JPH11135831A - Gallium nitride group compound semiconductor wafer and compound semiconductor element - Google Patents

Gallium nitride group compound semiconductor wafer and compound semiconductor element

Info

Publication number
JPH11135831A
JPH11135831A JP9300099A JP30009997A JPH11135831A JP H11135831 A JPH11135831 A JP H11135831A JP 9300099 A JP9300099 A JP 9300099A JP 30009997 A JP30009997 A JP 30009997A JP H11135831 A JPH11135831 A JP H11135831A
Authority
JP
Japan
Prior art keywords
gallium nitride
compound semiconductor
based compound
type
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9300099A
Other languages
Japanese (ja)
Inventor
Takashi Furuya
貴士 古屋
Masatomo Shibata
真佐知 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP9300099A priority Critical patent/JPH11135831A/en
Publication of JPH11135831A publication Critical patent/JPH11135831A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a wafer for which a gallium nitride group compound semiconductor crystal of high carrier density is grown on the surface. SOLUTION: On the surface of this gallium nitride group compound semiconductor wafer W1 grown through an MOCVD method with good uniformity, a (p)-type GaN layer 8 is grown by a liquid phase growth method with easily producing high carriers. In particular, it is effective for obtaining the gallium nitride group compound semiconductor wafer of a structure provided with a high carrier (p)-type layer on the surface which is difficult to constitute by the MOCVD method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化ガリウム系化
合物半導体ウェハ及び窒化ガリウム系化合物半導体素子
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gallium nitride compound semiconductor wafer and a gallium nitride compound semiconductor device.

【0002】[0002]

【従来の技術】窒化ガリウム系化合物半導体結晶を成長
させる方法として、一般に有機金属気相成長法(MOC
VD法)が知られている。この結晶成長方法は、反応炉
内で加熱状態にある結晶基板上に、トリメチルガリウム
(TMG)、卜リメチルアルミニウム(TMA)、トリ
メチルインジウム(TMI)等の III族原料とアンモニ
ア(NH3 )等のV族原料を水素ガス等のキャリアガス
で送り込み、これらの原料ガスを結晶基板上で熱分解さ
せ、結晶を成長させる方法である。MOCVD法は、成
長膜厚の制御性がよく、また、伝導型の異なる結晶や混
晶結晶の積層成長が容易に行えるという利点があり、現
在、この方法を用いて窒化ガリウム系化合物半導体結晶
の積層成長が行われ、発光素子などが作製されている。
2. Description of the Related Art As a method for growing a gallium nitride-based compound semiconductor crystal, a metal organic chemical vapor deposition (MOC) method is generally used.
VD method) is known. This crystal growth method uses a group III raw material such as trimethyl gallium (TMG), trimethyl aluminum (TMA), trimethyl indium (TMI) and ammonia (NH 3 ) on a crystal substrate heated in a reaction furnace. Is fed by a carrier gas such as hydrogen gas, and these source gases are thermally decomposed on a crystal substrate to grow crystals. The MOCVD method has the advantages of good controllability of the grown film thickness, and easy growth of crystals of different conductivity types or mixed crystal. The MOCVD method is currently used to grow gallium nitride based compound semiconductor crystals. Stack growth is performed, and a light emitting element and the like are manufactured.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
MOCVD法で窒化ガリウム系化合物半導体結晶の成長
を行うと、p型結晶の成長に問題が生じている。MOC
VD法でp型結晶を成長させる場合、MgやZn等のp
型不純物をドープしてp型化を図っているが、実際には
p型結晶にはならず、非常にキャリヤ濃度が低い絶縁体
に近いi型結晶になってしまう。MOCVD法で成長を
行うと、結晶中に不純物として水素が入るのが避けられ
ず、これが原因となってp型結晶の高キャリヤ化が難し
いといった問題を生じている。従って、MOCVD法で
p型結晶を作製する場合、成長した結晶をp型化するた
めに、成長後に熱アニール処理や電子線照射処理といっ
た工程を行わなければならない。ところが、これらの工
程を行っても、得られたp型結晶のキャリア濃度はそれ
ほど高くならないため、これに電極を形成する発光素子
などのデバイス作製時に、電極と半導体層間の接触抵抗
が大きい、p層で電流分散し辛いといった問題が生じ、
発光特性に悪影響を及ぼす。
However, when a gallium nitride-based compound semiconductor crystal is grown by a conventional MOCVD method, a problem arises in the growth of a p-type crystal. MOC
When growing a p-type crystal by the VD method, p-type crystals such as Mg and Zn are used.
Although a p-type is achieved by doping with a type impurity, it does not actually become a p-type crystal but an i-type crystal having a very low carrier concentration and close to an insulator. When grown by MOCVD, it is inevitable that hydrogen enters the crystal as an impurity, and this causes a problem that it is difficult to increase the carrier of the p-type crystal. Therefore, when a p-type crystal is manufactured by the MOCVD method, a step such as a thermal annealing treatment or an electron beam irradiation treatment must be performed after the growth in order to make the grown crystal p-type. However, even if these steps are performed, the carrier concentration of the obtained p-type crystal does not increase so much. Therefore, when a device such as a light-emitting element for forming an electrode is formed, the contact resistance between the electrode and the semiconductor layer is large. Problems such as difficulty in dispersing current in the layer
It adversely affects the light emission characteristics.

【0004】そこで、本発明は前述のような従来技術の
問題点を解消し、表面にキャリア濃度の高い窒化ガリウ
ム系化合物半導体結晶を成長したウェハおよびこれを利
用した窒化ガリウム系化合物半導体素子を提供すること
にある。
Accordingly, the present invention solves the above-mentioned problems of the prior art, and provides a wafer on which a gallium nitride-based compound semiconductor crystal having a high carrier concentration is grown on the surface and a gallium nitride-based compound semiconductor device using the same. Is to do.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明の窒化ガリウム系化合物半導体ウェハは、次
のように構成される。
To achieve the above object, a gallium nitride-based compound semiconductor wafer of the present invention is configured as follows.

【0006】(1)少なくともn型およびp型の不純物
をドープした一般式Alx Gay Inl-x-y N(但し、
0≦x≦1、0<y≦1、x+y≦1)で表せる窒化ガ
リウム系化合物半導体を積層成長して成る窒化ガリウム
系化合物半導体ウェハの表面に、さらに、一般式Ala
Gab Inl-a-b N(0≦a≦1、0<b≦1、a+b
≦1)で表される窒化ガリウム系化合物半導体層を、液
相成長法により積層した構造を有する(請求項1)。
[0006] (1) at least n-type and p-type formula impurity was doped Al x Ga y In lxy N (where,
To 0 ≦ x ≦ 1,0 <y ≦ 1, x + y ≦ 1) with expressed surface of the gallium nitride-based compound semiconductor wafer formed by laminating growing a gallium nitride-based compound semiconductor, and further, the general formula Al a
Ga b In lab N (0 ≦ a ≦ 1, 0 <b ≦ 1, a + b
≦ 1) has a structure in which gallium nitride-based compound semiconductor layers represented by ≦ 1) are stacked by a liquid phase growth method.

