JPH11134946A - Solid dc cable - Google Patents
Solid dc cableInfo
- Publication number
- JPH11134946A JPH11134946A JP31451997A JP31451997A JPH11134946A JP H11134946 A JPH11134946 A JP H11134946A JP 31451997 A JP31451997 A JP 31451997A JP 31451997 A JP31451997 A JP 31451997A JP H11134946 A JPH11134946 A JP H11134946A
- Authority
- JP
- Japan
- Prior art keywords
- kraft paper
- insulating layer
- low
- layer
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Organic Insulating Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はソリッドDCケーブ
ルに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid DC cable.
【0002】[0002]
【従来の技術】従来より導体の上に絶縁テープを巻回
し、そこに高粘度の絶縁油を含浸した絶縁層を有する電
力ケーブル(例えば、常温で5000cSt 以上の粘度を
有する絶縁油を含浸してなる積層絶縁ソリッド(Mass-I
mpregnated)ケーブル)が利用されているが、この絶縁
テープの厚さは一般に70〜200μm程度である。こ
れは、薄い絶縁テープは機械的強度が低いことと、巻き
枚数が増加に伴って大型の巻回機が必要になるためであ
る。2. Description of the Related Art Conventionally, an insulating tape is wound on a conductor, and a power cable having an insulating layer impregnated with a high-viscosity insulating oil (for example, by impregnating an insulating oil having a viscosity of 5,000 cSt or more at room temperature). Becomes a laminated insulating solid (Mass-I
The thickness of the insulating tape is generally about 70 to 200 μm. This is because a thin insulating tape has low mechanical strength and a large winding machine is required as the number of windings increases.
【0003】ソリッドDCケーブルは、OFケーブルと
は異なり、ケーブルの両端からの絶縁油の供給がないた
め、絶縁層中に絶縁油の欠乏からボイドを生じ、そのボ
イドが有害な大きさになると放電の開始点となりやす
い。このようなボイドは、絶縁テープをスパイラル状に
巻回するときに必然的に生じる油ギャップにまず生じや
すく、次いで絶縁テープ中の天然繊維の隙間に生じやす
い。油ギャップは絶縁テープが厚いほど大きくなるが、
これまでのソリッドDCケーブルは、例えば使用電圧が
400kV以下、送電電流が1000A未満と比較的小さ
かったので、導体直上の油ギャップ中に発生しやすいボ
イドに対して特に問題視されなかった。[0003] Unlike an OF cable, a solid DC cable does not supply insulating oil from both ends of the cable, so voids are generated in the insulating layer due to lack of insulating oil, and when the voids become harmful, discharge occurs. Starting point Such voids are likely to occur first in the oil gap that is inevitable when the insulating tape is spirally wound, and then in the gaps between the natural fibers in the insulating tape. The oil gap increases as the insulation tape becomes thicker,
Conventional solid DC cables have a relatively small operating voltage of, for example, 400 kV or less and a transmission current of less than 1000 A, and thus have not been regarded as particularly problematic for voids that are likely to occur in an oil gap immediately above a conductor.
【0004】[0004]
【発明が解決しようとする課題】ところが、近年大電力
をソリッドDCケーブルで長距離送電する計画が相次い
で出現するようになってきた。例えば、送電電圧も45
0kVあるいは500kV以上、送電電流も1000Aを越
えるような線路が計画されるようになってきた。このよ
うに高電圧,大電流になってくると、特に導体直上の絶
縁層中の有害なボイドの形成が無視できなくなってき
た。However, in recent years, plans for transmitting large amounts of electric power over long distances using solid DC cables have appeared one after another. For example, the transmission voltage is 45
Lines with a transmission current exceeding 0 kV or 500 kV and a transmission current exceeding 1000 A have been planned. When the high voltage and the high current are reached, the formation of harmful voids in the insulating layer immediately above the conductor cannot be ignored.
【0005】従って、本発明の主目的は、負荷遮断時に
ボイドが発生しても有害なボイドでの放電を抑制できる
ソリッドDCケーブルを提供することにある。SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to provide a solid DC cable capable of suppressing discharge in a harmful void even when a void is generated when a load is interrupted.
【0006】[0006]
【課題を解決するための手段】本発明は上記の目的を達
成するもので、その特徴は、導体直上において負荷遮断
時に絶縁油が負圧になる範囲内に、主絶縁層のクラフト
紙よりも低抵抗のクラフト紙を設けたことにある。すな
わち、本発明ソリッドDCケーブルは導体の外周に絶縁
層と金属シースとを具え、この絶縁層はクラフト紙によ
り構成される主絶縁層と、主絶縁層よりも低抵抗のクラ
フト紙で構成される低抵抗クラフト紙層とを有し、低抵
抗クラフト紙層は導体直上に設けたことを特徴とする。
この低抵抗クラフト紙層は、負荷遮断時に絶縁油が負圧
になる範囲内に形成することが好ましい。さらに、低抵
抗クラフト紙層を金属シース直下にも設けることが好ま
しい。SUMMARY OF THE INVENTION The present invention achieves the above-mentioned object, and is characterized in that the insulating oil has a negative pressure within a range in which the insulating oil has a negative pressure when the load is cut off directly above the conductor, compared with the kraft paper of the main insulating layer. That is, we have provided low-resistance kraft paper. That is, the solid DC cable of the present invention includes an insulating layer and a metal sheath on the outer periphery of the conductor, and the insulating layer is formed of a main insulating layer made of kraft paper and kraft paper having a lower resistance than the main insulating layer. A low-resistance kraft paper layer, wherein the low-resistance kraft paper layer is provided immediately above the conductor.
