JPH11132112A - Recirculation exhaust gas cooling device - Google Patents

Recirculation exhaust gas cooling device

Info

Publication number
JPH11132112A
JPH11132112A JP9334742A JP33474297A JPH11132112A JP H11132112 A JPH11132112 A JP H11132112A JP 9334742 A JP9334742 A JP 9334742A JP 33474297 A JP33474297 A JP 33474297A JP H11132112 A JPH11132112 A JP H11132112A
Authority
JP
Japan
Prior art keywords
passage
exhaust gas
core member
egr
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9334742A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Akao
好之 赤尾
Norio Nakazawa
則雄 中沢
Koji Ogita
浩司 荻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP9334742A priority Critical patent/JPH11132112A/en
Priority to DE19848564A priority patent/DE19848564C2/en
Priority to KR1019980044950A priority patent/KR100325485B1/en
Priority to US09/182,282 priority patent/US6161528A/en
Publication of JPH11132112A publication Critical patent/JPH11132112A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a cooling performance, form a device in a compact size, lighten a weight, reduce costs, improve durability, and improve a performance for loading the device on a vehicle, in an EGR cooler for cooling circulating exhaust gas, in the case where exhaust gas is recirculated efficiently for reducing NOx in exhaust gas of an engine. SOLUTION: A ceramic made cylindrical heat exchange core member 36 provided with many penetrating passages 42 having a small cross section crossing an EGR gas passage 20 and a cooling fluid passage 40, is arranged, and is rotated loosely. A passage part cooled by the cooling fluid is cooled by bypassing EGR gas, and thereby, the volumetric efficiency of an engine is increased. The core member 36 is formed as a ceramic material such as cordierite whose passage opening rate is 50 to 80%, hydraulic diameter of a passage is 0.3 to 1.0 mm, porosity is 20 to 30%, and sliding members 56, 62 arranged on an end wall side of a housing which is brought into sliding-contact with the core member is formed as a solid lubricating material such as copper, carbon, fluoride, and oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エンジン、特にト
ラック等に搭載されるディーゼルエンジン用の再循環排
気ガス冷却装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recirculation exhaust gas cooling system for a diesel engine mounted on an engine, particularly a truck or the like.

【0002】[0002]

【従来の技術】従来、トラック等の車両用ディーゼルエ
ンジンから排出される排気ガス中の有害成分である窒素
酸化物(NO)を低減するため、エンジンの排気ガス
の一部を同エンジンの吸気に混入して燃焼温度及び圧力
を抑制するようにした排気ガス再循環装置は公知であ
る。(以下、場合により、この装置をEGR装置と称
し、再循環される排気ガスをEGRガスという。)
2. Description of the Related Art Conventionally, in order to reduce nitrogen oxide (NO x ), which is a harmful component in exhaust gas discharged from a diesel engine for vehicles such as trucks, a part of the exhaust gas of the engine is taken into the intake air of the engine. Exhaust gas recirculation devices that are mixed into the exhaust gas to suppress the combustion temperature and pressure are known. (Hereinafter, in some cases, this device is referred to as an EGR device, and the exhaust gas that is recirculated is referred to as an EGR gas.)

【0003】上記EGR装置付エンジンでは、高温の排
気ガスを吸気に混入することにより、吸気温度が上昇し
て体積効率が低下するため、エンジンの出力、燃費等の
性能が悪化すると共に、場合により、燃焼が悪化して黒
煙の増加等排気ガス中の他の有害成分の増加を招く、等
の問題がある。そこで、上記EGRガスを冷却すること
によって吸気温度を低下させ、体積効率の相対的な向上
を図り、エンジンの出力、燃費及び排出ガス性能を改善
するようにした種々の再循環排気ガス冷却装置(以下、
場合により、EGRクーラという)が、既に提案され実
用に供せられている。
[0003] In the engine with the EGR device, by mixing high-temperature exhaust gas into the intake air, the intake air temperature rises and the volume efficiency decreases, so that the performance of the engine, such as output and fuel efficiency, deteriorates. In addition, there is a problem that combustion deteriorates to cause an increase in other harmful components in exhaust gas such as an increase in black smoke. Therefore, various recirculation exhaust gas cooling devices (which reduce the intake air temperature by cooling the EGR gas, thereby relatively improving the volumetric efficiency, and improving the engine output, fuel consumption and exhaust gas performance) Less than,
In some cases, referred to as an EGR cooler) has already been proposed and put into practical use.

【0004】従来のEGRクーラには、エンジンの冷却
水を冷却するラジエータと本質的に同様の構造を有する
プレートフィン式及び多管式の冷却装置が広く使用され
ているが、排気ガスがEGRクーラを通過する際の圧力
損失が大きく、所要量の冷却されたEGRガスをエンジ
ンに供給するために必要なEGRクーラの容積及び重量
が相対的に大きくなる不具合がある。
In the conventional EGR coolers, plate fin type and multi-tube type cooling devices having a structure essentially similar to a radiator for cooling engine cooling water are widely used. There is a problem that the pressure loss at the time of passing through the EGR is large, and the volume and weight of the EGR cooler required to supply a required amount of cooled EGR gas to the engine become relatively large.

【0005】また、排気ガス中のNOを一層低減する
ために、EGRガスの還流量をさらに増大しようとする
場合、特に、吸気圧力が高い過給機付エンジンにおい
て、EGRガスを吸気通路内に流入させる場合、上記プ
レートフィン式及び多管式のEGRクーラを通過する排
気ガスの圧力損失を低減してその流量を増加させるため
には、熱交換体(コア部)の管路断面積を増大させる必
要があるので、EGRクーラの容積が一層大きくなって
車両への搭載性が悪化し、さらに重量が増大する不都合
がある。加えて、上記プレートフィン式及び多管式のE
GRクーラは、常時一方向のみにEGRガスが流れるた
め燃料の未燃物等が管路壁に付着し、使用時間の経過と
共に、管路断面積が小さくなり、圧力損失の増大と共
に、熱交換性能即ち冷却性能が悪化する不具合がある。
Further, in order to reduce the NO x in the exhaust gas even when attempting to increase the recirculation amount of EGR gas further particularly high intake air pressure in an engine with a supercharger, the EGR gas intake passage In order to reduce the pressure loss of the exhaust gas passing through the plate fin type and the multi-tube type EGR coolers and increase the flow rate thereof, the pipe cross-sectional area of the heat exchanger (core portion) is required. Since it is necessary to increase the EGR cooler, the volume of the EGR cooler is further increased, so that the mountability on the vehicle is deteriorated and the weight is further increased. In addition, the plate fin type and the multi-tube type E
In the GR cooler, the EGR gas always flows in only one direction, so that unburned fuel or the like adheres to the pipeline wall, and as the usage time elapses, the pipeline cross-sectional area decreases, the pressure loss increases, and heat exchange occurs. There is a problem that the performance, that is, the cooling performance is deteriorated.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記事情に
鑑み創案されたもので、冷却性能が良く、通過する排気
ガスの圧力損失が小さく、従って、所要の冷却されたE
GRガス流量を容易に確保することができる小型軽量で
かつ車両への搭載性が優れ、しかも安価で耐久性が優れ
たEGRクーラを提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a good cooling performance and a small pressure loss of exhaust gas passing therethrough.
It is an object of the present invention to provide an EGR cooler which is small and lightweight, can easily secure a GR gas flow rate, has excellent mountability on a vehicle, is inexpensive and has excellent durability.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、エンジンの排気ガスの一部を吸気と共に
同エンジンのシリンダ内に還流させる排気還流通路と、
同排気還流通路及び冷却流体通路にわたり介装されて回
転し、冷却流体により冷却されたコア部分を排気ガスが
通過することにより同排気ガスを冷却する熱交換コア部
材とを備え、同コア部材が、その回転軸線に対し実質的
に平行に貫通して多数隣接し形成された小断面積の通路
を有するセラミックス製の円柱状部材によって構成され
た再循環排気ガス冷却装置を提案するものである。
In order to achieve the above object, the present invention provides an exhaust gas recirculation passage for recirculating a part of exhaust gas of an engine together with intake air into a cylinder of the engine.
A heat exchange core member that rotates while being interposed across the exhaust gas recirculation passage and the cooling fluid passage, and cools the exhaust gas by passing the exhaust gas through a core portion cooled by the cooling fluid. Another object of the present invention is to provide a recirculation exhaust gas cooling device constituted by a ceramic cylindrical member having a large number of small cross-sectional area passages penetrating substantially parallel to its rotation axis.