【0007】(2)少なくともn型およびp型の不純物
をドープした一般式Alx Gay Inl-x-y N(但し、
0≦x≦1、0<y≦1、x+y≦1)で表せる窒化ガ
リウム系化合物半導体を積層成長して成る窒化ガリウム
系化合物半導体ウェハの表面に、さらに、該ウェハの表
面層と同じ導電型を有し、一般式Ala Gab In
l-a-b N(0≦a≦1、0<b≦1、a+b≦1)で表
される窒化ガリウム系化合物半導体層を、液相成長法に
より積層した構造を有する。
[0007] (2) at least n-type and p-type formula impurity was doped Al x Ga y In lxy N (where,
0 ≦ x ≦ 1, 0 <y ≦ 1, x + y ≦ 1) On the surface of a gallium nitride-based compound semiconductor wafer formed by stacking gallium nitride-based compound semiconductors, and further, the same conductivity type as the surface layer of the wafer. Having the general formula Al a Ga b In
lab N has a structure in which gallium nitride-based compound semiconductor layers represented by N (0 ≦ a ≦ 1, 0 <b ≦ 1, a + b ≦ 1) are stacked by a liquid phase growth method.

【0008】(3)少なくともn型およびp型の不純物
をドープした一般式Alx Gay Inl-x-y N(但し、
0≦x≦1、0<y≦1、x+y≦1)で表せる窒化ガ
リウム系化合物半導体を積層成長して成る窒化ガリウム
系化合物半導体ウェハの表面に、さらに、該ウェハの表
面層にドープされている不純物と同じ不純物をドープし
た、一般式Ala Gab Inl-a-b N(0≦a≦1、0
<b≦1、a+b≦1)で表される窒化ガリウム系化合
物半導体層を、液相成長法により積層した構造を有す
る。
[0008] (3) at least n-type and p-type formula impurity was doped Al x Ga y In lxy N (where,
0 ≦ x ≦ 1, 0 <y ≦ 1, x + y ≦ 1) The surface of a gallium nitride-based compound semiconductor wafer formed by stacking gallium nitride-based compound semiconductors, and further doped into the surface layer of the wafer the same impurity as are impurity doped, the general formula Al a Ga b In lab N ( 0 ≦ a ≦ 1,0
It has a structure in which gallium nitride-based compound semiconductor layers represented by <b ≦ 1, a + b ≦ 1) are stacked by a liquid phase growth method.

【0009】(4)少なくともn型およびp型の不純物
をドープした一般式Alx Gay Inl-x-y N(但し、
0≦x≦1、0<y≦1、x+y≦1)で表せる窒化ガ
リウム系化合物半導体を積層成長して成り、かつその最
表面層がp型の導電型を有する窒化ガリウム系化合物半
導体ウェハの表面に、さらに、p型の導電型を有する、
一般式Ala Gab Inl-a-b N(0≦a≦1、0<b
≦1、a+b≦1)で表される窒化ガリウム系化合物半
導体層を、液相成長法により積層した構造を有する。
[0009] (4) at least n-type and p-type formula impurity was doped Al x Ga y In lxy N (where,
A gallium nitride-based compound semiconductor wafer formed by laminating gallium nitride-based compound semiconductors represented by 0 ≦ x ≦ 1, 0 <y ≦ 1, x + y ≦ 1), and the outermost surface layer of which has a p-type conductivity. On the surface, further having a p-type conductivity type,
General formula Al a Ga b In lab N (0 ≦ a ≦ 1, 0 <b
≦ 1, a + b ≦ 1) has a structure in which gallium nitride-based compound semiconductor layers are stacked by a liquid phase growth method.

【0010】(5)少なくともn型およびp型の不純物
をドープした一般式Alx Gay Inl-x-y N(但し、
0≦x≦1、0<y≦1、x+y≦1)で表せる窒化ガ
リウム系化合物半導体を積層成長して成り、かつその最
表面層にp型の不純物をドープして成る窒化ガリウム系
化合物半導体ウェハに、熱処理または電子線照射処理を
施して、ウェハ最表面の導電型をp型化した後、その表
面に、さらにp型の導電型を有する、一般式Ala Ga
b Inl-a-b N(0≦a≦1、0<b≦1、a+b≦
1)で表される窒化ガリウム系化合物半導体層を、液相
成長法により積層した構造を有する。
[0010] (5) at least n-type and p-type formula impurity was doped Al x Ga y In lxy N (where,
A gallium nitride-based compound semiconductor formed by stacking and growing a gallium nitride-based compound semiconductor represented by 0 ≦ x ≦ 1, 0 <y ≦ 1, x + y ≦ 1), and doping a p-type impurity in the outermost surface layer After subjecting the wafer to a heat treatment or an electron beam irradiation treatment to convert the conductivity type of the outermost surface of the wafer to p-type, the surface further has a p-type conductivity type, a general formula Al a Ga
b In lab N (0 ≦ a ≦ 1, 0 <b ≦ 1, a + b ≦
It has a structure in which gallium nitride-based compound semiconductor layers represented by 1) are stacked by a liquid phase growth method.

【0011】(6)請求項4または5記載の窒化ガリウ
ム系化合物半導体ウェハにおいて、上記p型の導電型を
有する窒化ガリウム系化合物半導体層が、不純物として
少なくともMgをドープした層である。
(6) In the gallium nitride compound semiconductor wafer according to the fourth or fifth aspect, the gallium nitride compound semiconductor layer having the p-type conductivity is a layer doped with at least Mg as an impurity.

【0012】(7)請求項1〜5記載の窒化ガリウム系
化合物半導体ウェハにおいて、ウェハ最表面に液相成長
法で成長した窒化ガリウム系化合物半導体層以外の層
は、有機金属気相成長法(MOCVD法)で成長されて
いる。
(7) In the gallium nitride-based compound semiconductor wafer according to any one of claims 1 to 5, the layers other than the gallium nitride-based compound semiconductor layer grown on the outermost surface of the wafer by a liquid phase growth method are formed by a metal organic chemical vapor deposition method. MOCVD).