This low resistance kraft paper layer is preferably formed in a range where the insulating oil has a negative pressure when the load is interrupted. Further, it is preferable to provide the low-resistance kraft paper layer directly below the metal sheath.
【0007】以下、本発明を完成するに至った経過を述
べる。本発明者等は、負荷遮断時に有害なボイドが生じ
るメカニズムを検討するため、クラフト紙を巻回した絶
縁層を有するソリッドDC電力ケーブルについて、課通
電を開始してから通電を遮断した際に絶縁層中の各位置
における絶縁油の圧力がどのように変化するかを調べ
た。図6はこの油圧の変化を示すグラフである。同図
中、曲線は導体直上の絶縁層(最内周)における油
圧、曲線は導体上からクラフト紙10枚程度の位置に
おける油圧、曲線は金属シース直下(最外周)におけ
る油圧の変化を示す。Hereinafter, the progress of completing the present invention will be described. The present inventors studied a mechanism of generating harmful voids at the time of load rejection. It was investigated how the pressure of the insulating oil at each position in the layer changes. FIG. 6 is a graph showing the change in the hydraulic pressure. In the figure, the curve shows the oil pressure in the insulating layer (innermost circumference) immediately above the conductor, the curve shows the oil pressure in the position of about 10 kraft papers from above the conductor, and the curve shows the oil pressure just below the metal sheath (outermost circumference).
【0008】負荷電流が流されると、まず導体の温度が
上がり、それに応じて絶縁層も内周から外周に向かって
昇温する。そのとき、絶縁油は、その体積(または単位
体積)と温度膨張係数と温度上昇幅の積に比例して膨張
する。その膨張分は絶縁層の外周に向かって径方向に移
動し、一部は外周の金属被覆(シース)を膨張させる
が、絶縁油自身の圧力も上昇させる。課通電直後は外周
ほど温度が低いため、その部分の絶縁油の粘度は高く、
粘性抵抗も高い。そのため絶縁油の移動は困難で、膨張
した内周側の絶縁油が外周側に直ちに移動できず、内周
側の絶縁層における油圧ほど急峻に上昇する。その後、
時間の経過に伴って絶縁油は外周側に移動するため、導
体直上の絶縁層における油圧も低下し、絶縁層の径方向
における油圧の分布は一様化してゆく。When a load current is applied, first, the temperature of the conductor rises, and accordingly, the temperature of the insulating layer also rises from the inner circumference to the outer circumference. At that time, the insulating oil expands in proportion to the product of its volume (or unit volume), the thermal expansion coefficient, and the temperature rise. The expansion moves radially toward the outer periphery of the insulating layer and partially expands the outer metal coating (sheath), but also increases the pressure of the insulating oil itself. Immediately after energization, the temperature of the outer periphery is lower, so the viscosity of the insulating oil in that part is higher,
High viscous drag. Therefore, the movement of the insulating oil is difficult, and the expanded inner circumferential insulating oil cannot immediately move to the outer circumferential side, and the oil pressure in the insulating layer on the inner circumferential side rises more steeply. afterwards,
As the time passes, the insulating oil moves to the outer peripheral side, so that the oil pressure in the insulating layer immediately above the conductor also decreases, and the distribution of the oil pressure in the radial direction of the insulating layer becomes uniform.
【0009】この状態で負荷電流を遮断すると、今度は
導体から温度低下が急激に起こるため、絶縁層では導体
側で急峻に、シース側では緩慢に温度が低下する。する
と、絶縁油は収縮し始めるが、絶縁油の粘度が比較的高
いので導体側の急峻な収縮に追従するほど絶縁油が外周
側から内周側に戻ってこない。その結果、一時的に導体
直上の絶縁層中に、中でも特に油ギャップに負圧を生
じ、その部分にボイドを生じるようになってくる。さら
に時間が経過すれば、絶縁層の外周側は正圧なので外周
側の絶縁油が内周側に戻り、ボイドも負圧も解消する。When the load current is cut off in this state, the temperature suddenly drops from the conductor, so that the temperature decreases sharply on the conductor side in the insulating layer and slowly on the sheath side. Then, the insulating oil starts to contract, but since the viscosity of the insulating oil is relatively high, the insulating oil does not return from the outer peripheral side to the inner peripheral side as the steep contraction on the conductor side is followed. As a result, a negative pressure is temporarily generated in the insulating layer immediately above the conductor, especially in the oil gap, and a void is generated in that portion. If the time further elapses, the outer peripheral side of the insulating layer is positive pressure, so that the insulating oil on the outer peripheral side returns to the inner peripheral side, and both the void and the negative pressure are eliminated.