【0008】上記構成によれば、耐熱性が優れかつ単位
容積当りの熱交換面積を十分大きく確保することができ
るセラミックス製の円柱状部材からなるコア部材を、エ
ンジンの排気ガス還流通路及び冷却流体通路にわたり配
設して回転させることにより、効果的にEGRガスを冷
却し得る小型で熱交換効率が優れたEGRクーラを安価
に提供することができる。
According to the above construction, the core member made of a ceramic cylindrical member having excellent heat resistance and capable of securing a sufficiently large heat exchange area per unit volume is provided with an exhaust gas recirculation passage of an engine and a cooling fluid. By arranging and rotating over the passage, a small-sized EGR cooler capable of effectively cooling the EGR gas and having excellent heat exchange efficiency can be provided at low cost.

【0009】本発明においては、上記コア部材の開口率
が50〜80%であることが好ましく、開口率を上記範
囲に設定することによって、同コア部材内を流れる排気
ガス及び冷却流体の圧力損失を低減し、EGRガスの冷
却効率を増大すると共に、EGRガス流量即ちエンジン
へのEGRガス供給量の増大を図ることができる。
In the present invention, the opening ratio of the core member is preferably 50 to 80%. By setting the opening ratio in the above range, the pressure loss of the exhaust gas and the cooling fluid flowing in the core member is reduced. , The cooling efficiency of the EGR gas is increased, and the flow rate of the EGR gas, that is, the amount of the EGR gas supplied to the engine, can be increased.

【0010】また、本発明において、上記コア部材に形
成される上記通路の水力直径が0.3〜1.0mmであ
ることが望ましく、EGRガスの通路断面の形状を上記
範囲に設定することによって、EGRガス及び冷却流
体、特に前者の圧力損失を低減して熱交換効率を増大し
EGRガスの冷却を効果的に行ない、従って小型のEG
Rクーラで十分な量のEGRガスをエンジンに対し供給
することができる。さらに、本発明においては、上記コ
ア部材を形成するセラミックス材の気孔率が10〜30
%であることが好ましい。セラミックス材の気孔率を上
記範囲に設定することによって、車両用エンジンの排気
ガス浄化用に広く採用されている三元触媒用のセラミッ
クス担体の製造技術及び設備を用いて、上記コア部材を
安価に入手し得ることとなる。
In the present invention, the hydraulic diameter of the passage formed in the core member is desirably 0.3 to 1.0 mm, and the cross-sectional shape of the EGR gas passage is set in the above range. , The EGR gas and the cooling fluid, in particular, the pressure loss of the former is reduced to increase the heat exchange efficiency and to effectively cool the EGR gas.
The R cooler can supply a sufficient amount of EGR gas to the engine. Further, in the present invention, the porosity of the ceramic material forming the core member is 10 to 30.
%. By setting the porosity of the ceramic material in the above range, the core member can be inexpensively manufactured by using a ceramic carrier manufacturing technology and equipment widely used for purifying exhaust gas of a vehicle engine. It will be available.

【0011】なおまた、本発明においては、上記コア部
材を収容するハウジングにおける同コア部材の通路開口
端に摺接する摺動部材が銅系、炭素系、フッ化物系及び
酸化物系等の固体潤滑材により作られていることが望ま
しい。回転するセラミックス製コア部材の端面に摺接す
る摺動部材を銅系、炭素系、フッ化物系及び酸化物系等
の固体潤滑材、特にアルミニウム青銅とすることによっ
て、高温下における摩擦を低減して駆動装置の容量を小
さくし、かつコア部材の端面の欠損等の破損を効果的に
防止することができる。加えて、コア部材が回転するこ
とにより、EGRガスの通路と冷却流体通路とが同一で
あり、かつ逆方向にEGRガスと冷却流体とを通過させ
ることにより、燃料未燃物による通路の目詰りを防止す
ることができる。
In the present invention, the sliding member which slides on the passage opening end of the core member in the housing for accommodating the core member is a solid lubricating material such as a copper-based, carbon-based, fluoride-based or oxide-based solid member. It is desirable to be made of wood. By using a copper-based, carbon-based, fluoride-based and oxide-based solid lubricant, particularly aluminum bronze, as the sliding member that slides on the end face of the rotating ceramic core member, friction at high temperatures can be reduced. The capacity of the driving device can be reduced, and breakage such as loss of the end surface of the core member can be effectively prevented. In addition, the passage of the EGR gas and the cooling fluid passage are the same as the core member rotates, and the passage of the EGR gas and the cooling fluid in the opposite directions causes clogging of the passage due to unburned fuel. Can be prevented.