【0013】(8)有機金属気相成長法にて成長され
た、少なくともn型およびp型の不純物をドープした一
般式Alx Gay Inl-x-y N(但し、0≦x≦1、0
<y≦1、x+y≦1)で表せる窒化ガリウム系化合物
半導体を積層成長して成り、かつその最表面層がMgを
ドープしたGaN層から成る窒化ガリウム系化合物半導
体ウェハに、熱処理または電子線照射処理を施して、ウ
ェハ最表面の導電型をp型化した後、その表面に、さら
にMgをドープしたGaN層を液相成長法により積層し
た構造を有する。
[0013] (8) grown by metal organic chemical vapor deposition, at least n-type and p-type formula impurity was doped Al x Ga y In lxy N (where, 0 ≦ x ≦ 1, 0
A heat treatment or electron beam irradiation is performed on a gallium nitride-based compound semiconductor wafer formed by laminating a gallium nitride-based compound semiconductor represented by <y ≦ 1, x + y ≦ 1), and the outermost surface layer of which is made of a GaN layer doped with Mg. After the treatment, the conductivity type of the outermost surface of the wafer is changed to p-type, and a GaN layer doped with Mg is further laminated on the surface by a liquid phase growth method.

【0014】(9)請求項1〜8のいずれかに記載の窒
化ガリウム系化合物半導体ウェハにおいて、ウェハ最表
面に液相成長法で成長した窒化ガリウム系化合物半導体
が、多結晶である。
(9) In the gallium nitride compound semiconductor wafer according to any one of claims 1 to 8, the gallium nitride compound semiconductor grown on the outermost surface of the wafer by a liquid phase growth method is polycrystalline.

【0015】(10)請求項1〜9のいずれかに記載の
窒化ガリウム系化合物半導体ウェハにおいて、上記窒化
ガリウム系化合物半導体層は、絶縁性の基板上に成長さ
れている。
(10) In the gallium nitride-based compound semiconductor wafer according to any one of claims 1 to 9, the gallium nitride-based compound semiconductor layer is grown on an insulating substrate.

【0016】(11)請求項1〜10のいずれかに記載
の窒化ガリウム系化合物半導体ウェハの、少なくとも最
表面に接して電極を形成し、作製された窒化ガリウム系
化合物半導体素子とする。
(11) An electrode is formed in contact with at least the outermost surface of the gallium nitride-based compound semiconductor wafer according to any one of the first to tenth aspects to provide a manufactured gallium nitride-based compound semiconductor device.

【0017】本発明の要点は、均一性の良いMOCVD
法で成長した窒化ガリウム系化合物半導体結晶の表面
に、高キャリア化が容易な液相成長法で窒化ガリウム系
化合物半導体結晶を成長させたことにある。特に、MO
CVD法では困難な、高キャリアp型層を表面に有する
構造の窒化ガリウム系化合物半導体結晶に有効である。
The gist of the present invention is that MOCVD with good uniformity is achieved.
The gallium nitride-based compound semiconductor crystal is grown on the surface of the gallium nitride-based compound semiconductor crystal grown by the method using a liquid phase growth method that can easily increase the number of carriers. In particular, MO
This is effective for a gallium nitride-based compound semiconductor crystal having a structure having a high carrier p-type layer on the surface, which is difficult by the CVD method.

【0018】液相成長法は、MOCVD法とは異なり、
原料に水素化物を用いずに窒化ガリウム系化合物半導体
結晶を成長できるため、成長した結晶中に水素が取り込
まれることがない。よって、p型結晶の高キャリア化の
妨げとなっていた水素の混入が無くなるため、成長した
後に熱アニール処理や電子線照射を行わなくてもp型結
晶を得ることが可能となる。さらに、キャリア濃度がM
OCVD法で成長したものよりも高くなるため、この層
に電極を形成する発光素子などのデバイス作製時に、電
極と半導体層間の接触抵抗が小さい、p層で電流分散し
やすいといったメリットがある。
The liquid phase growth method is different from the MOCVD method.
Since a gallium nitride-based compound semiconductor crystal can be grown without using a hydride as a raw material, hydrogen is not taken into the grown crystal. Accordingly, since the incorporation of hydrogen, which has hindered the increase in the carrier of the p-type crystal, is eliminated, the p-type crystal can be obtained without performing thermal annealing or electron beam irradiation after growth. Further, when the carrier concentration is M
Since it is higher than that grown by the OCVD method, there are advantages in that when a device such as a light-emitting element in which an electrode is formed in this layer is manufactured, the contact resistance between the electrode and the semiconductor layer is small and the current is easily dispersed in the p-layer.

【0019】表面に液相法で高キャリア層を成長させる
目的は、窒化ガリウム系化合物半導体結晶と金属電極と
の接触抵抗を下げ、かつ該表面層中での電流分散を効率
よく行わせることにあるので、必ずしも単結晶膜である
必要は無い。
The purpose of growing the high carrier layer on the surface by the liquid phase method is to reduce the contact resistance between the gallium nitride-based compound semiconductor crystal and the metal electrode and to efficiently disperse the current in the surface layer. Therefore, it is not always necessary to use a single crystal film.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態を、図
示の実施例を中心として説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below with reference to the illustrated embodiments.

【0021】(従来例)従来技術である有機金属気相成
長法(MOCVD法)を用いて、サファイア基板1上
に、図2に示すようなダブルヘテロ(DH)構造の窒化
ガリウム系化合物半導体ウェハW1を積層成長した。こ
のウェハW1には、サファイアc面が基板として用いら
れ、そのサファイア基板1上に、600℃でAlNバッ
ファ層2を400Å成長し、次に1000℃でSiドー
プのn型GaN層3を4μm、Siドープのn型Al
0.3 Ga0.7 N層4を0.2μm成長し、さらに800
℃でZnドープのIn0.1 Ga0.9 N層5を200Å成
長した後、1000℃でMgドープのAl0.3 Ga0.7
N層6を0.2μm、MgドープのGaN層7を0.5
μm成長させたものである。さらに、このウェハには、
窒素雰囲気中で400℃、30分間の熱アニール処理を
施し、Mgドープ層のp型化を行った。
(Conventional Example) A gallium nitride based compound semiconductor wafer having a double hetero (DH) structure as shown in FIG. 2 is formed on a sapphire substrate 1 by using a conventional technique of metal organic chemical vapor deposition (MOCVD). W1 was grown in layers. On this wafer W1, a sapphire c-plane is used as a substrate. On the sapphire substrate 1, an AlN buffer layer 2 is grown at 400 ° C. at 600 ° C., and at 1000 ° C., a Si-doped n-type GaN layer 3 is formed at 4 μm. Si-doped n-type Al
A 0.3 Ga 0.7 N layer 4 is grown to a thickness of 0.2 μm, and
After growing a Zn-doped In 0.1 Ga 0.9 N layer 5 at 200 ° C. at 200 ° C., at 1000 ° C., Mg-doped Al 0.3 Ga 0.7
The N layer 6 is 0.2 μm, and the Mg-doped GaN layer 7 is 0.5 μm.
It was grown by μm. In addition, this wafer has
A thermal annealing process was performed at 400 ° C. for 30 minutes in a nitrogen atmosphere to convert the Mg-doped layer into a p-type.