【0010】一般に、送電線路の電圧は、負荷電流のオ
ン,オフにかかわらず課電されている。そのため、負荷
遮断時に導体直上の絶縁層に負圧が生じてボイドが発生
し、その大きさがある値を超えて、そこにかかるDC電
気ストレスがある値を超えると放電が生じることにな
り、これはソリッドケーブルにとって好ましいことでは
ない。Generally, the voltage of the transmission line is imposed regardless of whether the load current is on or off. Therefore, when the load is cut off, a negative pressure is generated in the insulating layer immediately above the conductor, voids are generated, and when the magnitude exceeds a certain value and the DC electric stress applied thereto exceeds a certain value, discharge occurs, This is not a good thing for solid cables.
【0011】このように、負荷遮断時に発生するボイド
は導体直上に発生し易い。そこで、たとえ導体直上の絶
縁油中にボイドが生じても、そしてこのボイドが危険な
大きさ以上であっても、その部分で電圧を分担させない
ように、負荷遮断時に絶縁油が負圧になる範囲内に、主
絶縁層のクラフト紙よりも低抵抗のクラフト紙を巻回し
た。低抵抗のクラフト紙を巻回する範囲は、負荷遮断時
に絶縁油が負圧になる範囲の全てであっても一部であっ
てもよい。As described above, voids generated when the load is interrupted tend to be generated immediately above the conductor. Therefore, even if a void is formed in the insulating oil directly above the conductor, and even if this void is more than a dangerous size, the insulating oil becomes negative pressure when the load is cut off so as not to share the voltage in that part. A kraft paper having a lower resistance than the kraft paper of the main insulating layer was wound within the range. The range in which the low-resistance kraft paper is wound may be all or a part of the range in which the insulating oil has a negative pressure when the load is interrupted.
【0012】ここでの低抵抗クラフト紙の役割は、有害
な大きさのDCストレスは分担しないが、導体温度に対
しては絶縁テープとほぼ同等の熱抵抗を有し、低抵抗ク
ラフト紙中で温度勾配を生じさせることにある。従っ
て、図6で理解できる通り、負荷遮断時の導体温度の急
変もこの低抵抗クラフト紙層で大きく緩和されるから、
低抵抗クラフト紙層の外周の絶縁層では急峻な温度変化
が生じにくくなり、絶縁油の収縮も少なくなって、絶縁
層内にボイドが生じにくくなる。また、ボイドが発生し
ても、その位置は導体に近い低抵抗クラフト紙層中に集
中することになる。The role of the low-resistance kraft paper here is that it does not share a harmful amount of DC stress, but has substantially the same thermal resistance as the insulating tape with respect to the conductor temperature. To produce a temperature gradient. Therefore, as can be understood from FIG. 6, a sudden change in the conductor temperature when the load is cut off is also greatly reduced by the low-resistance kraft paper layer.
In the insulating layer on the outer periphery of the low-resistance kraft paper layer, a steep temperature change hardly occurs, and the shrinkage of the insulating oil decreases, so that voids hardly occur in the insulating layer. Also, even if voids are generated, their locations are concentrated in the low-resistance kraft paper layer close to the conductor.
【0013】なお、この低抵抗クラフト紙の代わりに全
く電界(電気ストレス)のかからない材料、例えば銅テ
ープを巻回することも考えられる。しかし、この場合は
銅テープの熱抵抗が小さすぎて、銅テープ層中に温度勾
配を生じない。そのため、結局は銅テープのすぐ外周に
ある絶縁テープ層で従来のケーブルと同様の急峻な温度
変化と絶縁油の急峻な収縮とが始まるので、本発明の効
果が得られないことは容易にわかる。It is also conceivable to wind a material to which no electric field (electric stress) is applied, for example, a copper tape, instead of the low-resistance kraft paper. However, in this case, the thermal resistance of the copper tape is too small, so that no temperature gradient occurs in the copper tape layer. Therefore, in the end, the steep temperature change and the steep contraction of the insulating oil similar to those of the conventional cable begin in the insulating tape layer immediately around the copper tape, so that it is easily understood that the effect of the present invention cannot be obtained. .
【0014】導体直上の負圧が発生する範囲に用いる低
抵抗クラフト紙は、その抵抗率(ρ1 )が主絶縁クラフ
ト紙の体積抵抗率(ρ0 )に対して、0.1ρ0 ≦ρ1
≦0.7ρ0 となるものが好ましい。これにより、低抵
抗クラフト紙は有害なDC電界を分担しないことにな
り、ボイド内での放電を抑制することに効果的である。The resistivity (ρ 1 ) of the low-resistance kraft paper used in a range where a negative pressure is generated directly above the conductor is 0.1 ρ 0 ≦ ρ with respect to the volume resistivity (ρ 0 ) of the main insulating kraft paper. 1
Those satisfying ≦ 0.7ρ 0 are preferable. Thereby, the low-resistance kraft paper does not share a harmful DC electric field, which is effective in suppressing the discharge in the void.