【0012】[0012]

【発明の実施の形態】以下本発明の好ましい実施形態を
添付図面について具体的に説明する。先ず、図1の概略
構成図において、符号10は車両用の4サイクル多気筒
ディーゼルエンジン(図示の場合は4気筒)を示し、同
エンジン10は排気マニホールド12を含む排気通路1
4を備えると共に、吸気マニホールド16を含む吸気通
路18を備えている。また、一端上流端が上記排気通路
14の適所に連通すると共に、他端下流端が上記吸気通
路18の適所に連通する排気ガス還流通路20(以下場
合により、EGR通路という)が備えられ、同EGR通
路20には、総括的に符号22で示したEGRクーラが
介装され、また同EGR通路20のEGRクーラ22よ
り上流側に再循環排気ガスの流量を制御する可変開度の
EGR弁24が介装されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be specifically described below with reference to the accompanying drawings. First, in the schematic configuration diagram of FIG. 1, reference numeral 10 denotes a four-cycle multi-cylinder diesel engine (four cylinders in the illustrated case) for a vehicle, and the engine 10 includes an exhaust passage 1 including an exhaust manifold 12.
4 and an intake passage 18 including an intake manifold 16. In addition, an exhaust gas recirculation passage 20 (hereinafter, sometimes referred to as an EGR passage) having an upstream end communicating with an appropriate position of the exhaust passage 14 and an downstream end communicating with an appropriate position of the intake passage 18 is provided. The EGR passage 20 is provided with an EGR cooler generally indicated by reference numeral 22, and a variable opening EGR valve 24 for controlling the flow rate of recirculated exhaust gas upstream of the EGR cooler 22 in the EGR passage 20. Is interposed.

【0013】上記EGR弁24は、エンジン10の回転
数を検知する回転数センサ26の回転数信号Ne、エン
ジン10の冷却水温を検知する温度センサ28の水温信
号Tw、エンジン10の負荷センサ30により検知され
る負荷信号Le、吸気通路18内の吸気圧力を検知する
圧力センサ32の吸気圧信号Pi、その他エンジン10
の運転状態を示す信号を受容して、エンジン10に供給
される適量のEGRガス量を設定し、EGRガス量に応
じた弁開度を設定するコントロールユニット34によっ
て制御される。
The EGR valve 24 is provided with a rotation speed signal Ne of a rotation speed sensor 26 for detecting the rotation speed of the engine 10, a water temperature signal Tw of a temperature sensor 28 for detecting the cooling water temperature of the engine 10, and a load sensor 30 of the engine 10. The detected load signal Le, the intake pressure signal Pi of the pressure sensor 32 for detecting the intake pressure in the intake passage 18, and the other engine 10
Is received by the control unit 34, which sets the appropriate amount of EGR gas supplied to the engine 10 and sets the valve opening according to the amount of EGR gas.

【0014】上記EGRクーラ22は、電動モータ等の
駆動装置によって回転中心線O−Oの回りを緩速度で回
転駆動される熱交換コア部材36(以下単にコア部材と
いう)と、同コア部材36を収容するハウジング38と
を備え、同ハウジング38には、上記EGR通路20が
連通すると共に、冷却流体通路40が連通している。同
冷却流体通路40は、好ましくは空気等の冷却気体が図
中に矢印で示すように流通され、同冷却空気には、別設
された空気圧縮機又は送風機の吐出空気或いはエンジン
10の冷却水を冷却するラジエータ(図示せず)を通る
走行風等を適宜に用いることができる。
The EGR cooler 22 includes a heat exchange core member 36 (hereinafter, simply referred to as a core member) that is driven to rotate around a rotation center line OO at a slow speed by a driving device such as an electric motor. And a housing 38 in which the EGR passage 20 communicates and a cooling fluid passage 40 communicates with the housing 38. In the cooling fluid passage 40, a cooling gas such as air is preferably circulated as indicated by an arrow in the drawing, and the cooling air includes discharge air of a separately provided air compressor or blower or cooling water of the engine 10. A traveling wind or the like passing through a radiator (not shown) that cools the air can be used as appropriate.

【0015】上記EGRクーラ22の詳細な構造が、図
2の断面図、図3の正面図及び図4の部分的拡大図に示
されている。(なお、図2は図3のII−II線に沿う
断面図であり、図3はEGRガス入口側から視た正面図
である。) 上記コア部材36は、中心線O−Oの回りに回転する円
柱状部材から形成されており、好ましくは、コージェラ
イト、β−スポジューメン等のセラミックス材により、
従来車両用エンジンの排気ガス浄化用に広く使用されて
いる触媒コンバータの担体と同様に、例えば押出し成形
法によって製造される。
The detailed structure of the EGR cooler 22 is shown in a sectional view of FIG. 2, a front view of FIG. 3, and a partially enlarged view of FIG. (Note that FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 3, and FIG. 3 is a front view viewed from the EGR gas inlet side.) The core member 36 is arranged around a center line OO. It is formed of a rotating cylindrical member, preferably, cordierite, by a ceramic material such as β-spodumene,
It is manufactured by, for example, an extrusion molding method, similarly to a carrier of a catalytic converter widely used for purifying exhaust gas of a conventional vehicle engine.

【0016】コア部材36の内部には、図4の部分的拡
大図に示されているように、上記回転軸線O−Oに対し
て実質的に平行な多数の小断面積の貫通した通路42が
形成されている。通路42は、図示の場合、一辺の長さ
hの正方形の断面形状を備え、各通路42を区分する仕
切壁44の厚さtは、加工技術上及びコア部材36の強
度上許容される範囲内でなるべく薄く形成され、一例と
してt=0.1mmに形成される。
Inside the core member 36, as shown in the partially enlarged view of FIG. 4, a plurality of small cross-sectional through-passages 42 substantially parallel to the rotation axis OO. Are formed. In the illustrated case, the passage 42 has a square cross-sectional shape with a length h on one side, and the thickness t of the partition wall 44 that divides each passage 42 is within an allowable range in terms of processing technology and strength of the core member 36. The thickness is formed as thin as possible, for example, t = 0.1 mm.

【0017】上記仕切壁44の厚さtをなるべく小さく
設定することによって、コア部材36の開口率即ち、同
コア部材36の外径によって囲まれる円の断面積に対す
る上記通路42の全断面積の比を十分大きくすることが
でき、後述するように、コア部材36を通るEGRガス
及び冷却流体の圧力損失を小さくし、流量を増加させる
ことができる。
By setting the thickness t of the partition wall 44 as small as possible, the opening ratio of the core member 36, that is, the total sectional area of the passage 42 with respect to the sectional area of a circle surrounded by the outer diameter of the core member 36, is determined. The ratio can be made sufficiently large, and as described later, the pressure loss of the EGR gas and the cooling fluid passing through the core member 36 can be reduced, and the flow rate can be increased.

【0018】上記コア部材36は、上記軸線O−O方向
の両端面にEGR通路20及び冷却通路40を限界する
管路又はダクト20′及び40′が接続される円筒状の
ハウジング38内に収容されている。上記ハウジング3
8は、円筒状をなす外周壁48と、軸線方向両端のエン
ドプレート50及び52とからなり、図3に示されてい
るように、EGR通路下流側のエンドプレート52は円
環状外枠部52aと直径方向の橋架部52bとからなる
正面形状(以下θ型形状という)を備え、外枠部52a
は、多数のボルト54によって上記外周壁48の端部に
形成されたフランジ48aに着脱自在に固着される。一
方、EGR通路上流側のエンドプレート50は、他端の
エンドプレート52と同様のθ型形状を有し、溶接等に
より外周壁48の他端開口部に固着される。
The core member 36 is accommodated in a cylindrical housing 38 to which ducts or ducts 20 'and 40' for limiting the EGR passage 20 and the cooling passage 40 are connected to both end faces in the direction of the axis OO. Have been. The above housing 3
8 includes a cylindrical outer peripheral wall 48 and end plates 50 and 52 at both ends in the axial direction. As shown in FIG. 3, the end plate 52 on the downstream side of the EGR passage has an annular outer frame portion 52a. And a diametrical bridge portion 52b (hereinafter referred to as a θ-shaped shape).
Is detachably fixed to a flange 48a formed at the end of the outer peripheral wall 48 by a number of bolts 54. On the other hand, the end plate 50 on the upstream side of the EGR passage has the same θ-shape as the end plate 52 at the other end, and is fixed to the other end opening of the outer peripheral wall 48 by welding or the like.

【0019】上記θ型形状をなすエンドプレート50及
び52の一方の半月形開口にはEGR通路20が接続さ
れ、他方の半月形通路には冷却流体通路40が接続され
る。EGR通路上流側のエンドプレート50とコア部材
36の対向する端面との間に、銅系、炭素系、フッ化物
系及び酸化物系等の固体潤滑材製、好ましくはアルミニ
ウム青銅製のθ型形状のシール板又は摺動部材56が介
装され、同摺動部材56は耐熱性ステンレス、インコネ
ル等の薄板材で作られたシールダイヤフラム58によっ
て、コア部材36の上流端面に圧接されている。同シー
ルダイヤフラム58は、ハウジング38の外周壁48と
コア部材36の外周面との間の環状空間60とEGR通
路20との連通を遮断する。
The EGR passage 20 is connected to one of the half-moon-shaped openings of the end plates 50 and 52 having the θ-shape, and the cooling fluid passage 40 is connected to the other half-moon-shaped passage. Between the end plate 50 on the upstream side of the EGR passage and the opposite end face of the core member 36, a θ-shaped shape made of a solid lubricant such as a copper-based, carbon-based, fluoride-based, or oxide-based material, preferably made of aluminum bronze. The sliding member 56 is pressed against the upstream end face of the core member 36 by a sealing diaphragm 58 made of a thin plate material such as heat-resistant stainless steel or Inconel. The seal diaphragm 58 blocks communication between the annular space 60 between the outer peripheral wall 48 of the housing 38 and the outer peripheral surface of the core member 36 and the EGR passage 20.

【0020】EGR通路20の下流側のエンドプレート
52とコア部材36の対向する端面との間に、上記同様
に、好ましくはアルミニウム青銅製のθ型もしくは半月
形又はD型形状の摺動部材62が介装され、EGR通路
側に介装された正面形状がD字状をなすステンレス又は
インコネル等の薄板材で作られた耐熱性ステンレス、イ
ンコネル等の薄板材で作られたシールダイヤフラム64
によってコア部材36の下流端に圧接されている。同シ
ールダイヤフラム64は、上記環状空間60とEGR通
路20との連通を遮断する。なお、上記外周壁48には
適数の通気孔66が穿設されていて環状空間60が大気
に連通され、同空間の温度上昇が防止されるように構成
されている。
Similarly, between the end plate 52 on the downstream side of the EGR passage 20 and the opposing end face of the core member 36, a sliding member 62 preferably made of aluminum bronze having a .theta. And a seal diaphragm 64 made of a thin plate material such as stainless steel or Inconel made of a thin plate material such as stainless steel or Inconel and having a D-shape in front view and provided on the EGR passage side.
Thus, the core member 36 is pressed against the downstream end of the core member 36. The seal diaphragm 64 blocks communication between the annular space 60 and the EGR passage 20. An appropriate number of ventilation holes 66 are formed in the outer peripheral wall 48 so that the annular space 60 communicates with the atmosphere, and the temperature of the space is prevented from rising.

【0021】上記摺動部材56及び62の中央部分に
は、コア部材36に対し同軸的に円板状をなすコア支持
板68及び70が相対回転自在に嵌装され、同コア支持
板68及び70には、コア部材36内に予め形成された
1個以上複数個(図示の場合は2個)の偏心配置されか
つ軸線方向に貫通した筒状空所72内に嵌装された駆動
補助用パイプ材74の両端部に突設された支持軸76が
夫々嵌装されている。
At the center of the sliding members 56 and 62, core support plates 68 and 70, which are formed in a disk shape coaxially with the core member 36, are fitted to be rotatable relative to each other. In 70, one or more (two in the illustrated case) pre-formed eccentrically arranged eccentrically arranged in the core member 36 and fitted to a cylindrical space 72 penetrating in the axial direction are provided for driving assistance. Support shafts 76 projecting from both ends of the pipe member 74 are fitted respectively.

【0022】また、何れか一方の支持板、図示の場合、
EGR通路下流側のコア支持板70には、駆動軸78の
一端が螺合して固定され、同駆動軸78の他端は、キー
80によって図示を省略されている減速機付電動モータ
等駆動装置の出力軸82に連結されている。なお、図2
及び図3において符号84は、コア部材36の回転に伴
ない上記シール板56及び62が連れ回りすることを禁
止するため、エンドプレート50及び52とシール板5
6及び62との間に夫々介装された回り止めピンであ
る。
In addition, any one of the support plates,
One end of a drive shaft 78 is screwed and fixed to the core support plate 70 on the downstream side of the EGR passage. The other end of the drive shaft 78 is driven by a key 80 for driving an electric motor with a speed reducer (not shown). It is connected to the output shaft 82 of the device. Note that FIG.
In FIG. 3, reference numeral 84 denotes the end plates 50 and 52 and the seal plates 5 to prevent the seal plates 56 and 62 from rotating together with the rotation of the core member 36.
6 and 62 are detent pins interposed respectively.

【0023】上記構成において、エンジン10の運転
中、排気通路14に排出された排気ガスの一部が、エン
ジン10の運転状態に応じコントロールユニット34に
よって開度を制御されるEGR弁24により流量を制御
されてEGR通路20内を流れる。一方、上記駆動装置
によりその出力軸82が緩やかに回転し、キー80、駆
動軸78を介してコア支持板70が同一の角速度で回転
する。支持板70の回転がパイプ材74及びコア支持板
68を介してコア部材36に伝達され、同コア部材36
が緩やかに回転する。
In the above configuration, during the operation of the engine 10, a part of the exhaust gas discharged into the exhaust passage 14 has a flow rate controlled by the EGR valve 24 whose opening is controlled by the control unit 34 in accordance with the operating state of the engine 10. Controlled and flows through the EGR passage 20. On the other hand, the output shaft 82 is gently rotated by the drive device, and the core support plate 70 is rotated at the same angular velocity via the key 80 and the drive shaft 78. The rotation of the support plate 70 is transmitted to the core member 36 via the pipe member 74 and the core support plate 68, and the core member 36
Rotates slowly.

【0024】コア部材36の回転により、図示の場合、
多数の小さい断面積を有する軸線方向に貫通した通路4
2の略半数に冷却流体通路40からの冷却流体が流れ、
仕切壁44を冷却する。一方、残りの略半数の通路42
には、上記EGR通路20からのEGRガスが流れるの
で、高温のEGRガスが仕切壁44に接して冷却された
のち、エンジン10の吸気通路18に供給され、吸気に
混合してエンジン10の燃焼室に供給される。
By rotation of the core member 36, in the case shown in FIG.
Axially penetrating passage 4 with a large number of small cross-sections
The cooling fluid from the cooling fluid passage 40 flows through approximately half of the two,
The partition wall 44 is cooled. On the other hand, approximately half of the remaining passages 42
Since the EGR gas flows from the EGR passage 20 through the EGR passage 20, the high-temperature EGR gas is cooled in contact with the partition wall 44, and then supplied to the intake passage 18 of the engine 10 and mixed with the intake air to combust the engine 10. Supplied to the room.

【0025】冷却されたEGRガスが吸気と共にエンジ
ンの燃焼室に供給されるので、体積効率が増大し、エン
ジンの出力、燃費が改善され、また黒煙等排出ガス性能
が向上する。
Since the cooled EGR gas is supplied to the combustion chamber of the engine together with the intake air, the volumetric efficiency is increased, the output and fuel consumption of the engine are improved, and the performance of exhaust gas such as black smoke is improved.

【0026】上記のように、セラミックス製のコア部材
36がコア支持板70,68及びパイプ材74を介して
中心部で駆動されるので、セラミックス材が有する本質
的な脆性にも拘わらず、コア部材36を駆動トルクの負
荷に耐えて安全かつ確実に回転させることができ、また
小型軽量、安価な駆動構造によって駆動することができ
る。さらに、コア部材36の回転運動に伴ないその軸線
方向両端面に摺接する摺動部材56及び62が銅系、炭
素系、フッ化物系及び酸化物系の固体潤滑材、特に好ま
しくは、アルミニウム青銅により作られているので、高
温下の摩擦係数が十分小さく、摺動相手のコア部材36
の端面を傷めることがない利点があり、さらに、鋳造が
可能であるので複雑な形状の成形が容易な利点がある。
As described above, since the ceramic core member 36 is driven at the central portion through the core support plates 70 and 68 and the pipe member 74, the core member 36 is formed despite the inherent brittleness of the ceramic material. The member 36 can be rotated safely and reliably while enduring the load of the driving torque, and can be driven by a small, lightweight, and inexpensive driving structure. Further, the sliding members 56 and 62 slidingly contacting both end surfaces in the axial direction with the rotation of the core member 36 are made of a copper-based, carbon-based, fluoride-based or oxide-based solid lubricant, particularly preferably aluminum bronze. , The coefficient of friction under high temperature is sufficiently small,
There is an advantage that the end face is not damaged, and further, since casting is possible, it is easy to form a complicated shape.

【0027】次に、コア部材36をセラミックス材、特
にコージェライト、β−スポジューメで作り、その気孔
率を10〜30%とすることによって、従来から車両用
エンジンの排気浄化用触媒コンバータとして広く使用さ
れ、多量に生産されている触媒担体の製造技術を適用し
て、多数の小断面積の通路42と筒状空所72とを備え
たコア部材36を、押出し成形により容易かつ安価に製
造し得る利点がある。
Next, the core member 36 is made of a ceramic material, in particular, cordierite or β-spodumée, and has a porosity of 10 to 30%, so that it has been widely used as a catalytic converter for exhaust gas purification of a vehicle engine. The core member 36 having a large number of passages 42 having a small cross-sectional area and the cylindrical space 72 is easily and inexpensively manufactured by extrusion molding by applying the manufacturing technology of the catalyst carrier which is mass-produced. There are benefits to gain.

【0028】また、車両への搭載に適した或る与えられ
た体積を有するコア部材36のEGRガス及び冷却流
体、特に前者との熱交換容量は、EGRガス等に接する
熱交換面積、即ち、多数の通路42を限界する仕切壁4
4の表面積と、上記通路42を流れるEGRガスの圧力
損失、即ちコア部材36を流れるEGRガスの流量とに
関係する。特に、エンジンの排気ガスを作動媒体として
ガスタービンを駆動し、同タービンにより吸気を加圧す
る空気圧縮機を駆動するようにしたターボ過給機を搭載
したエンジンの場合、吸気通路18内の吸気圧力が高い
ため、排気ガス圧力と吸気圧力との差圧が小さくなり、
本質的に、EGRガスのエンジン10への供給量が低減
する傾向があるので、上記圧力損失の低減は、EGRガ
ス流量を確保する点で特に重要である。
Further, the heat exchange capacity of the core member 36 having a given volume suitable for mounting on a vehicle with the EGR gas and the cooling fluid, particularly the former, is a heat exchange area in contact with the EGR gas or the like, that is, Partition wall 4 that limits many passages 42
4 and the pressure loss of the EGR gas flowing through the passage 42, that is, the flow rate of the EGR gas flowing through the core member 36. In particular, in the case of an engine equipped with a turbocharger that drives a gas turbine using exhaust gas from the engine as a working medium and drives an air compressor that pressurizes intake air with the turbine, the intake pressure in the intake passage 18 Is higher, the differential pressure between the exhaust gas pressure and the intake pressure becomes smaller,
Essentially, the amount of supply of the EGR gas to the engine 10 tends to be reduced. Therefore, the reduction of the pressure loss is particularly important in securing the flow rate of the EGR gas.

【0029】図5は、コア部材36の開口率δ%(即
ちコア部材36の多数の通路42の回転軸線O−Oに直
交する平面内の断面積をコア部材36の上記平面図にお
ける断面積で除したものに100を乗じた値)と圧力損
失率の増減、即ち開口率を10%を1としたときの圧力
損失の変化との相関関係を示したものである。同図は、
C=16F(α)LνGρ/(πD)即ち、通路42
の形状のみで決まる常数C=1とし、また、通路42の
断面積と等価の断面積を有する円の直径、即ち水力直径
=1mmとした場合のものである。図から明らかな
ように、開口率δの増大と共に圧力損失が急速に増大
するが、通路42を区分する仕切壁44の強度の関係か
ら、図中に縦線Z及びZで示したように50%以上
80%以下の領域が、実用上好適であることが明らかで
ある。なお、上記常数Cを表わす式において、F(α)
は通路42の摩擦係数を決める通路形状の関数、Lは通
路42の軸線方向の長さ、νはEGRガス又は冷却流体
の動粘性係数、GはEGRガス又は冷却流体の流量、ρ
はEGRガス又は冷却流体の密度、Dはコア部材36の
外径である。
FIG. 5 is a cross in the plan view of an aperture ratio [delta] c% (i.e. a number of core members 36 a cross-sectional area in a plane perpendicular to the rotational axis O-O of the passage 42 of the core member 36 of the core member 36 The figure shows the correlation between the value obtained by dividing the area by 100 and multiplying by 100) and the increase / decrease in the pressure loss rate, that is, the change in the pressure loss when the opening ratio is set to 10%. The figure shows
C = 16F (α) LνGρ / (πD 2 ), that is, the passage 42
, And the diameter of a circle having a cross-sectional area equivalent to the cross-sectional area of the passage 42, that is, the hydraulic diameter D h = 1 mm. As can be seen, the pressure loss with increasing aperture ratio [delta] c increases rapidly, from the relationship between the strength of the partition walls 44 partitioning the passages 42, shown in vertical line Z 1 and Z 2 in FIG. As described above, it is clear that the region of 50% or more and 80% or less is practically suitable. In the equation representing the constant C, F (α)
Is a function of the passage shape that determines the friction coefficient of the passage 42, L is the axial length of the passage 42, ν is the kinematic viscosity coefficient of the EGR gas or the cooling fluid, G is the flow rate of the EGR gas or the cooling fluid, ρ
Is the density of the EGR gas or the cooling fluid, and D is the outer diameter of the core member 36.

【0030】次に、図6は、上記図5と同じくC=1
(常数)とし、開口率δ=10%の条件で、通路42
の水力直径D(mm)を横軸にとり、縦軸に圧力損失
率の増減(倍)をとって示した線図である。図示のよう
に、水力直径Dが縦線Zの0.3mm以上1mmの
範囲が良好であることが確認された。
Next, FIG. 6 shows C = 1 as in FIG.
(Constant number), the passage 42 under the condition of the opening ratio δ c = 10%.
FIG. 4 is a diagram showing the hydraulic diameter D h (mm) of the graph as abscissa and the increase / decrease (fold) of the pressure loss rate as ordinate. As shown, the hydraulic diameter D h is 0.3mm or more 1mm range of vertical lines Z 3 was confirmed to be good.

【0031】なお、図7は、横軸に水力直径D(m
m)をとると共に、縦軸に温度効率(%)をとり、常数
C′=(λN)/(8cpG)=0.01〔ここ
に、λはEGRガス又は冷却流体の熱伝導率、NはE
GRガス又は冷却流体のヌセルト数、Dはコア部材36
の外径、cpはEGRガス又は冷却流体の比熱、GはE
GRガス又は冷却流体の流量を表わす。〕β=通路42
の単位体積当りの伝熱面積(m/m)=1000の
条件下で、水力直径Dと温度効率(%)との関係を調
べた線図である。図中の縦線Zで示されているよう
に、水力直径1mm以下の通路42の場合、温度効率が
90%以上で良好な効率が得られることが明らかであ
る。
FIG. 7 shows the hydraulic diameter D h (m) on the horizontal axis.
m) and temperature efficiency (%) on the vertical axis, constant C ′ = (λN u D 2 ) / (8 cpG) = 0.01 [where λ is the thermal conductivity of EGR gas or cooling fluid. , Nu is E
Nusselt number of GR gas or cooling fluid, D is core member 36
, Cp is the specific heat of EGR gas or cooling fluid, G is E
Indicates the flow rate of GR gas or cooling fluid. Β = passage 42
FIG. 4 is a diagram illustrating a relationship between a hydraulic diameter Dh and a temperature efficiency (%) under a condition of a heat transfer area per unit volume (m 2 / m 3 ) = 1000. As indicated by a vertical line Z 4 in the drawing, when the hydraulic diameter less than 1mm passage 42, the temperature efficiency is obvious that a good efficiency is obtained in 90%.

【0032】また、図8は、図7と同じく上記常数C′
=0.01とし、水力直径D=0.5mmという条件
下で、単位伝熱面積β(m/m)と温度効率(%)
との関係を調べたもので、図中に縦線Zで示したよう
に、単位体積内の伝熱面積βが1000以上で95%程
度以上の良好な温度効率が得られることが判った。
FIG. 8 shows the constant C 'as in FIG.
= 0.01 and hydraulic diameter D h = 0.5 mm, unit heat transfer area β (m 2 / m 3 ) and temperature efficiency (%)
Those of examining the relationship between, as shown in the vertical line Z 5 in the figure, the heat transfer area β in a unit volume was found to be good temperature efficiencies of more than about 95% over 1000 to obtain .

【0033】上記図5ないし図8の線図を綜合的に観察
して、コア部材36の開口率は50〜80%であること
が有利であり、またコア部材36に設けられる通路42
の水力直径は0.3〜1.0mmであることが有利であ
ることが確認され、これらにより圧力損失が小さく、か
つEGRガスの冷却性能が優れた小型軽量で搭載性が優
れ、耐久性及び信頼性が優れたEGRクーラが得られる
ことが明らかになった。
Comprehensively observing the diagrams shown in FIGS. 5 to 8, it is advantageous that the opening ratio of the core member 36 is 50 to 80%, and the passage 42 provided in the core member 36 is advantageous.
It has been confirmed that the hydraulic diameter is advantageously 0.3 to 1.0 mm, whereby the pressure loss is small, the EGR gas cooling performance is excellent, the compactness and weight are excellent, the mountability is excellent, the durability and It became clear that an EGR cooler with excellent reliability was obtained.

【0034】なお、上記実施形態では、コア部材36内
に多数設けられる通路42が、コア部材軸線O−Oに対
し直角な平面内で正方形の断面形状を有するように形成
されているが、縦横辺の長さが異る長方形の断面形状、
または正五角形や正六角形等任意形状の多角形断面とす
ることができ、さらに同心円状に配置され、任意数の半
径方向仕切壁44で区画された扇形断面の通路とするこ
ともできる。なおまた、上記実施形態では、EGRガス
と冷却流体とが夫々略半円内の通路42群を対向方向に
流れるように形成されているが、両者が流れる通路42
群の断面積を異る面積とすることができ、また流れ方向
を同一方向としてもよい。さらに、コア部材36の駆動
手段として、エンジン10のクランク軸に連動する歯車
やベルトを介して上記駆動軸78を駆動するようにして
も良い。また、図1におけるEGRクーラ22により冷
却されたEGRガスの一部又は全部を、図示の吸気通路
18を経由することなく、エンジン10のシリンダヘッ
ド内に形成された独立のポートを経て直接燃焼室内に供
給することもできる。
In the above embodiment, a large number of passages 42 provided in the core member 36 are formed so as to have a square cross section in a plane perpendicular to the core member axis OO. Rectangular cross-sectional shape with different side lengths,
Alternatively, the passage may have a polygonal cross section of an arbitrary shape such as a regular pentagon or a regular hexagon, and may be a concentrically arranged passage having a fan-shaped cross section defined by an arbitrary number of radial partition walls 44. Further, in the above embodiment, the EGR gas and the cooling fluid are formed so as to flow through the passages 42 in a substantially semicircle in the facing direction, respectively.
The cross-sectional areas of the groups may be different areas, and the flow directions may be the same. Further, as the driving means of the core member 36, the driving shaft 78 may be driven via a gear or a belt interlocking with the crankshaft of the engine 10. Further, a part or all of the EGR gas cooled by the EGR cooler 22 in FIG. 1 is directly passed through an independent port formed in the cylinder head of the engine 10 without passing through the illustrated intake passage 18. Can also be supplied.

【0035】[0035]

【発明の効果】叙上のように、本発明に係る再循環排気
ガス冷却装置は、エンジンの排気ガスの一部を吸気と共
に同エンジンのシリンダ内に還流させる排気還流通路
と、同排気還流通路及び冷却流体通路にわたり介装され
て回転し、冷却流体により冷却されたコア部分を排気ガ
スが通過することにより同排気ガスを冷却する熱交換コ
ア部材とを備え、同コア部材が、その回転軸線に対し実
質的に平行に貫通して多数隣接し形成された小断面積の
通路を有するセラミックス製の円柱状部材によって構成
されたことを特徴とし、EGRガスを効果的に冷却して
エンジンの燃焼室に供給することができ、エンジンの体
積効率を向上して出力、燃費、排出ガス性能等を改善す
ることができる小型軽量で耐久性が優れ、さらに車両へ
の搭載性が優れたEGRクーラを安価に提供し得る利点
がある。
As described above, the recirculation exhaust gas cooling device according to the present invention has an exhaust recirculation passage for recirculating a part of the engine exhaust gas together with intake air into a cylinder of the engine, and an exhaust recirculation passage. And a heat exchange core member that rotates while being interposed across the cooling fluid passage and that cools the exhaust gas by passing the exhaust gas through a core portion cooled by the cooling fluid, wherein the core member has a rotation axis thereof. Characterized in that it is constituted by a ceramic columnar member having a large number of small cross-sectional area passages penetrating substantially in parallel with each other and effectively cooling the EGR gas to combust the engine. E that can be supplied to the room, improve the volumetric efficiency of the engine and improve the output, fuel efficiency, exhaust gas performance, etc., is small and light, has excellent durability, and is excellent in mounting on vehicles. There is an advantage that can provide R cooler inexpensively.

【0036】また上記再循環排気ガス冷却装置におい
て、上記コア部材の開口率を50〜80%とすることに
より、EGRガス及び冷却流体の圧力損失が小さく、所
与の体積を有するコア部材によって多量のかつ十分に冷
却されたEGRガス流量を得ることができる利点があ
る。また、上記コア部材に形成された上記通路の水力直
径を0.3〜1.0mmに設定することによって、EG
Rガス及び冷却流体の圧力損失の低減と熱交換効率の増
大とを両立させることができ、従って小型軽量のEGR
クーラによって、十分に冷却された多量のEGRガスを
エンジンに供給し得る利点がある。さらに、上記コア部
材を形成するセラミックス材の気孔率を10〜30%と
することにより、排気ガス浄化用触媒コンバータの担体
として広く使用されているコージェライトやβ−スポジ
ューメン等からなるコア部材を、上記担体の製造技術及
び設備を活用して安価に製造し得る効果がある。なおま
た、上記コア部材を収容するハウジングにおける同コア
部材の通路開口端に摺接する摺動部材が銅系、炭素系、
フッ化物系及び酸化物系等の固体潤滑材により作られて
いることにより、高温下における摺動部材とセラミック
ス製コア部材との摩擦抵抗が小さく、コア部材端部の欠
損等の損傷を生ずることがなく、かつコア部材を回転さ
せるための所要トルクが小さく、駆動装置の容量を小さ
くし得る利点があり、また摺動部材を鋳造によって作る
ことができるので、製造コストの低減を図り得る利点が
ある。
In the recirculating exhaust gas cooling device, by setting the opening ratio of the core member to 50 to 80%, the pressure loss of the EGR gas and the cooling fluid is small, and the core member having a given volume has a large amount. There is an advantage that a good and sufficiently cooled EGR gas flow rate can be obtained. Further, by setting the hydraulic diameter of the passage formed in the core member to 0.3 to 1.0 mm, the EG is improved.
It is possible to achieve both a reduction in the pressure loss of the R gas and the cooling fluid and an increase in the heat exchange efficiency.
The cooler has the advantage that a large amount of sufficiently cooled EGR gas can be supplied to the engine. Further, by setting the porosity of the ceramic material forming the core member to 10 to 30%, a core member made of cordierite, β-spodumene, or the like, which is widely used as a carrier of an exhaust gas purifying catalytic converter, can be used. There is an effect that the carrier can be manufactured at low cost by utilizing the manufacturing technology and equipment. Further, a sliding member that slides on a passage opening end of the core member in the housing that houses the core member is a copper-based, carbon-based,
The frictional resistance between the sliding member and the ceramic core member at high temperatures is small due to the fact that it is made of a solid lubricant such as fluoride or oxide, and damage such as chipping at the end of the core member may occur. And the torque required for rotating the core member is small, and the capacity of the drive unit can be reduced. Further, since the sliding member can be formed by casting, the manufacturing cost can be reduced. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る再循環排気ガス冷却装置を含むエ
ンジン全体の概念的構成図である。
FIG. 1 is a conceptual configuration diagram of an entire engine including a recirculation exhaust gas cooling device according to the present invention.

【図2】図1におけるEGRクーラ22の拡大断面図
(図3のII−II線に沿う断面)である。
FIG. 2 is an enlarged cross-sectional view of the EGR cooler 22 in FIG. 1 (a cross-section taken along line II-II in FIG. 3).

【図3】図2に示したEGRクーラ22の正面図であ
る。
FIG. 3 is a front view of the EGR cooler 22 shown in FIG.

【図4】図3におけるコア部材36の部分的拡大正面図
である。
FIG. 4 is a partially enlarged front view of a core member 36 in FIG.

【図5】コア部材36の開口率と圧力損失率との関係を
示した線図である。
FIG. 5 is a diagram showing a relationship between an opening ratio of the core member 36 and a pressure loss rate.

【図6】コア部材36の通路42の水力直径と圧力損失
率との関係を示した線図である。
FIG. 6 is a diagram showing a relationship between a hydraulic diameter of a passage 42 of a core member 36 and a pressure loss rate.

【図7】コア部材36の通路42の水力直径と温度効率
との関係を示した線図である。
FIG. 7 is a diagram showing a relationship between a hydraulic diameter of a passage 42 of a core member 36 and temperature efficiency.

【図8】コア部材36の単位伝熱面積と温度効率との関
係を示した線図である。
FIG. 8 is a diagram showing a relationship between a unit heat transfer area of the core member 36 and temperature efficiency.

【符号の説明】[Explanation of symbols]

10…エンジン、14…排気通路、18…吸気通路、2
0…排気ガス還流通路(EGR通路)、22…再循環排
気ガス冷却装置(EGRクーラ)、24…EGR弁、3
4…コントロールユニット、36…熱交換コア部材、3
8…ハウジング、40…冷却流体通路、42…通路、4
4…通路の仕切壁、48…ハウジングの外周壁、50及
び52…エンドプレート、56及び62…摺動部材、5
8…シールダイヤフラム、68及び70…コア支持板、
72…筒状空所、74…駆動補助用パイプ材、78…駆
動軸、82…出力軸。
10 engine, 14 exhaust passage, 18 intake passage, 2
0: exhaust gas recirculation passage (EGR passage), 22: recirculating exhaust gas cooling device (EGR cooler), 24: EGR valve, 3
4 ... Control unit, 36 ... Heat exchange core member, 3
8 housing, 40 cooling fluid passage, 42 passage, 4
4. Partition wall of passage, 48 ... outer peripheral wall of housing, 50 and 52 ... end plate, 56 and 62 ... sliding member, 5
8 seal diaphragm, 68 and 70 core support plate
Reference numeral 72 denotes a cylindrical space, 74 denotes a drive assisting pipe member, 78 denotes a drive shaft, and 82 denotes an output shaft.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 エンジンの排気ガスの一部を吸気と共に
同エンジンのシリンダ内に還流させる排気還流通路と、
同排気還流通路及び冷却流体通路にわたり介装されて回
転し、冷却流体により冷却されたコア部分を排気ガスが
通過することにより同排気ガスを冷却する熱交換コア部
材とを備え、同コア部材が、その回転軸線に対し実質的
に平行に貫通して多数隣接し形成された小断面積の通路
を有するセラミックス製の円柱状部材によって構成され
たことを特徴とする再循環排気ガス冷却装置。
An exhaust recirculation passage for recirculating a part of the exhaust gas of the engine together with intake air into a cylinder of the engine;
A heat exchange core member that rotates while being interposed across the exhaust gas recirculation passage and the cooling fluid passage, and cools the exhaust gas by passing the exhaust gas through a core portion cooled by the cooling fluid. A recirculation exhaust gas cooling device comprising a ceramic cylindrical member having a large number of small cross-sectional area passages penetrating substantially parallel to the rotation axis thereof.
【請求項2】 上記コア部材の開口率が50〜80%で
あることを特徴とする請求項1記載の再循環排気ガス冷
却装置。
2. The recirculation exhaust gas cooling device according to claim 1, wherein an opening ratio of the core member is 50 to 80%.
【請求項3】 上記コア部材に形成された上記通路の水
力直径が0.3〜1.0mmであることを特徴とする請
求項1又は請求項2記載の再循環排気ガス冷却装置。
3. The recirculation exhaust gas cooling device according to claim 1, wherein a hydraulic diameter of the passage formed in the core member is 0.3 to 1.0 mm.
【請求項4】 上記コア部材を形成するセラミックス材
の気孔率が10〜30%であることを特徴とする請求項
1、請求項2又は請求項3記載の再循環排気ガス冷却装
置。
4. The recirculation exhaust gas cooling device according to claim 1, wherein the porosity of the ceramic material forming the core member is 10 to 30%.
【請求項5】 上記コア部材を収容するハウジングにお
ける同コア部材の通路開口端に摺接する摺動部材が銅
系、炭素系、フッ化物系及び酸化物系等の固体潤滑材に
より作られていることを特徴とする請求項1ないし4の
何れかに記載された再循環排気ガス冷却装置。
5. A sliding member which slides on a passage opening end of the core member in the housing for accommodating the core member is made of a solid lubricant such as a copper-based, carbon-based, fluoride-based or oxide-based lubricant. The recirculation exhaust gas cooling device according to any one of claims 1 to 4, wherein:
JP9334742A 1997-10-29 1997-10-29 Recirculation exhaust gas cooling device Pending JPH11132112A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9334742A JPH11132112A (en) 1997-10-29 1997-10-29 Recirculation exhaust gas cooling device
DE19848564A DE19848564C2 (en) 1997-10-29 1998-10-21 Cooling device for recirculated exhaust gas
KR1019980044950A KR100325485B1 (en) 1997-10-29 1998-10-27 recircular exhaust gas cooling Apparatus
US09/182,282 US6161528A (en) 1997-10-29 1998-10-29 Recirculating exhaust gas cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9334742A JPH11132112A (en) 1997-10-29 1997-10-29 Recirculation exhaust gas cooling device

Publications (1)

Publication Number Publication Date
JPH11132112A true JPH11132112A (en) 1999-05-18

Family

ID=18280725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9334742A Pending JPH11132112A (en) 1997-10-29 1997-10-29 Recirculation exhaust gas cooling device

Country Status (1)

Country Link
JP (1) JPH11132112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367253B2 (en) 2002-05-28 2010-06-16 Dayco Ensa, S.L. Heat exchanger for an EGR system with an integrated by-pass duct.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367253B2 (en) 2002-05-28 2010-06-16 Dayco Ensa, S.L. Heat exchanger for an EGR system with an integrated by-pass duct.

Similar Documents

Publication Publication Date Title
US6161528A (en) Recirculating exhaust gas cooling device
US5987885A (en) Combination catalytic converter and heat exchanger that maintains a catalyst substrate within an efficient operating temperature range for emmisions reduction
US5983628A (en) System and method for controlling exhaust gas temperatures for increasing catalyst conversion of NOx emissions
RU2395752C2 (en) Waste gas heat exchanger, namely waste gas cooler for recirculation of waste gases in automobiles
US8689547B2 (en) Annular heat exchanger
US7931013B2 (en) Three-pass heat exchanger for an EGR system
US6378509B1 (en) Exhaust gas recirculation system having multifunction valve
EP1429101A2 (en) Heat-exchanger assembly with wedge-shaped tubes with balanced coolant flow
JP2007023911A (en) Exhaust gas re-circulation device
US20100050631A1 (en) System and method for locomotive exhaust gas recirculation cooling and catalyst heating
JPH11514721A (en) Catalytic converter with radial outflow and bypass valve
JP2005273564A (en) Exhaust gas recirculation device
US20160090902A1 (en) Engine system for emissions compliance
US6546919B2 (en) Combined remote first intake air aftercooler and a second fluid from an engine cooler for an engine
CN101240759A (en) Exhaust gas recirculation apparatus
WO2011017272A1 (en) Exhaust gas recirculation system and apparatus for a locomotive two-stroke uniflow scavenged diesel engine
JPS5920853B2 (en) gas turbine equipment
JP3780729B2 (en) Recirculation exhaust gas cooling system
JPH11132112A (en) Recirculation exhaust gas cooling device
WO2011017265A1 (en) Exhaust gas recirculation system for a locomotive two-stroke uniflow scavenged diesel engine
JP3817874B2 (en) Recirculation exhaust gas cooling system
JPH11141408A (en) Recycled exhaust gas cooling device
JP2000257513A (en) Recirculating exhaust gas cooling device
JP2001280130A (en) Cooling structure for engine
DE102018205355A1 (en) Internal combustion engine with exhaust aftertreatment and method for operating such an internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060314