【0022】最表面のp型GaN層7のキャリア濃度
は、p型GaN層をサファイア基板上に一層だけ成長し
て、パウ法で測定した結果から、5×1017cm-3である
と推定される。
The carrier concentration of the p-type GaN layer 7 of the outermost surface, and growing a p-type GaN layer on only one layer on a sapphire substrate, estimated from the results measured by Pau method is 5 × 10 17 cm -3 Is done.

【0023】この基板の表面層に、ニッケル(Ni)5
00Åと金(Au)1μmの積層構造から成るドット電
極を蒸着し、500℃で5分間熱処理を施して、電極間
の抵抗を測定し、最表面層と電極との接触抵抗を求めた
ところ、1×10-4Ω・cm2であった。
A nickel (Ni) 5 is formed on the surface layer of the substrate.
When a dot electrode having a laminated structure of 00 ° and gold (Au) 1 μm was deposited and heat-treated at 500 ° C. for 5 minutes, the resistance between the electrodes was measured, and the contact resistance between the outermost surface layer and the electrode was determined. It was 1 × 10 −4 Ω · cm 2 .

【0024】次に、オーミック電極を付けるため、本ウ
ェハW1の表面の一部を反応性イオンエッチング(RI
E)法でエッチングして除去し、n型GaN層3を露出
させた後、図4の如く、n型GaN層3の表面にはチタ
ン(Ti)とアルミニウム(Al)との積層構造から成
るn型電極10を、p型層の表面の一部にはニッケル
(Ni)と金(Au)の積層構造から成るp型電極9を
付けて、LEDチップ(窒化ガリウム系化合物半導体素
子)12を作製した。
Next, in order to attach an ohmic electrode, a part of the surface of the wafer W1 is subjected to reactive ion etching (RI).
After etching away by the method E) to expose the n-type GaN layer 3, as shown in FIG. 4, the surface of the n-type GaN layer 3 has a laminated structure of titanium (Ti) and aluminum (Al). An n-type electrode 10 and a p-type electrode 9 having a laminated structure of nickel (Ni) and gold (Au) are attached to a part of the surface of the p-type layer, and an LED chip (gallium nitride-based compound semiconductor element) 12 is formed. Produced.

【0025】このLEDチップ12に通電し、発光を観
察したところ、発光しているのはp型電極9の直下と、
その周辺部だけであった。このLEDを積分球に入れ、
発光出力を測定したところ、20mA通電時で0.02
mWであった。
When the LED chip 12 was energized and the light emission was observed, the light was emitted immediately below the p-type electrode 9.
It was only around it. Put this LED in the integrating sphere,
The emission output was measured to be 0.02 at 20 mA
mW.

【0026】(実施例1)本発明の第1の実施例につい
て述べる。図1に、本実施例で製作したウェハW2の断
面構造を示す。
(Embodiment 1) A first embodiment of the present invention will be described. FIG. 1 shows a cross-sectional structure of a wafer W2 manufactured in this embodiment.

【0027】このウェハW2は、そのサファイア基板1
からp型GaN層7までの部分を、上述の従来例とまっ
たく同じMOCVD法で作製し、これにより作製された
ウェハW1の表面に、さらにMgドープのGaN層8を
スライドボート式の液相成長炉で1μm成長した構造と
なっている。
The sapphire substrate 1
From the p-type GaN layer 7 to the p-type GaN layer 7 by the same MOCVD method as in the above-described conventional example, and a Mg-doped GaN layer 8 is further formed on the surface of the manufactured wafer W1 by a slide boat type liquid phase growth. The structure is 1 μm grown in a furnace.

【0028】まず、ウェハW1の部分、つまり図2に示
したMOCVD法成長ウェハを作製し、熱処理を行っ
た。
First, a portion of the wafer W1, that is, a wafer grown by the MOCVD method shown in FIG. 2 was prepared and heat-treated.

【0029】詳述するに、従来技術であるMOCVD法
を用いて、まずサファイア基板1上に図2に示したのと
同じダブルヘテロ(DH)構造の窒化ガリウム系化合物
半導体ウェハW1を積層成長した。本ウェハW1は、サ
ファイアc面を基板として用い、そのサファイア基板1
上に、600℃でAlNバッファ層2を400Å成長
し、次に1000℃でSiドープのn型GaN層3を4
μm、Siドープのn型Al0.3 Ga0.7 N層4を0.
2μm成長し、さらに800℃でZnドープのIn0.1
Ga0.9 N層5を200Å成長した後、1000℃でM
gドープのAl0.3 Ga0.7 N層6を0.2μm、Mg
ドープのGaN層7を0.5μm成長させたものであ
る。さらに、このウェハには、窒素雰囲気中で400
℃、30分間の熱アニール処理を施し、Mgドープ層の
p型化を行った。
More specifically, a gallium nitride-based compound semiconductor wafer W1 having the same double hetero (DH) structure as shown in FIG. 2 was first grown on a sapphire substrate 1 by using a conventional MOCVD method. . This wafer W1 uses the sapphire c-plane as a substrate, and the sapphire substrate 1
An AlN buffer layer 2 is grown at 400 ° C. at 600 ° C., and a Si-doped n-type GaN layer 3 is
The thickness of the n-type Al 0.3 Ga 0.7 N layer 4 doped with Si
Grown at 2 μm, and further doped with Zn-doped In 0.1 at 800 ° C.
After growing a Ga 0.9 N layer 5 at 200 °, M
The g-doped Al 0.3 Ga 0.7 N layer 6 is 0.2 μm
The doped GaN layer 7 is grown by 0.5 μm. Further, the wafer is placed in a nitrogen atmosphere at 400
A thermal annealing treatment was performed at 30 ° C. for 30 minutes to make the Mg-doped layer p-type.

【0030】上記熱処理を行った後、そのウェハW1の
表面に、さらにMgドープのGaN層8をスライドボー
ト式の液相成長炉で1μm成長した。このMgドープの
GaN層8を液相成長法で成長させた後のウェハW2の
断面構造を図1に示す。
After the heat treatment, an Mg-doped GaN layer 8 was further grown on the surface of the wafer W1 by 1 μm in a slide boat type liquid phase growth furnace. FIG. 1 shows a cross-sectional structure of the wafer W2 after the Mg-doped GaN layer 8 is grown by the liquid phase growth method.