【0015】低抵抗クラフト紙の抵抗率(ρ1 )が0.
7ρ0 よりも大きい場合は、主絶縁クラフト紙の体積抵
抗率(ρ0 )と近すぎて抵抗に比例してできるDC電界
に差を生じず、本発明の狙いとする導体直上の急峻な温
度変化部(負荷遮断時にボイドのできやすい部分)のD
C電界の緩和ができない。逆に0.1ρ0 よりも小さい
場合は、主絶縁層にほとんど全てのDCストレスが分担
され、この低抵抗クラフト紙層の絶縁層としての電気ス
トレス分担という本来の役割を全く果たさなくなる。ま
た、過渡的に入ってくるインパルス性の異常波およびD
C電圧そのものに対しても耐圧が低下し始めるので好ま
しくない。The resistivity (ρ 1 ) of the low-resistance kraft paper is 0.
When it is larger than 7ρ 0, the volume resistivity (ρ 0 ) of the main insulated kraft paper is so close that there is no difference in the DC electric field generated in proportion to the resistance. D of the changing part (the part where voids are likely to occur when the load is cut off)
C electric field cannot be relaxed. On the other hand, when it is smaller than 0.1ρ 0 , almost all DC stress is shared by the main insulating layer, and the original role of sharing electric stress as an insulating layer of the low-resistance kraft paper layer is not fulfilled at all. In addition, an impulsive abnormal wave and D
Since the withstand voltage starts to decrease with respect to the C voltage itself, it is not preferable.
【0016】抵抗率が主絶縁層のクラフト紙に対して
0.1ρ0 ≦ρ1 ≦0.7ρ0 となる低抵抗のクラフト
紙は、通常のクラフト紙にある種の添加剤を添加した
り、ある種の誘導体クラフト紙を用いることで得られ
る。これにより、ケーブル使用時の全温度範囲に対して
所望する抵抗率を有し、かつDC,インパルスともに破
壊値が従来のクラフト紙と遜色ない低抵抗のクラフト紙
を得ることができる。具体的には、クラフト紙にアミン
を添加したり、クラフト紙をシアノエチル紙で構成すれ
ばよい。この低抵抗クラフト紙と従来のクラフト紙の諸
物性を表1に比較して示す。Low-resistance kraft paper having a resistivity of 0.1 ρ 0 ≦ ρ 1 ≦ 0.7ρ 0 with respect to the kraft paper of the main insulating layer may be obtained by adding a certain additive to ordinary kraft paper. Can be obtained by using certain derivative kraft paper. This makes it possible to obtain kraft paper having a desired resistivity over the entire temperature range when the cable is used, and having a DC and impulse with a destruction value as low as that of conventional kraft paper. Specifically, an amine may be added to kraft paper, or the kraft paper may be composed of cyanoethyl paper. Various properties of the low-resistance kraft paper and the conventional kraft paper are shown in Table 1 in comparison.
【0017】[0017]
【表1】 [Table 1]
【0018】このように低抵抗クラフト紙はケーブル使
用時の全温度範囲(通常20〜60℃程度)において
0.1ρ0 ≦ρ1 ≦0.7ρ0 を満たす抵抗率を有して
いることがわかる。従って、このような低抵抗クラフト
紙を用いることで、ボイドが発生しても電界を分担しな
い絶縁層を構成することが可能になり、ボイド内での放
電を抑制することができる。As described above, the low-resistance kraft paper has a resistivity satisfying 0.1ρ 0 ≦ ρ 1 ≦ 0.7ρ 0 over the entire temperature range (usually about 20 to 60 ° C.) when the cable is used. Recognize. Therefore, by using such a low-resistance kraft paper, it becomes possible to configure an insulating layer that does not share an electric field even when a void is generated, and it is possible to suppress discharge in the void.
【0019】絶縁層における負圧の生じる範囲およびそ
の範囲内の何%を導体側から低抵抗クラフト紙で構成す
るかは、ケーブルの使用条件,寸法,構造が決まってか
ら計算または試作ケーブルの実験により求めればよい。
一般に、低抵抗クラフト紙を巻回する厚さは0.5mm以
上とすることが望ましい。これより小さいと、前述した
負荷遮断時の導体温度の急変を低抵抗クラフト紙中で吸
収できないことが実験などでわかっている。一般に負荷
遮断時の温度急低下部分の影響を十分に吸収・緩和する
には、図6のような検討により、絶縁層の厚さの10%
まで巻回することがより好ましい。これより低抵抗クラ
フト紙層を増やすと、低抵抗クラフト紙の分担するDC
電圧が少なすぎることにより低抵抗クラフト紙層と主絶
縁層となる絶縁テープ層とを合わせた絶縁層全体の巻回
数が多くなり、その厚さも大きくなる。これらの巻回数
が増えると、ケーブル生産時においてテープ巻き機が大
きくなり過ぎたり作業効率が下がったりし、できあがっ
たケーブルが大型になって不経済である。The range in which the negative pressure is generated in the insulating layer and what percentage of the range is constituted by the low-resistance kraft paper from the conductor side can be calculated or determined after the use conditions, dimensions and structure of the cable are determined, or an experiment on a prototype cable. It can be obtained by
Generally, it is desirable that the thickness of the wrapped low resistance kraft paper is 0.5 mm or more. Experiments have shown that if it is smaller than this, the above-mentioned sudden change in the conductor temperature at the time of load interruption cannot be absorbed in low-resistance kraft paper. In general, in order to sufficiently absorb and mitigate the effects of the sudden drop in temperature when the load is rejected, a study such as that shown in FIG.
