuts against the inner wall of the degassing chamber, whereby fine bubbles remaining in the water droplets are also separated by themselves. Therefore, the released water is sucked and collected by the vacuum pump 17 and exhausted out of the apparatus. Is done.

【0039】このように、本実施例における渦巻ポンプ
3は気泡を含む水を吸引して気泡をポンプ内に停滞させ
ることなく霧状の高速噴流として吐出するものであり、
これは従来の一般的なポンプでは実現できなかった特徴
のひとつである。
As described above, the volute pump 3 in the present embodiment sucks water containing bubbles and discharges the bubbles as a mist-like high-speed jet without stagnating in the pump.
This is one of the features that cannot be realized by a conventional general pump.

【0040】このようにして脱気された水は高真空状態
の脱気室7内の下部貯水室21に一時的に蓄えられる。
この貯水室21には三つの高さレベルで水位検出器a,
b,cが設けられており、外部制御装置16によって水
位が監視制御されている。即ち、検出器aは送水ポンプ
10の停止水位検出用のもの、検出器bは送水ポンプ1
0の始動水位検出用のもの、そして検出器cは電磁弁1
8の閉鎖水位検出用のものである。
The water thus degassed is temporarily stored in the lower water storage chamber 21 in the high vacuum state degassing chamber 7.
The water storage chamber 21 has water level detectors a, at three height levels.
b and c are provided, and the water level is monitored and controlled by the external control device 16. That is, the detector a is for detecting the stop water level of the water pump 10, and the detector b is for detecting the water pump 1
0 for detecting the starting water level, and detector c is a solenoid valve 1
8 for detecting the closed water level.

【0041】制御装置16は、脱気水の水位が検出器b
の水位を越えていれば送水ポンプ10を動作状態にし、
これにより貯水室21から配管11を介してポンプ10
により外部および循環系に脱気水が送られる。又、貯水
室21内の水位が検出器aの水位より低下した場合は送
水ポンプ10は水位が検出器bの水位に回復するまで制
御装置16によって停止され、更に貯水室21内の水位
が検出器cの水位を越えると制御装置16によって電磁
弁が閉じられ、新水の供給が停止される。
The control device 16 determines whether the level of the degassed water is
If the water level exceeds, the water supply pump 10 is activated,
Thereby, the pump 10 is connected from the water storage chamber 21 through the pipe 11.
Degassed water is sent to the outside and the circulation system. When the water level in the water storage chamber 21 falls below the water level of the detector a, the water pump 10 is stopped by the control device 16 until the water level recovers to the water level of the detector b, and the water level in the water storage chamber 21 is further detected. When the water level of the vessel c is exceeded, the solenoid valve is closed by the control device 16 and the supply of fresh water is stopped.

【0042】このようにして脱気水が送水ポンプ10か
ら送り出されると、分配筐22によって外部へ送られる
水の一部がバルブ27を介して循環配管23に送られ、
給水取り入れ用のイゼクター13及びバルブ26を介し
て導水筒15の給水口25に送られる。イゼクター13
では循環配管23からの循環水(脱気水)が高速で通過
する時に生じる負圧で電磁弁18からの給水が吸引され
て取り込まれ、装置内の減圧による負圧と送水ポンプ1
0の押込圧との和による圧力で導水筒15に水が吸引さ
れることになる。
When the degassed water is sent from the water pump 10 in this manner, a part of the water sent to the outside by the distribution casing 22 is sent to the circulation pipe 23 through the valve 27,
The water is supplied to the water supply port 25 of the water guide tube 15 via the water supply intake injector 13 and the valve 26. Ejector 13
In this case, the feed water from the solenoid valve 18 is sucked and taken in by the negative pressure generated when the circulating water (deaerated water) from the circulation pipe 23 passes at high speed, and the negative pressure due to the reduced pressure in the apparatus and the water pump 1
Water is sucked into the water guide tube 15 by a pressure based on the sum of the zero pushing pressure.