【0031】この液相成長法での成長手順は以下の通り
である。
The growth procedure in this liquid phase growth method is as follows.

【0032】先ず、図1に示した構造をMOCVD法で
成長し、熱処理を施したウェハW1をスライドボート式
の液相成長炉に設置した。予めスライドボートの溶液だ
めには、GaN粉末1gとp型不純物となるMg5mgを
添加したGaメルト50gをチャージしておいた。
First, the structure shown in FIG. 1 was grown by MOCVD, and the heat-treated wafer W1 was placed in a slide boat type liquid phase growth furnace. The solution in the slide boat was charged in advance with 50 g of Ga melt to which 1 g of GaN powder and 5 mg of Mg serving as a p-type impurity were added.

【0033】図5に成長の濃度プログラムを示す。先
ず、雰囲気ガスとして窒素を毎分2L/min で流し炉内
の窒素パージを行った。次に窒素を毎分1L/min で流
しながら炉を1000℃まで加熱し、加熱開始時から1
80分経過した時点で、0.5℃/min の割合で降温を
開始した。過冷却を5℃つけた時点でメルトをウェハに
接触させ、950℃まで降温した。950℃になった時
点でウェハとメルトの接触を断ち、その後は室温近くま
で冷却してウェハを取り出した。
FIG. 5 shows a growth concentration program. First, nitrogen as an atmosphere gas was flowed at 2 L / min / min to purge the inside of the furnace with nitrogen. Next, the furnace was heated to 1000 ° C. while flowing nitrogen at a rate of 1 L / min.
At the time when 80 minutes had elapsed, the temperature was lowered at a rate of 0.5 ° C./min. When the supercooling was performed at 5 ° C., the melt was brought into contact with the wafer, and the temperature was lowered to 950 ° C. When the temperature reached 950 ° C., the contact between the wafer and the melt was cut off. Thereafter, the wafer was cooled to near room temperature and the wafer was taken out.

【0034】液相成長法で作製したMgドープのGaN
層8のキャリア濃度は、サファイア基板上にMgドープ
のGaN層を1層だけ成長し、電気特性をパウ法にて測
定した結果から、4×1018cm-3とわかっており、アズ
グロウンの状態でも高キャリア濃度のp型を示す。
Mg-doped GaN prepared by liquid phase epitaxy
The carrier concentration of the layer 8 was found to be 4 × 10 18 cm −3 from the result of growing only one Mg-doped GaN layer on a sapphire substrate and measuring the electrical characteristics by the Pau method. However, it shows a p-type with a high carrier concentration.

【0035】上述の方法で作製したエピウェハW2に関
して、従来例で述べたものと同じ評価を行った。即ち、
基板の表面層に、ニッケル(Ni)500Åと金(A
u)1μmの積層構造にドット電極を蒸着し、500℃
で5分間熱処理を施して、電極間の抵抗を測定し、最表
面層と電極との接触抵抗を求めた。その結果、液相成長
したMgドープのGaN層8と電極との接触抵抗は、2
×10-5Ω・cm2 であり、従来例の1/5であった。
With respect to the epi-wafer W2 manufactured by the above-described method, the same evaluation as that described in the conventional example was performed. That is,
On the surface layer of the substrate, nickel (Ni) 500 ° and gold (A)
u) A dot electrode is deposited on a 1 μm laminated structure,
For 5 minutes, the resistance between the electrodes was measured, and the contact resistance between the outermost surface layer and the electrodes was determined. As a result, the contact resistance between the electrode and the Mg-doped GaN layer 8 grown in the liquid phase becomes 2
× 10 −5 Ω · cm 2 , which was 5 of the conventional example.

【0036】次に、本ウェハW2の表面の一部を反応性
イオンエッチング(RIE)法でエッチングして除去
し、n型GaN層3を露出させた後、図3に示すよう
に、n型GaN層3の表面にはチタン(Ti)とアルミ
ニウム(Al)との積層構造から成るn型電極10を、
またp型GaN層8の表面の一部にはニッケル(Ni)
と金(Au)の積層構造から成るp型電極9を付けて、
LEDチップ(発光ダイオード)11を作製した。
Next, a part of the surface of the wafer W2 is removed by etching by reactive ion etching (RIE) to expose the n-type GaN layer 3, and then, as shown in FIG. An n-type electrode 10 having a laminated structure of titanium (Ti) and aluminum (Al) is provided on the surface of the GaN layer 3.
Nickel (Ni) is provided on a part of the surface of the p-type GaN layer 8.
And a p-type electrode 9 having a layered structure of gold (Au),
An LED chip (light emitting diode) 11 was produced.

【0037】このLEDチップ11に通電し、発光を観
察したところ、InGaN層(活性層)5の全面で発光
していることが観察され、その発光出力は20mA通電
時で2mWと、従来例の100倍の出力であった。
When the LED chip 11 was energized and light emission was observed, it was observed that light was emitted over the entire surface of the InGaN layer (active layer) 5, and the light emission output was 2 mW when a current of 20 mA was applied, which is the conventional output. The output was 100 times.

【0038】(実施例2)図2に示したダブルヘテロ構
造の窒化物半導体ウェハW1を、従来例と同じようにM
OCVD法で積層成長し、熱処理を行った。
(Example 2) A nitride semiconductor wafer W1 having a double hetero structure shown in FIG.
Lamination growth was performed by the OCVD method, and heat treatment was performed.

【0039】次にこのウェハW1を、図6に示すような
液相成長炉に設置し、表面に液相成長法でMgドープの
p型GaN層8を成長した。以下に液相成長の手順を示
す。
Next, the wafer W1 was set in a liquid phase growth furnace as shown in FIG. 6, and a Mg-doped p-type GaN layer 8 was grown on the surface by a liquid phase growth method. The procedure of liquid phase growth is described below.

【0040】先ず石英ルッボ21内にGaN粉末5g
と、p型不純物となるMg0.2gを添加したGaメル
ト22を300gチャージした。次に、石英ルツボ21
内を窒素ガス0.5L/min で十分リパージし、その
後、窒素ガス導入配管25より窒素を0.2L/min 流
して排気配管26で排気しながら、加熱ヒータ24で、
Gaメルト22を1200℃まで加熱した。1200℃
で60min 保持したあと、−100℃/hrの割合で90
0℃まで降温した。その後、加熱ヒータ24による加熱
を中止して室温まで冷却し、Gaメル卜22中からウェ
ハW1を取り出した。
First, 5 g of GaN powder was placed in quartz crucible 21.
And 300 g of Ga melt 22 to which 0.2 g of Mg serving as a p-type impurity was added. Next, the quartz crucible 21
The inside is sufficiently purged with nitrogen gas at 0.5 L / min, and then nitrogen is introduced at a flow rate of 0.2 L / min from a nitrogen gas introduction pipe 25 and exhausted through an exhaust pipe 26.
Ga melt 22 was heated to 1200 ° C. 1200 ° C
After holding for 60 minutes at -100 ° C / hr, 90
The temperature was lowered to 0 ° C. Thereafter, the heating by the heater 24 was stopped and the temperature was cooled to room temperature, and the wafer W1 was taken out from the Ga melt 22.