It is more preferable to wind up to. Increasing the low-resistance kraft paper layer further increases the DC that the low-resistance kraft paper shares.
When the voltage is too low, the number of turns of the entire insulating layer including the low-resistance kraft paper layer and the insulating tape layer serving as the main insulating layer increases, and the thickness thereof also increases. When the number of windings is increased, the size of the tape winding machine becomes too large or the working efficiency is reduced during cable production, and the resulting cable becomes large and uneconomical.
【0020】さらに、用いる低抵抗クラフト紙の厚さは
50〜150μm程度が好適である。50μmよりも薄
いと低抵抗クラフト紙の材料強度が低下するし、150
μmを越えると低抵抗クラフト紙層の油ギャップが大き
くなって好ましくない。Further, the thickness of the low-resistance kraft paper used is preferably about 50 to 150 μm. If the thickness is less than 50 μm, the material strength of the low-resistance kraft paper decreases, and
If it exceeds μm, the oil gap of the low-resistance kraft paper layer is undesirably large.
【0021】なお、低抵抗クラフト紙層は主絶縁層の内
周側だけでなく外周側に設けてもよい。DCストレス
は、常温では内周側ほど高く、高温では外周側ほど高
い。低抵抗クラフト紙を用いない場合、電気破壊は絶縁
層に生じるストレスの高いところ、すなわち絶縁層の最
内周(無負荷または低負荷時)または最外層(高負荷
時)から発生するため、絶縁層と導体外周面または絶縁
層と金属シース内周面という通常のケーブルにとって最
弱点になりやすい界面が最大ストレスとなって電気破壊
を生じやすい。このストレスの高い箇所に抵抗率の低い
クラフト紙を適用することで、最弱点になりやすい絶
縁層の内・外界面のストレスを低減し、ストレスの最
大点を本質的に破壊強度の強い一様な絶縁層の内部に転
移させ、前記説明の通り、負荷遮断時に有害なボイド
の生じやすい絶縁層の最内周側の電気ストレスを緩和す
ることができる。従って、低抵抗クラフト紙層を絶縁層
の内外両側に適用することは信頼性の高いソリッドDC
ケーブルを実現するのに有効である。The low-resistance kraft paper layer may be provided not only on the inner peripheral side but also on the outer peripheral side of the main insulating layer. The DC stress is higher on the inner circumference side at normal temperature and higher on the outer circumference side at high temperature. Without the use of low-resistance kraft paper, electrical breakdown occurs at high stress in the insulating layer, that is, from the innermost layer of the insulating layer (at no load or low load) or the outermost layer (at high load). The interface, which is the weakest point of a normal cable such as the layer and the outer peripheral surface of the conductor or the insulating layer and the inner peripheral surface of the metal sheath, becomes the maximum stress and easily causes electric breakdown. By applying kraft paper with low resistivity to this high stress area, the stress at the inner and outer interfaces of the insulating layer, which is likely to be the weakest point, is reduced, and the maximum point of stress is essentially uniform with a strong fracture strength. As described above, it is possible to reduce the electric stress on the innermost peripheral side of the insulating layer in which harmful voids are likely to be generated at the time of load rejection, as described above. Therefore, applying a low resistance kraft paper layer on both the inside and outside of the insulating layer is a reliable solid DC
It is effective in realizing a cable.
【0022】[0022]
【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は本発明ソリッドDCケーブルの断面図であ
る。このケーブルは、内周から順に、導体1,内部半導
電層2,絶縁層3,外部半導電層4,金属遮蔽層5,シ
ース6で構成されている。絶縁層3は外周側の主絶縁層
3Aと、内周側の低抵抗クラフト紙層3Bとで構成される。
主絶縁層3Aはクラフト紙を巻回して構成され、低抵抗ク
ラフト紙層3Bは主絶縁層3Aのクラフト紙よりも抵抗率が
低いクラフト紙を巻回して構成されている。なお、主絶
縁層3Aと外部半導電層4との間に低抵抗のクラフト紙層
を設けてもよい。Embodiments of the present invention will be described below. FIG. 1 is a sectional view of the solid DC cable of the present invention. This cable is composed of a conductor 1, an inner semiconductive layer 2, an insulating layer 3, an outer semiconductive layer 4, a metal shielding layer 5, and a sheath 6 in this order from the inner circumference. The insulating layer 3 is a main insulating layer on the outer peripheral side.
3A and an inner peripheral low resistance kraft paper layer 3B.