【0043】[0043]

【発明の効果】以上に述べたように、本発明による脱気
装置は高真空と超音波キャビテーションによる効果に渦
巻ポンプによる渦流の遠心力による効果を相乗的に利用
して霧化及び噴流衝合による脱気を行わせるので、水中
の溶存酸素だけでなく揮発性気体成分をも効果的に脱気
することが可能であり、水道水を酸化腐蝕力の殆どない
高脱気水に変えて配管の防食と延命に寄与するだけでな
く、例えば原油精製に伴う廃水中のベンゼン等の発癌性
有機揮発成分を脱気して無害化することもでき、従来の
清水による希釈に比べて水資源消費もなく、更に脱気し
たベンゼンを回収して殺虫剤原料等に利用する道も開け
るほか、装置内に目詰まりする個所がないので工場廃水
から塩素誘導体の発癌性物質を除去する用途にも利用で
きるので河川水の汚濁防止にも効果を発揮するものであ
る。
As described above, the deaerator according to the present invention synergizes with the effects of high vacuum and ultrasonic cavitation by utilizing the effect of the centrifugal force of the vortex generated by the vortex pump in an atomizing and jet-combining manner. Degassing, it is possible to effectively degas not only dissolved oxygen in the water but also volatile gas components.Turn the tap water into highly degassed water with almost no oxidative corrosion Not only contributes to the corrosion protection and prolonging of life, but also can detoxify carcinogenic organic volatile components such as benzene in the wastewater resulting from crude oil refining, for example. There is also no way to open the way to collect degassed benzene and use it as a raw material for insecticides, etc. Also, since there is no clogging point in the equipment, it can also be used to remove carcinogens of chlorine derivatives from factory wastewater River water It is intended to also effective to prevent pollution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の好適な実施形態の一例を縦断面構造と
して示す模式図である。
FIG. 1 is a schematic view showing an example of a preferred embodiment of the present invention as a longitudinal sectional structure.

【符号の説明】[Explanation of symbols]

3:渦巻ポンプ 7:脱気室 10:送水ポンプ 15:導水筒 17:真空ポンプ 3: Volute pump 7: Deaeration chamber 10: Water pump 15: Water pipe 17: Vacuum pump

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 給水口から導入されて内部を満たした水
に減圧低温沸騰と空洞化現象を与える導水筒と、導水筒
の内部の水に空洞化現象誘発のための超音波を照射する
超音波振動子と、真空ポンプで減圧された脱気室と、導
水筒内の水を脱気室に送り込むポンプ手段と、脱気室内
に貯えられた水を外部へ送水する送水手段とを備えた脱
気装置であって、前記ポンプ手段が、導水筒の内部の水
に導水筒のほぼ軸方向に沿った軸心の上昇回転渦流を発
生させつつ導水筒上端の軸心近傍領域から吸水して吐出
水を前記脱気室内に放水飛散させる渦巻ポンプからなる
ことを特徴とする脱気装置。
1. A water pipe for introducing water from a water supply port and filling the inside thereof with a reduced pressure low-temperature boiling and hollowing phenomenon, and an ultrasonic wave for irradiating the water inside the water pipe with ultrasonic waves for inducing a hollowing phenomenon. A sonic vibrator, a deaeration chamber depressurized by a vacuum pump, a pump means for sending water in the water guide tube to the deaeration chamber, and a water supply means for sending water stored in the deaeration chamber to the outside. The degassing device, wherein the pump means absorbs water from a region near the axis at the upper end of the water guide cylinder while generating a rising rotational vortex of the axis substantially along the axial direction of the water guide cylinder in the water inside the water guide cylinder. A degassing device comprising a vortex pump that discharges and discharges water into the degassing chamber.
【請求項2】 前記渦巻ポンプが羽根車外周部からの吐
出水を脱気室内に直接放射する横向き吐出口を有する立
軸形のタービンポンプ又はボリュートポンプからなり、
該ポンプが導水筒の上端部にほぼ同軸状に直結され、前
記吐出口が脱気室内に直接開口されていることを特徴と
する請求項1に記載の脱気装置。
2. The vertical pump according to claim 1, wherein the centrifugal pump comprises a vertical shaft-type turbine pump or a volute pump having a horizontal discharge port for directly radiating discharge water from an outer periphery of an impeller into a deaeration chamber.
The deaerator according to claim 1, wherein the pump is directly coaxially connected to an upper end of the water guide tube, and the discharge port is directly opened into the deaeration chamber.
【請求項3】 脱気室が前記渦巻ポンプからの放水を受
けてこれを飛散させる衝合壁を有することを特徴とする
請求項1または2に記載の脱気装置。
3. The degassing device according to claim 1, wherein the degassing chamber has an abutment wall for receiving water from the volute pump and scattering the water.
【請求項4】 送水手段からの水の少なくとも一部を導
水筒へ循環させる循環系を更に備えたことを特徴とする
請求項1〜3のいずれか1項に記載の脱気装置。
4. The deaerator according to claim 1, further comprising a circulation system for circulating at least a part of the water from the water supply means to the water pipe.
JP31919897A 1997-11-06 1997-11-06 Deaerator Expired - Fee Related JP3961649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31919897A JP3961649B2 (en) 1997-11-06 1997-11-06 Deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31919897A JP3961649B2 (en) 1997-11-06 1997-11-06 Deaerator