【0041】取り出したウェハW1の表面は熱処理など
を行わずともp型の導電型を示した。さらに、取り出し
たウェハを用いて、上記実施例1と同様の手法でLED
チップ11を作製し、その発光出力を測定した。その結
果、このLEDチップ11は、従来例1で示した発光ダ
イオードに比べ約20倍高い出力が得られた。
The surface of the taken-out wafer W1 showed a p-type conductivity without heat treatment or the like. Further, using the taken-out wafer, an LED is formed in the same manner as in the first embodiment.
The chip 11 was manufactured, and the light emission output was measured. As a result, the LED chip 11 obtained an output about 20 times higher than that of the light emitting diode shown in Conventional Example 1.

【0042】[0042]

【発明の効果】以上説明したように本発明によれば、次
のような優れた効果が得られる。
As described above, according to the present invention, the following excellent effects can be obtained.

【0043】請求項1〜10に記載の発明によれば、均
一性の良いMOCVD法で成長した窒化ガリウム系化合
物半導体結晶の表面に、高キャリア化が容易な液相成長
法で、窒化ガリウム系化合物半導体結晶を成長させた構
造を有するので、表面に高キャリア濃度のp型の導電性
を有する窒化ガリウム系化合物半導体結晶を、容易かつ
再現良く得ることが可能である。その結果、かかる結晶
を用いて素子を作製した場合、p型層と電極との接触抵
抗が大幅に低減し、さらにp型層中での電流分散が十分
に行われるようになる。
According to the first to tenth aspects of the present invention, the gallium nitride-based compound semiconductor crystal grown by MOCVD with good uniformity is formed on the surface of the gallium nitride-based compound semiconductor crystal by a liquid phase growth method that can easily increase the carrier. Since it has a structure in which a compound semiconductor crystal is grown, a gallium nitride-based compound semiconductor crystal having p-type conductivity with a high carrier concentration on the surface can be obtained easily and with good reproducibility. As a result, when an element is manufactured using such a crystal, the contact resistance between the p-type layer and the electrode is significantly reduced, and the current distribution in the p-type layer is sufficiently performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例にかかる窒化ガリウム系化合
物半導体ウェハの断面構造図である。
FIG. 1 is a sectional structural view of a gallium nitride based compound semiconductor wafer according to one embodiment of the present invention.

【図2】本発明の前提となる従来技術にかかるMOCV
D法で成長した窒化ガリウム系化合物半導体ウェハの断
面構造図である。
FIG. 2 shows an MOCV according to the prior art on which the present invention is based.
1 is a cross-sectional structural view of a gallium nitride-based compound semiconductor wafer grown by a D method.

【図3】本発明の一実施例にかかる窒化ガリウム系化合
物半導体素子の断面構造図である。
FIG. 3 is a sectional structural view of a gallium nitride-based compound semiconductor device according to one embodiment of the present invention.

【図4】従来技術にかかるMOCVD法で成長したウェ
ハを用いた窒化ガリウム系化合物半導体素子の断面構造
図である。
FIG. 4 is a cross-sectional structural view of a gallium nitride-based compound semiconductor device using a wafer grown by MOCVD according to the prior art.

【図5】本発明の一実施例の窒化ガリウム系化合物半導
体ウェハを作製する際の、液相成長法における濃度プロ
グラムを示した図である。
FIG. 5 is a diagram showing a concentration program in a liquid phase epitaxy method for producing a gallium nitride based compound semiconductor wafer according to one embodiment of the present invention.

【図6】本発明の他の実施例の窒化ガリウム系化合物半
導体ウェハを作製する際に使用した液相成長炉の構成図
である。
FIG. 6 is a configuration diagram of a liquid phase growth furnace used for producing a gallium nitride-based compound semiconductor wafer according to another embodiment of the present invention.

【符号の説明】 1 サファイア基板 2 AlNバッファ層 3 n型GaN層 4 n型AlGaN層 5 InGaN層 6 p型AlGaN層 7 p型GaN層 8 液相成長法で成長させたp型GaN層 9 p型電極 10 n型電極 11、12 LEDチップ(発光ダイオード) 21 石英ルツボ 22 Gaメルト 23 MOCVDで成長した結晶基板 24 加熱ヒータ 25 窒素ガス導入配管 26 排気配管 W1、W2 ウェハDESCRIPTION OF SYMBOLS 1 Sapphire substrate 2 AlN buffer layer 3 n-type GaN layer 4 n-type AlGaN layer 5 InGaN layer 6 p-type AlGaN layer 7 p-type GaN layer 8 p-type GaN layer grown by liquid phase growth 9 p Type electrode 10 n-type electrode 11, 12 LED chip (light-emitting diode) 21 quartz crucible 22 Ga melt 23 crystal substrate grown by MOCVD 24 heater 25 nitrogen gas introduction pipe 26 exhaust pipe W1, W2 wafer

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】少なくともn型およびp型の不純物をドー
プした一般式Alx Gay Inl-x-y N(但し、0≦x
≦1、0<y≦1、x+y≦1)で表せる窒化ガリウム
系化合物半導体を積層成長して成る窒化ガリウム系化合
物半導体ウェハの表面に、さらに、一般式Ala Gab
Inl-a-b N(0≦a≦1、0<b≦1、a+b≦1)
で表される窒化ガリウム系化合物半導体層を、液相成長
法により積層した構造を有する窒化ガリウム系化合物半
導体ウェハ。
1. A compound of the general formula Al x doped with at least n-type and p-type impurities. Ga y In lxy N (where, 0 ≦ x
A ≦ 1,0 <y ≦ 1, x + y ≦ 1) with expressed surface of the gallium nitride-based compound semiconductor wafer formed by laminating growing a gallium nitride-based compound semiconductor, and further, the general formula Al a Ga b
In lab N (0 ≦ a ≦ 1, 0 <b ≦ 1, a + b ≦ 1)
A gallium nitride-based compound semiconductor wafer having a structure in which gallium nitride-based compound semiconductor layers represented by the following formulas are laminated by a liquid phase growth method.
【請求項2】少なくともn型およびp型の不純物をドー
プした一般式Alx Gay Inl-x-y N(但し、0≦x
≦1、0<y≦1、x+y≦1)で表せる窒化ガリウム
系化合物半導体を積層成長して成る窒化ガリウム系化合
物半導体ウェハの表面に、さらに、該ウェハの表面層と
同じ導電型を有し、一般式Ala Gab Inl-a-b
(0≦a≦1、0<b≦1、a+b≦1)で表される窒
化ガリウム系化合物半導体層を、液相成長法により積層
した構造を有する窒化ガリウム系化合物半導体ウェハ。
Wherein at least n-type and doped with p-type impurity formula Al x Ga y In lxy N (where, 0 ≦ x
≦ 1, 0 <y ≦ 1, x + y ≦ 1) The surface of a gallium nitride-based compound semiconductor wafer formed by layer-growing gallium nitride-based compound semiconductors having the same conductivity type as the surface layer of the wafer The general formula Al a Ga b In lab N
A gallium nitride based compound semiconductor wafer having a structure in which gallium nitride based compound semiconductor layers represented by (0 ≦ a ≦ 1, 0 <b ≦ 1, a + b ≦ 1) are stacked by a liquid phase growth method.
【請求項3】少なくともn型およびp型の不純物をドー
プした一般式Alx Gay Inl-x-y N(但し、0≦x
≦1、0<y≦1、x+y≦1)で表せる窒化ガリウム
系化合物半導体を積層成長して成る窒化ガリウム系化合
物半導体ウェハの表面に、さらに、該ウェハの表面層に
ドープされている不純物と同じ不純物をドープした、一
般式Ala Gab Inl-a-b N(0≦a≦1、0<b≦
1、a+b≦1)で表される窒化ガリウム系化合物半導
体層を、液相成長法により積層した構造を有する窒化ガ
リウム系化合物半導体ウェハ。
Wherein at least n-type and p-type formula impurity was doped Al x Ga y In lxy N (where, 0 ≦ x
.Ltoreq.1, 0 <y.ltoreq.1, x + y.ltoreq.1) The surface of a gallium nitride-based compound semiconductor wafer formed by laminating and growing gallium nitride-based compound semiconductors is further doped with impurities doped in the surface layer of the wafer. the same impurity doped, the general formula Al a Ga b In lab N ( 0 ≦ a ≦ 1,0 <b ≦
1. A gallium nitride-based compound semiconductor wafer having a structure in which gallium nitride-based compound semiconductor layers represented by a + b ≦ 1) are stacked by a liquid phase growth method.
【請求項4】少なくともn型およびp型の不純物をドー
プした一般式Alx Gay Inl-x-y N(但し、0≦x
≦1、0<y≦1、x+y≦1)で表せる窒化ガリウム
系化合物半導体を積層成長して成り、かつその最表面層
がp型の導電型を有する窒化ガリウム系化合物半導体ウ
ェハの表面に、さらに、p型の導電型を有する、一般式
a Gab Inl-a-b N(0≦a≦1、0<b≦1、a
+b≦1)で表される窒化ガリウム系化合物半導体層
を、液相成長法により積層した構造を有する窒化ガリウ
ム系化合物半導体ウェハ。
Wherein at least n-type and p-type formula impurity was doped Al x Ga y In lxy N (where, 0 ≦ x
.Ltoreq.1, 0 <y.ltoreq.1, x + y.ltoreq.1), the surface of the gallium nitride based compound semiconductor wafer having a p-type conductivity is formed on the surface of the gallium nitride based compound semiconductor wafer. Furthermore, having p-type conductivity, the general formula 1 a Ga b in lab N ( 0 ≦ a ≦ 1,0 <b ≦ 1, a
A gallium nitride-based compound semiconductor wafer having a structure in which gallium nitride-based compound semiconductor layers represented by + b ≦ 1) are stacked by a liquid phase growth method.
【請求項5】少なくともn型およびp型の不純物をドー
プした一般式Alx Gay Inl-x-y N(但し、0≦x
≦1、0<y≦1、x+y≦1)で表せる窒化ガリウム
系化合物半導体を積層成長して成り、かつその最表面層
にp型の不純物をドープして成る窒化ガリウム系化合物
半導体ウェハに、熱処理または電子線照射処理を施し
て、ウェハ最表面の導電型をp型化した後、その表面
に、さらにp型の導電型を有する、一般式Ala Gab
Inl-a-b N(0≦a≦1、0<b≦1、a+b≦1)
で表される窒化ガリウム系化合物半導体層を、液相成長
法により積層した構造を有する窒化ガリウム系化合物半
導体ウェハ。
5. The at least n-type and doped with p-type impurity formula Al x Ga y In lxy N (where, 0 ≦ x
≦ 1, 0 <y ≦ 1, x + y ≦ 1). A gallium nitride-based compound semiconductor wafer formed by laminating and growing a gallium nitride-based compound semiconductor represented by the following formula: After performing heat treatment or electron beam irradiation treatment to make the conductivity type of the outermost surface of the wafer p-type, the surface further has a p-type conductivity type, a general formula Al a Ga b
In lab N (0 ≦ a ≦ 1, 0 <b ≦ 1, a + b ≦ 1)
A gallium nitride-based compound semiconductor wafer having a structure in which gallium nitride-based compound semiconductor layers represented by the following formulas are laminated by a liquid phase growth method.
【請求項6】上記p型の導電型を有する窒化ガリウム系
化合物半導体層が、不純物として少なくともMgをドー
プした層であることを特徴とする請求項4または5記載
の窒化ガリウム系化合物半導体ウェハ。
6. The gallium nitride-based compound semiconductor wafer according to claim 4, wherein the p-type gallium nitride-based compound semiconductor layer is a layer doped with at least Mg as an impurity.
【請求項7】上記窒化ガリウム系化合物半導体ウェハに
おいて、ウェハ最表面に液相成長法で成長した窒化ガリ
ウム系化合物半導体層以外の層は、有機金属気相成長法
で成長されていることを特徴とする、請求項1、2、
3、4又は5記載の窒化ガリウム系化合物半導体ウェ
ハ。
7. The gallium nitride-based compound semiconductor wafer, wherein layers other than the gallium nitride-based compound semiconductor layer grown on the outermost surface of the wafer by a liquid phase growth method are grown by a metal organic chemical vapor deposition method. Claims 1, 2,
6. The gallium nitride-based compound semiconductor wafer according to 3, 4, or 5.
【請求項8】有機金属気相成長法にて成長された、少な
くともn型およびp型の不純物をドープした一般式Al
x Gay Inl-x-y N(但し、0≦x≦1、0<y≦
1、x+y≦1)で表せる窒化ガリウム系化合物半導体
を積層成長して成り、かつその最表面層がMgをドープ
したGaN層から成る窒化ガリウム系化合物半導体ウェ
ハに、熱処理または電子線照射処理を施して、ウェハ最
表面の導電型をp型化した後、その表面に、さらにMg
をドープしたGaN層を液相成長法により積層した構造
を有する窒化ガリウム系化合物半導体ウェハ。
8. A compound of the general formula Al doped with at least n-type and p-type impurities grown by metal organic chemical vapor deposition.
x Ga y In lxy N (where, 0 ≦ x ≦ 1,0 <y ≦
A gallium nitride-based compound semiconductor wafer formed by laminating a gallium nitride-based compound semiconductor represented by (1, x + y ≦ 1), and the outermost surface layer of which is made of a GaN layer doped with Mg, is subjected to a heat treatment or an electron beam irradiation treatment. Then, after the conductivity type on the outermost surface of the wafer has been changed to p-type,
Gallium nitride-based compound semiconductor wafer having a structure in which GaN layers doped with GaN are stacked by a liquid phase growth method.
【請求項9】上記窒化ガリウム系化合物半導体ウェハに
おいて、ウェハ最表面に液相成長法で成長した窒化ガリ
ウム系化合物半導体が、多結晶であることを特徴とする
請求項1、2、3、4、5、6、7又は8記載の窒化ガ
リウム系化合物半導体ウェハ。
9. The gallium nitride-based compound semiconductor wafer, wherein the gallium nitride-based compound semiconductor grown on the outermost surface of the wafer by a liquid phase growth method is polycrystalline. 9. The gallium nitride-based compound semiconductor wafer according to 5, 6, 7, or 8.
【請求項10】上記窒化ガリウム系化合物半導体層は、
絶縁性の基板上に成長されていることを特徴とする、請
求項1、2、3、4、5、6、7、8又は9記載の窒化
ガリウム系化合物半導体ウェハ。
10. The gallium nitride-based compound semiconductor layer,
10. The gallium nitride-based compound semiconductor wafer according to claim 1, wherein the gallium nitride-based compound semiconductor wafer is grown on an insulating substrate.
【請求項11】請求項1、2、3、4、5、6、7、
8、9又は10に記載の窒化ガリウム系化合物半導体ウ
ェハの、少なくとも最表面に接して電極を形成し、作製
された窒化ガリウム系化合物半導体素子。
11. The method of claim 1, 2, 3, 4, 5, 6, 7,
11. A gallium nitride-based compound semiconductor device produced by forming an electrode in contact with at least the outermost surface of the gallium nitride-based compound semiconductor wafer according to 8, 9, or 10.
JP9300099A 1997-10-31 1997-10-31 Gallium nitride group compound semiconductor wafer and compound semiconductor element Pending JPH11135831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9300099A JPH11135831A (en) 1997-10-31 1997-10-31 Gallium nitride group compound semiconductor wafer and compound semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9300099A JPH11135831A (en) 1997-10-31 1997-10-31 Gallium nitride group compound semiconductor wafer and compound semiconductor element

Publications (1)

Publication Number Publication Date
JPH11135831A true JPH11135831A (en) 1999-05-21

Family

ID=17880707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9300099A Pending JPH11135831A (en) 1997-10-31 1997-10-31 Gallium nitride group compound semiconductor wafer and compound semiconductor element

Country Status (1)

Country Link
JP (1) JPH11135831A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064661A1 (en) * 2003-12-26 2005-07-14 Matsushita Electric Industrial Co., Ltd. Method for producing group iii nitride crystal, group iii nitride crystal obtained by such method, and group iii nitride substrate using same
WO2010007983A1 (en) * 2008-07-16 2010-01-21 住友電気工業株式会社 Method for growing gan crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064661A1 (en) * 2003-12-26 2005-07-14 Matsushita Electric Industrial Co., Ltd. Method for producing group iii nitride crystal, group iii nitride crystal obtained by such method, and group iii nitride substrate using same
CN100466178C (en) * 2003-12-26 2009-03-04 松下电器产业株式会社 Method for producing group iii nitride crystal, group iii nitride crystal obtained by such method, and group iii nitride substrate using same
WO2010007983A1 (en) * 2008-07-16 2010-01-21 住友電気工業株式会社 Method for growing gan crystal

Similar Documents

Publication Publication Date Title
JP3352712B2 (en) Gallium nitride based semiconductor device and method of manufacturing the same
USRE38805E1 (en) Semiconductor device and method of fabricating the same
US6559038B2 (en) Method for growing p-n heterojunction-based structures utilizing HVPE techniques
EP0881666B2 (en) P-type nitrogen compound semiconductor and method of manufacturing same
US6849862B2 (en) III-V compound semiconductor device with an AlxByInzGa1-x-y-zN1-a-bPaAsb non-continuous quantum dot layer
JP5491065B2 (en) Method for producing wafer product and method for producing gallium nitride based semiconductor optical device
US9040319B2 (en) Group-III nitride compound semiconductor light-emitting device, method of manufacturing group-III nitride compound semiconductor light-emitting device, and lamp
US6555452B2 (en) Method for growing p-type III-V compound material utilizing HVPE techniques
US6476420B2 (en) P-N homojunction-based structures utilizing HVPE growth III-V compound layers
JP3279528B2 (en) Method for producing nitride III-V compound semiconductor
US6599133B2 (en) Method for growing III-V compound semiconductor structures with an integral non-continuous quantum dot layer utilizing HVPE techniques
US6479839B2 (en) III-V compounds semiconductor device with an AlxByInzGa1-x-y-zN non continuous quantum dot layer
US6559467B2 (en) P-n heterojunction-based structures utilizing HVPE grown III-V compound layers
US6472300B2 (en) Method for growing p-n homojunction-based structures utilizing HVPE techniques
JP3603598B2 (en) Method for manufacturing group 3-5 compound semiconductor
JP2004134750A (en) Manufacturing method of p-type group iii nitride compound semiconductor
US20020017650A1 (en) III-V compound semiconductor device with an InGaN1-x-yPxASy non-continuous quantum dot layer
JPH10294490A (en) P-type gallium nitride compound semiconductor, manufacture thereof, and blue light-emitting element
JPH10290051A (en) Semiconductor device and manufacture thereof
JP2001156003A (en) Method of manufacturing p-type gallium nitride semiconductor, and light-emitting element using p-type gallium nitride semiconductor
JP2001119065A (en) P-type nitride semiconductor and producing method thereof
JPH05243613A (en) Light-emitting device and its manufacture
EP1772909B1 (en) (AI,Ga,In)N-Based compound semiconductor and method of fabricating the same
JPH11135831A (en) Gallium nitride group compound semiconductor wafer and compound semiconductor element
US20020047135A1 (en) P-N junction-based structures utilizing HVPE grown III-V compound layers

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20070912

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090912

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100912

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120912

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130912