The main insulating layer 3A is formed by winding kraft paper, and the low-resistance kraft paper layer 3B is formed by winding kraft paper having a lower resistivity than the kraft paper of the main insulating layer 3A. Note that a low-resistance kraft paper layer may be provided between the main insulating layer 3A and the external semiconductive layer 4.
【0023】(試験例1)主絶縁層の内周と外周の双方
に低抵抗クラフト紙層を形成した絶縁層を持つケーブル
(実施例)と低抵抗クラフト紙層のない絶縁層を持つケ
ーブル(比較例)とを試作し、このケーブルについてD
C破壊特性を調べた。ケーブルの導体サイズは800mm
2 で、主絶縁層のクラフト紙および低抵抗クラフト紙の
厚さは130μmである。試験条件は、スタート電圧:
−500kV,ステップアップ条件:−100kV/3日,負
荷サイクル:8時間通電(70℃)・16時間冷却
(R.T)である。ケーブル構成と試験結果を表1に示
す。(Test Example 1) A cable having an insulating layer having a low-resistance kraft paper layer formed on both the inner and outer circumferences of the main insulating layer (Example) and a cable having an insulating layer having no low-resistance kraft paper layer (Example) Comparative Example) and
C destruction characteristics were examined. The conductor size of the cable is 800mm
In 2 , the thickness of the kraft paper and the low-resistance kraft paper of the main insulating layer is 130 μm. The test conditions are the starting voltage:
-500 kV, step-up condition: -100 kV / 3 days, duty cycle: energizing (70 ° C.) for 8 hours and cooling (RT) for 16 hours. Table 1 shows the cable configuration and test results.
【0024】[0024]
【表2】 [Table 2]
【0025】表2に示すように実施例1,2は比較例1
に比べて電気破壊特性に優れ、導体直上部分に仮にボイ
ドが生じていても放電が抑制されていることが推定でき
る。特に、低抵抗クラフト紙層の厚さを1.5mmとした
実施例2はDC破壊値の改善効果がより大きい。As shown in Table 2, Examples 1 and 2 are Comparative Examples 1
Thus, it can be estimated that the discharge is suppressed even if voids are generated immediately above the conductor. In particular, Example 2 in which the thickness of the low-resistance kraft paper layer was 1.5 mm was more effective in improving the DC breakdown value.
【0026】(試験例2)次に、試験例1と同様のケー
ブルを用い、低抵抗クラフト紙層の厚さの相違と絶縁層
における直流電界との関係について調べてみた。ここで
は主絶縁層の内周側(導体側)と外周側(シース側)の
双方に低抵抗クラフト紙層を設け、各低抵抗クラフト紙
層の厚さを0.5mmか1.5mmのいずれかとした。試験
条件は、印加電圧/350kV DC 、導体サイズ:800
mm2 、絶縁層厚さ:14.0mmである。また、比較のた
めに低抵抗クラフト紙層のないケーブルについても同様
の試験を行った。温度が25℃で一定の場合の試験結果
を図2に、導体温度を55℃としたときの試験結果を図
3に示す。Test Example 2 Next, using the same cable as in Test Example 1, the relationship between the difference in the thickness of the low-resistance kraft paper layer and the DC electric field in the insulating layer was examined. Here, a low-resistance kraft paper layer is provided on both the inner peripheral side (conductor side) and the outer peripheral side (sheath side) of the main insulating layer, and the thickness of each low-resistance kraft paper layer is 0.5 mm or 1.5 mm. I did it. Test conditions were: applied voltage / 350 kV DC, conductor size: 800
mm 2 , and the thickness of the insulating layer is 14.0 mm. For comparison, a similar test was performed on a cable without a low-resistance kraft paper layer. FIG. 2 shows the test results when the temperature is constant at 25 ° C., and FIG. 3 shows the test results when the conductor temperature is 55 ° C.
【0027】両図に示すように、低温時(図2)のとき
は絶縁層の内周側ほど直流電界強度が高く、高温時(図
3)は逆に外周側ほど直流電界強度が高い。そして、い
ずれの場合も低抵抗クラフト紙層により直流電界が緩和
されていることがわかる。特に主絶縁層の外周側にも低
抵抗クラフト紙層を設けることで、高温時の弱点となる
絶縁層と金属シースとの界面の電界緩和に有効であるこ
とがわかる。As shown in both figures, when the temperature is low (FIG. 2), the DC electric field intensity is higher on the inner peripheral side of the insulating layer, and conversely, when the temperature is high (FIG. 3), the DC electric field intensity is higher on the outer peripheral side. In each case, the DC electric field is reduced by the low-resistance kraft paper layer. In particular, it can be seen that providing a low-resistance kraft paper layer on the outer peripheral side of the main insulating layer is also effective in alleviating the electric field at the interface between the insulating layer and the metal sheath, which is a weak point at high temperatures.
【0028】(試験例3)さらに、試験例1と同様のケ
ーブルを用い、低抵抗クラフト紙層の抵抗率の相違と絶
縁層における直流電界との関係について調べてみた。こ
こでの低抵抗クラフト紙は、その抵抗率が主絶縁層クラ
フト紙の抵抗率に対して0.1,0.3,0.5,0.
7倍となるものを用いた。低抵抗クラフト紙層は主絶縁
層の内周側と外周側の双方に設け、いずれもその厚さは
1.5mmである。また、試験条件および低抵抗クラフト
紙層のない比較例も試験したことは試験例2と同様であ
る。温度が25℃で一定の場合の試験結果を図4に、導
体温度を55℃としたときの試験結果を図5に示す。Test Example 3 Further, using the same cable as in Test Example 1, the relationship between the difference in resistivity of the low-resistance kraft paper layer and the DC electric field in the insulating layer was examined. The resistivity of the low-resistance kraft paper here is 0.1, 0.3, 0.5, 0.
A 7-fold one was used. The low-resistance kraft paper layer is provided on both the inner and outer peripheral sides of the main insulating layer, and each has a thickness of 1.5 mm. Further, the test conditions and the comparative example having no low-resistance kraft paper layer were also tested, as in Test Example 2. FIG. 4 shows the test results when the temperature is constant at 25 ° C., and FIG. 5 shows the test results when the conductor temperature is 55 ° C.
【0029】この試験でも低温時(図4)のときは絶縁
層の内周側ほど直流電界強度が高く、高温時(図5)は
逆に外周側ほど直流電界強度が高くなっている。そし
て、試験した範囲の抵抗率では、いずれも絶縁層と導体
または金属シースとの界面における直流電界の緩和に効
果的であることがわかる。Also in this test, at low temperatures (FIG. 4), the DC electric field intensity is higher on the inner peripheral side of the insulating layer, and conversely at higher temperatures (FIG. 5), the DC electric field intensity is higher on the outer peripheral side. Then, it can be seen that any of the resistivity values in the tested range is effective in alleviating the DC electric field at the interface between the insulating layer and the conductor or the metal sheath.
【0030】[0030]
【発明の効果】以上説明したように、本発明のソリッド
DCケーブルによれば、負荷遮断時に絶縁層に負圧が生
じて有害なボイドが発生しても放電を抑制でき、ケーブ
ルの電気的弱点となる絶縁層と導体の界面および絶縁層
と金属シースとの界面の電界を緩和できるため、電気破
壊強度が高く、大電力,長距離送電に適した電力ケーブ
ルを構成することができる。As described above, according to the solid DC cable of the present invention, the discharge can be suppressed even if a harmful void is generated due to the generation of a negative pressure in the insulating layer when the load is interrupted, and the electrical weakness of the cable is reduced. Since the electric field at the interface between the insulating layer and the conductor and the interface between the insulating layer and the metal sheath can be reduced, the electric cable having high electric breakdown strength and suitable for large power and long-distance power transmission can be configured.
【図1】本発明ソリッドDCケーブルの断面図である。FIG. 1 is a sectional view of a solid DC cable of the present invention.
【図2】温度が25℃における低抵抗クラフト紙層の厚
さの相違と絶縁層における直流電界との関係について示
すグラフである。FIG. 2 is a graph showing a relationship between a difference in thickness of a low-resistance kraft paper layer at a temperature of 25 ° C. and a DC electric field in an insulating layer.
【図3】導体温度が55℃の場合における低抵抗クラフ
ト紙層の厚さの相違と絶縁層における直流電界との関係
について示すグラフである。FIG. 3 is a graph showing a relationship between a difference in thickness of a low-resistance kraft paper layer and a DC electric field in an insulating layer when a conductor temperature is 55 ° C.
【図4】温度が25℃における低抵抗クラフト紙層の抵
抗率の相違と絶縁層における直流電界との関係について
示すグラフである。FIG. 4 is a graph showing a relationship between a difference in resistivity of a low-resistance kraft paper layer at a temperature of 25 ° C. and a DC electric field in an insulating layer.
【図5】導体温度が55℃における低抵抗クラフト紙層
の抵抗率の相違と絶縁層における直流電界との関係につ
いて示すグラフである。FIG. 5 is a graph showing a relationship between a difference in resistivity of a low-resistance kraft paper layer at a conductor temperature of 55 ° C. and a DC electric field in an insulating layer.
【図6】課電開始から課電停止をした際の導体直上の絶
縁層における油圧の変化を示すグラフである。FIG. 6 is a graph showing a change in oil pressure in an insulating layer immediately above a conductor when power application is stopped from the start of power application.
1 導体 2 内部半導電層 3 絶縁層 3A 低抵抗クラフト紙層 3B 主絶縁層 4 外部半導電層 5 金属遮蔽層 6 金属シース Reference Signs List 1 conductor 2 inner semiconductive layer 3 insulating layer 3A low resistance kraft paper layer 3B main insulating layer 4 outer semiconductive layer 5 metal shielding layer 6 metal sheath
Claims (7)
Cケーブルにおいて、 前記絶縁層はクラフト紙で構成される主絶縁層と、この
主絶縁層のクラフト紙よりも低抵抗のクラフト紙で構成
される低抵抗クラフト紙層とを有し、 この低抵抗クラフト紙層を導体直上または導体直上と金
属シース直下に配置したことを特徴とするソリッドDC
ケーブル。1. A solid D having an insulating layer on the outer periphery of a conductor
In the C cable, the insulating layer has a main insulating layer made of kraft paper and a low-resistance kraft paper layer made of kraft paper having a lower resistance than the kraft paper of the main insulating layer. Solid DC characterized in that a kraft paper layer is disposed directly above a conductor or directly above a conductor and directly below a metal sheath.
cable.
油が負圧になる範囲内に設けたことを特徴とする請求項
1記載のソリッドDCケーブル。2. The solid DC cable according to claim 1, wherein the low resistance kraft paper layer is provided in a range where the insulating oil has a negative pressure when the load is interrupted.
主絶縁層のクラフト紙の抵抗率(ρ0 )に対して、0.
1ρ0 ≦ρ1 ≦0.7ρ0 であることを特徴とする請求
項1記載のソリッドDCケーブル。3. The resistivity (ρ 1 ) of the low-resistance kraft paper is 0. 0 to the resistivity (ρ 0 ) of the kraft paper of the main insulating layer.
Solid DC cable according to claim 1, wherein the 1ρ is 0 ≦ ρ 1 ≦ 0.7ρ 0.
以上としたことを特徴とする請求項1記載のソリッドD
Cケーブル。4. The thickness of the low-resistance kraft paper layer is 0.5 mm.
2. The solid D according to claim 1, wherein
C cable.
0%まで巻回したことを特徴とする請求項1記載のソリ
ッドDCケーブル。5. A low-resistance kraft paper having an insulating layer thickness of 1
The solid DC cable according to claim 1, wherein the cable is wound to 0%.
ることを特徴とする請求項1記載のソリッドDCケーブ
ル。6. The solid DC cable according to claim 1, wherein the low-resistance kraft paper is an amine-added paper.
あることを特徴とする請求項1記載のソリッドDCケー
ブル。7. The solid DC cable according to claim 1, wherein the low-resistance kraft paper is cyanoethyl paper.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31451997A JPH11134946A (en) | 1997-10-29 | 1997-10-29 | Solid dc cable |
EP98303285A EP0875907B2 (en) | 1997-04-29 | 1998-04-28 | Solid DC cable |
NO19981927A NO319752B1 (en) | 1997-04-29 | 1998-04-28 | Solid DC cable |
DK98303285T DK0875907T4 (en) | 1997-04-29 | 1998-04-28 | Solid DC cable |
US09/069,101 US6201191B1 (en) | 1907-10-29 | 1998-04-29 | Solid DC cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31451997A JPH11134946A (en) | 1997-10-29 | 1997-10-29 | Solid dc cable |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11134946A true JPH11134946A (en) | 1999-05-21 |
Family
ID=18054267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31451997A Pending JPH11134946A (en) | 1907-10-29 | 1997-10-29 | Solid dc cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11134946A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011159500A (en) * | 2010-02-01 | 2011-08-18 | Japan Ae Power Systems Corp | Insulated wire of winding for insulated oil-filled stationary induction electrical apparatus |
-
1997
- 1997-10-29 JP JP31451997A patent/JPH11134946A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011159500A (en) * | 2010-02-01 | 2011-08-18 | Japan Ae Power Systems Corp | Insulated wire of winding for insulated oil-filled stationary induction electrical apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0875907B1 (en) | Solid DC cable | |
JP2001510018A (en) | Synchronous machine | |
JP2000510316A (en) | Conductor winding structure of large electric machine | |
JPH11134946A (en) | Solid dc cable | |
JP4192323B2 (en) | Oil immersed solid power cable | |
US11145455B2 (en) | Transformer and an associated method thereof | |
JP3269547B2 (en) | Solid DC cable | |
JPH11149831A (en) | Solid dc cable | |
JP3269546B2 (en) | Solid DC cable | |
JP3614484B2 (en) | High viscosity oil immersion insulated cable | |
JP3533290B2 (en) | Oil immersion paper solid cable | |
US2709197A (en) | Electric cables | |
JP2004139848A (en) | Submarine solid cable | |
JP3641529B2 (en) | Oil-immersed paper solid DC submarine cable | |
JP2002245867A (en) | Oil impregnated dc solid cable | |
EP3345197B1 (en) | Power transmission cable and process for the production of power transmission cable | |
JP2000322935A (en) | Insulating paper and oil impregnated solid power cable | |
JP4265044B2 (en) | AC OF power cable | |
JP2001023449A (en) | Plastic laminate paper and oil-impregnated solid power cable using thereof | |
JP2571412B2 (en) | OF cable | |
US20240282488A1 (en) | Electrical Insulation Tube | |
JP2001084848A (en) | Dc o.f. power cable | |
JP3050316B1 (en) | Submarine solid cable | |
JPH022366B2 (en) | ||
JP3571143B2 (en) | Metal cross-linked polyethylene insulated power cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041028 |
|
RD04 | Notification of resignation of power of attorney |
Effective date: 20051107 Free format text: JAPANESE INTERMEDIATE CODE: A7424 |
|
A977 | Report on retrieval |
Effective date: 20060529 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20060704 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061027 |