Publications (2)

Publication Number Publication Date
JPH11137908A true JPH11137908A (en) 1999-05-25
JP3961649B2 JP3961649B2 (en) 2007-08-22

Family

ID=18107518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31919897A Expired - Fee Related JP3961649B2 (en) 1997-11-06 1997-11-06 Deaerator

Country Status (1)

Country Link
JP (1) JP3961649B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700872B2 (en) * 1999-07-05 2011-06-15 株式会社横田製作所 Pump device
US8491785B2 (en) * 2008-10-07 2013-07-23 Schroeder Industries, Llc Positive pressure, conditioned drying gas, gravity operated, mobile, dewatering system for hydraulic, lubricating and petroleum based fluids
CN106310725A (en) * 2016-09-29 2017-01-11 重庆中电大宇卫星应用技术研究所 Decompression and stirring ultrasonic degassing device
CN110367428A (en) * 2019-08-26 2019-10-25 西南大学 The synchronous degassing nitrogen charging device of sonic vacuum and its orange juice processing method and canning line

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700872B2 (en) * 1999-07-05 2011-06-15 株式会社横田製作所 Pump device
US8491785B2 (en) * 2008-10-07 2013-07-23 Schroeder Industries, Llc Positive pressure, conditioned drying gas, gravity operated, mobile, dewatering system for hydraulic, lubricating and petroleum based fluids
US9782693B2 (en) 2008-10-07 2017-10-10 Schroeder Industries, Llc Method of dewatering hydraulic, lubricating and petroleum based fluids using a positive pressure drying gas in a gravity operated, mobile, dewatering system
CN106310725A (en) * 2016-09-29 2017-01-11 重庆中电大宇卫星应用技术研究所 Decompression and stirring ultrasonic degassing device
CN110367428A (en) * 2019-08-26 2019-10-25 西南大学 The synchronous degassing nitrogen charging device of sonic vacuum and its orange juice processing method and canning line
CN110367428B (en) * 2019-08-26 2024-01-26 西南大学 Ultrasonic vacuum synchronous degassing and nitrogen charging device, orange juice processing method and filling line

Also Published As

Publication number Publication date
JP3961649B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
JP6564092B2 (en) Gas-liquid dissolution tank and fine bubble generator
KR100843970B1 (en) Apparatus of generating microbubble
US6787036B2 (en) Method and apparatus for aerating wastewater
JP7165447B2 (en) Gas injection system for optimizing nanobubble formation in disinfectant solutions
JPWO2010107077A1 (en) Microbubble generator, activated sludge aeration system, and ballast water sterilization system
KR100927673B1 (en) Dissolved air injection type flotation tank
US20040217068A1 (en) Method and system for treating water
RU2305073C9 (en) Installation for purification and decontamination of the water
JP3464626B2 (en) Degassing sterilizer
JP3961649B2 (en) Deaerator
JP5250758B2 (en) Miscellaneous wastewater treatment equipment, miscellaneous wastewater treatment system and miscellaneous wastewater treatment method using a cavitation effect.
RU2304561C2 (en) Installation for purification and decontamination of the water
US5314622A (en) Dual purpose oxygenator
JP4313492B2 (en) Deaerator
JP3354888B2 (en) Gas dissolution equipment
JP4215548B2 (en) Oil / water separator
JP2009208057A (en) Apparatus for treating miscellaneous waste water by using cavitation effect and system and method for treating miscellaneous waste water by using the same
CN114644389A (en) Device for degrading phenol sewage by combining composite laser cavitation and activated carbon
JPS5832588B2 (en) Equipment for chemical defoaming in fermenters
KR102008646B1 (en) Width-of-air equipment for sewage treatment plants
JP2003334432A (en) Gas dissolving device and water treatment device and water treatment apparatus having these
JP5689453B2 (en) Water purification equipment
JPH11650A (en) Water treatment apparatus
JP2000301143A (en) Water quality improving device and water quality improvement system
WO2012098466A1 (en) Bubble generating system and method for wastewater treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040813

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Effective date: 20070329

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070424

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20070517

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100525

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100525

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees