JPH11130900A - Finely porous polyethylene membrane - Google Patents

Finely porous polyethylene membrane

Info

Publication number
JPH11130900A
JPH11130900A JP9294095A JP29409597A JPH11130900A JP H11130900 A JPH11130900 A JP H11130900A JP 9294095 A JP9294095 A JP 9294095A JP 29409597 A JP29409597 A JP 29409597A JP H11130900 A JPH11130900 A JP H11130900A
Authority
JP
Japan
Prior art keywords
membrane
stretching
polyethylene
porosity
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9294095A
Other languages
Japanese (ja)
Inventor
Takuya Hasegawa
卓也 長谷川
Yoko Tsumato
陽子 妻藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9294095A priority Critical patent/JPH11130900A/en
Publication of JPH11130900A publication Critical patent/JPH11130900A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject finely porous membrane that has higher ion permeability than that of conventional membrane and can retain the membrane thickness and porosity that are needed for manifesting membrane strength. SOLUTION: This membrane is a finely porous one made of polyethylene that has a flex ratio of >=1.0-1.5, a porosity of 10-80% and the average pore diameter of 0.01-0.3 μm. In addition, the thickness of this membrane is 1-500 μm. preferably 5-200 μm. In the production of this finely porous membrane, for example, a polyethylene (preferably with a weight-average molecular weight of 1,000,000-4,000,000) is dissolved in a plasticizer at a higher temperature than its melting point, cooled down lower than the crystallization temperature to form polymer gel. Then, the gel is oriented, the plasticizer is removed from the gel by extraction, and the gel is oriented again, then heat-set or heat-relaxed. The resultant finely porous membrane is useful as a separator for lithium ion secondary battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はポリエチレン微多孔
膜およびそれからなる電池用セパレーターに関するもの
である。
The present invention relates to a microporous polyethylene membrane and a battery separator comprising the same.

【0002】[0002]

【従来の技術】ポリエチレン微多孔膜は精密濾過膜、通
気性衣料用途、電池用セパレーター、コンデンサー用セ
パレーター等に使用されている。このうち、電池用セパ
レーター、特にリチウムイオン電池用セパレーターとし
て使用する際は、電気伝導度の低い有機電解液に対応す
べく、特に高いイオン透過性が求められている。
2. Description of the Related Art Microporous polyethylene membranes are used in microfiltration membranes, breathable clothing applications, battery separators, condenser separators, and the like. Among them, when used as a battery separator, particularly a lithium ion battery separator, particularly high ion permeability is required to correspond to an organic electrolyte having low electric conductivity.

【0003】微多孔膜のイオン透過性を改善する方法と
しては、従来より薄膜化や高気孔率化等が知られていた
が、これらの方法ではイオン透過性の改善と引き替えに
微多孔膜の強度が損なわれるため、その使用には自ずと
限界があった。そこで、強度発現に必要な膜厚および気
孔率を維持しつつ、かつ従来膜よりも高いイオン透過性
を示し得るようなポリエチレン微多孔膜が求められてい
た。
[0003] As a method of improving the ion permeability of a microporous membrane, thinning and increasing the porosity have been conventionally known. However, in these methods, the microporous membrane is replaced with an improvement in the ion permeability. Its use was naturally limited due to the reduced strength. Therefore, there has been a demand for a microporous polyethylene membrane capable of maintaining a film thickness and a porosity required for strength development and exhibiting higher ion permeability than conventional membranes.

【0004】特開平7−228718号公報は、リチウ
ム二次電池の内部短絡を改善するポリオレフィン微多孔
膜を開示しているが、イオン透過性には着目しておら
ず、かつ十分ではなかった。
Japanese Patent Application Laid-Open No. 7-228718 discloses a microporous polyolefin membrane for improving the internal short circuit of a lithium secondary battery, but does not pay attention to ion permeability and is not sufficient.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、強度
発現に必要な膜厚及び気孔率を維持し、かつ高いイオン
透過性を有したポリエチレン微多孔膜を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a microporous polyethylene membrane which maintains a film thickness and a porosity required for strength development and has high ion permeability.

【0006】[0006]

【課題を解決するための手段】前記課題について鋭意研
究を重ねた結果、特定の孔構造を持つポリエチレン微多
孔膜は同じ気孔率の従来膜よりも高いイオン透過性を有
することを見いだし、本発明をなすに至った。すなわち
この発明は、屈曲率が1.0〜1.5、気孔率が10%
〜80%、平均孔径が0.01μm〜0.3μmである
ことを特徴とするポリエチレン微多孔膜に関する。さら
に、このポリエチレン微多孔膜からなる電池用セパレー
ターに関する。
As a result of intensive studies on the above problems, it has been found that a microporous polyethylene membrane having a specific pore structure has higher ion permeability than a conventional membrane having the same porosity. Was reached. That is, according to the present invention, the bending rate is 1.0 to 1.5 and the porosity is 10%.
To 80% and an average pore diameter of 0.01 to 0.3 μm. Further, the present invention relates to a battery separator comprising the polyethylene microporous membrane.

【0007】本発明における屈曲率は、微多孔膜内部の
孔をこれと等価な円筒型キャピラリーの集合体で置き換
えたときの、膜厚に対する該キャピラリーの長さの比と
して定義される。ここで、屈曲率1.0とはイオンの移
動距離と膜厚が等しい場合を意味しており、このときの
微多孔膜は同じ気孔率の微多孔膜の中で最も高いイオン
透過性を示し得る。一方、屈曲率が1.0より大きい
と、イオンの移動距離が膜厚よりも長くなり、屈曲率の
増加に伴いイオン透過性は低下する。このことは膜の電
気伝導度λeff =(気孔率/屈曲率2 )×λ(λ=溶媒の
電気伝導度)の式で電気伝導度が屈曲率の2乗に反比例
することにも示されている。
In the present invention, the bending ratio is defined as the ratio of the length of the capillary to the film thickness when the pores inside the microporous membrane are replaced by an equivalent set of cylindrical capillaries. Here, the bending rate of 1.0 means that the ion movement distance is equal to the film thickness, and the microporous membrane at this time shows the highest ion permeability among the microporous membranes having the same porosity. obtain. On the other hand, if the bending ratio is larger than 1.0, the moving distance of the ions becomes longer than the film thickness, and the ion permeability decreases as the bending ratio increases. This is also shown in the equation of the electrical conductivity of the film λ eff = (porosity / flexibility 2 ) × λ (λ = electric conductivity of the solvent), where the electrical conductivity is inversely proportional to the square of the flexural modulus. ing.

【0008】従来のポリエチレン微多孔膜は屈曲率が
1.5より大きいため、高いイオン透過性を得るために
は気孔率を高くする事が必須であった。これに対し、本
発明では屈曲率を変えることにより、イオン透過性を改
善するものである。本発明で使用するポリエチレンは、
エチレンを主体とした結晶性の重合体である高密度ポリ
エチレン、もしくはエチレン単位に対してプロピレン、
ブテン、ペンテン、ヘキセン、オクテン等のα−オレフ
ィンの単位を4モル%以下の割合で含む共重合体(線状
共重合ポリエチレン)であってもよい。さらに、これら
にポリプロピレン、中密度ポリエチレン、線状低密度ポ
リエチレン、低密度ポリエチレン、EPR等のポリオレ
フィンを30%以下の割合でブレンドしてもかまわな
い。
Since the conventional microporous polyethylene membrane has a flexural modulus of more than 1.5, it is necessary to increase the porosity in order to obtain high ion permeability. On the other hand, in the present invention, the ion permeability is improved by changing the bending ratio. Polyethylene used in the present invention,
High-density polyethylene which is a crystalline polymer mainly composed of ethylene, or propylene for ethylene units,
A copolymer (linear copolymer polyethylene) containing units of α-olefin such as butene, pentene, hexene and octene at a ratio of 4 mol% or less may be used. Further, a polyolefin such as polypropylene, medium-density polyethylene, linear low-density polyethylene, low-density polyethylene, and EPR may be blended with these at a ratio of 30% or less.

【0009】原料ポリエチレンの重量平均分子量は10
万から400万、好ましくは20万から70万、さらに
好ましくは25万から50万である。重量平均分子量が
10万より小さいと延伸時に破断しやすく、400万よ
り大きいと熱溶液の製造が困難になるため好ましくな
い。また、ブレンドや多段重合等の手段によって重量平
均分子量を好ましい範囲に調節してもかまわない。
The weight average molecular weight of the raw material polyethylene is 10
It is from 10,000 to 4,000,000, preferably from 200,000 to 700,000, and more preferably from 250,000 to 500,000. If the weight average molecular weight is less than 100,000, it tends to break during stretching, and if it is more than 4,000,000, it becomes difficult to produce a hot solution, which is not preferable. Further, the weight average molecular weight may be adjusted to a preferable range by means such as blending or multi-stage polymerization.

【0010】微多孔膜の膜厚は1〜500μm、好まし
くは5〜200μm、さらに好ましくは10〜50μm
である。前記膜厚が1μmより小さいと膜の機械強度が
十分ではなく、500μmより大きいと電池の小型軽量
化に支障が生じる。本発明における気孔率は、10〜8
0%、好ましくは20〜70%、さらに好ましくは30
〜70%である。気孔率が10%より小さいと透過性が
十分ではなく、80%より大きいと十分な機械強度が得
られない。
The thickness of the microporous membrane is 1 to 500 μm, preferably 5 to 200 μm, more preferably 10 to 50 μm.
It is. When the film thickness is smaller than 1 μm, the mechanical strength of the film is not sufficient. The porosity in the present invention is 10 to 8
0%, preferably 20-70%, more preferably 30%
~ 70%. If the porosity is less than 10%, the permeability is not sufficient, and if the porosity is more than 80%, sufficient mechanical strength cannot be obtained.

【0011】平均孔径および屈曲率は、気体および液体
透過の併用測定による「気液法」によって求めることが
出来る。本発明における平均孔径は0.01〜0.3μ
m、好ましくは0.02〜0.2μmである。平均孔径
が0.01μmより小さいと透過性が十分ではなく、平
均孔径が0.3μmより大きいと析出したデンドライト
や崩落した活物質による短絡が懸念されるため、電池用
セパレーターとしての使用には適さない。また、活物質
の脱落、貫通による内部短絡を防止するために、最大孔
径は0.5μm以下であることが好ましい。ここで最大
孔径とは、0.05重量%のプルラン水溶液を透過させ
た際、阻止率90%を示すプルランの分子量の値からF
loryの理論を利用して換算される孔径をいう。この
阻止率は、GPC(ゲルパーミエーションクロマトグラ
フィー)測定法で得られる。
[0011] The average pore diameter and the flexural modulus can be determined by the "gas-liquid method" based on the combined measurement of gas and liquid permeation. Average pore size in the present invention is 0.01 to 0.3μ
m, preferably 0.02 to 0.2 μm. If the average pore size is smaller than 0.01 μm, the permeability is not sufficient, and if the average pore size is larger than 0.3 μm, there is a concern that a dendrite deposited or a collapsed active material may cause a short circuit, so that it is suitable for use as a battery separator. Absent. Further, in order to prevent an internal short circuit due to falling off or penetration of the active material, the maximum pore diameter is preferably 0.5 μm or less. Here, the maximum pore size is defined as F from the value of the molecular weight of pullulan showing a rejection of 90% when a 0.05% by weight aqueous solution of pullulan is permeated.
It refers to the pore size converted using the theory of lowy. This rejection can be obtained by a GPC (gel permeation chromatography) measurement method.

【0012】本発明における屈曲率は、1.0以上1.
5未満、好ましくは1.0〜1.47、さらに好ましく
は1.0〜1.4である。屈曲率が1.5を超えて高く
なるほど高いイオン透過性が得られない。突刺強度は1
50g以上、好ましくは250g以上である。突刺強度
が150gより小さいと、脱落した活物質等によってセ
パレーターが短絡する可能性がある。
The bending ratio in the present invention is 1.0 or more.
It is less than 5, preferably 1.0 to 1.47, more preferably 1.0 to 1.4. Higher ion permeability cannot be obtained as the flexural modulus exceeds 1.5. Piercing strength is 1
It is 50 g or more, preferably 250 g or more. If the puncture strength is smaller than 150 g, the separator may be short-circuited by the dropped active material or the like.

【0013】次に本発明のポリエチレン微多孔膜の製造
方法について説明する。ポリエチレン微多孔膜は、ポリ
エチレンをその融点以上で可塑剤と呼ばれる溶媒に溶解
し、これを結晶化温度以下まで冷却して高分子ゲルを生
成し、さらに該高分子ゲルを延伸したあと可塑剤を抽出
除去し、その後に再び延伸を施し、その後好ましくは熱
固定あるいは熱緩和等の熱処理を行うことによって製造
される。これらの工程をそれぞれ成膜工程、抽出前延伸
工程、抽出工程、抽出後延伸工程及び熱処理工程と呼
ぶ。
Next, a method for producing the microporous polyethylene membrane of the present invention will be described. A polyethylene microporous membrane is obtained by dissolving polyethylene in a solvent called a plasticizer at a temperature higher than its melting point, cooling the same to a temperature lower than a crystallization temperature to form a polymer gel, and further stretching the polymer gel to form a plasticizer. It is manufactured by extracting and removing the film, and then performing stretching again, and then preferably performing heat treatment such as heat fixing or thermal relaxation. These steps are called a film forming step, a stretching step before extraction, an extraction step, a stretching step after extraction, and a heat treatment step, respectively.

【0014】ここでいう可塑剤とは、その沸点以下の温
度でポリエチレンと均一な溶液を形成しうる有機化合物
の事であり、具体的にはデカリン、キシレン、ジオクチ
ルフタレート、ジブチルフタレート、ステアリルアルコ
ール、オレイルアルコール、デシルアルコール、ノニル
アルコール、ジフェニルエーテル、n−デカン、n−ド
デカン、パラフィン油等が挙げられる。このうちパラフ
ィン油、ジオクチルフタレート、デカリンが好ましい。
高分子ゲル中の可塑剤の重量分率は特に限定はされない
が、20%から90%、好ましくは50%から70%で
ある。20%以下では適当な気孔率を有する微多孔膜を
得る事が難しく、90%以上では熱溶液の粘度が低下し
てシートの連続成形が困難となる。
The term "plasticizer" as used herein refers to an organic compound capable of forming a uniform solution with polyethylene at a temperature not higher than its boiling point. Specifically, decalin, xylene, dioctyl phthalate, dibutyl phthalate, stearyl alcohol, Oleyl alcohol, decyl alcohol, nonyl alcohol, diphenyl ether, n-decane, n-dodecane, paraffin oil and the like are mentioned. Of these, paraffin oil, dioctyl phthalate and decalin are preferred.
The weight fraction of the plasticizer in the polymer gel is not particularly limited, but is 20% to 90%, preferably 50% to 70%. If it is less than 20%, it is difficult to obtain a microporous film having an appropriate porosity, and if it is more than 90%, the viscosity of the hot solution is reduced, making it difficult to continuously form a sheet.

【0015】成膜方法については特に限定はされない
が、例えば押出機にポリエチレンのパウダーと可塑剤を
供給し、溶融混練したあと、通常のハンガーコートダイ
から冷却ロールの上へキャストする事によって数10μ
mから数mmまでのシートを連続的に成形する事が出来
る。本発明においては超高分子量ポリエチレンを必須成
分としないため、特別な加熱溶解設備を必要とせず、押
出機にポリエチレンと可塑剤を添加するだけで極めて簡
便に均質なシートの調整を行う事が可能である。
[0015] The film forming method is not particularly limited. For example, a polyethylene powder and a plasticizer are supplied to an extruder, melt-kneaded, and then cast from a usual hanger coat die onto a cooling roll for several tens of μm.
Sheets from m to several mm can be formed continuously. In the present invention, since ultra-high molecular weight polyethylene is not an essential component, no special heating and melting equipment is required, and it is possible to adjust a homogeneous sheet extremely simply by adding polyethylene and a plasticizer to the extruder. It is.

【0016】次に、得られたシートを少なくとも1軸方
向に延伸する事によって延伸膜とする。延伸方法として
は特に限定はされないが、テンター法、ロール法、圧延
法等が使用できる。このうち、テンター法による同時2
軸延伸が好ましい。延伸温度は常温から高分子ゲルの融
点までの範囲、好ましくは80〜130℃、さらに好ま
しくは100〜125℃である。延伸倍率は面積倍率で
4〜400倍であり、好ましくは8〜200倍、さらに
好ましくは16〜100倍である。延伸倍率が4倍より
低いとセパレーターとして強度が不十分であり、400
倍を超えると延伸が困難であるのみならず得られた微多
孔膜の気孔率の低下等の弊害が生じやすい。
Next, the obtained sheet is stretched in at least one axial direction to form a stretched film. The stretching method is not particularly limited, but a tenter method, a roll method, a rolling method, or the like can be used. Of these, simultaneous 2 by the tenter method
Axial stretching is preferred. The stretching temperature is in the range from room temperature to the melting point of the polymer gel, preferably 80 to 130C, more preferably 100 to 125C. The stretching ratio is 4 to 400 times, preferably 8 to 200 times, and more preferably 16 to 100 times in area ratio. If the stretching ratio is lower than 4 times, the strength as a separator is insufficient,
If the number exceeds twice, not only stretching is difficult, but also adverse effects such as a decrease in porosity of the obtained microporous membrane are likely to occur.

【0017】次に、延伸膜から可塑剤を抽出除去する事
によって抽出膜とする。抽出溶剤としては、例えば、n
−ヘキサンやシクロヘキサン等の炭化水素類、塩化メチ
レンや1,1,1−トリクロロエタン等のハロゲン化炭
化水素類、エタノールやイソプロパノール等のアルコー
ル類、ジエチルエーテルやテトラヒドロフラン等のエー
テル類、アセトンや2−ブタノン等のケトン類が挙げら
れる。抽出方法としては特に限定はされないが、パラフ
ィン油やジオクチルフタレートを使用する場合は前記抽
出溶剤で抽出したあと、得られた抽出膜の孔が閉塞する
温度以下で加熱乾燥する事によって除去する事が出来
る。また、可塑剤にデカリン等の低沸点化合物を使用す
る場合は、微多孔膜の孔が閉塞する温度以下で加熱乾燥
するだけで除去する事が可能である。いずれの場合も膜
の収縮による物性低下を防ぐため、膜を拘束する事が好
ましい。
Next, a plasticizer is extracted and removed from the stretched film to obtain an extracted film. As the extraction solvent, for example, n
-Hydrocarbons such as hexane and cyclohexane, halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane, alcohols such as ethanol and isopropanol, ethers such as diethyl ether and tetrahydrofuran, acetone and 2-butanone And the like. Although there is no particular limitation on the extraction method, when paraffin oil or dioctyl phthalate is used, it can be removed by extracting with the above-mentioned extraction solvent and then heating and drying at a temperature below the temperature at which the pores of the obtained extraction membrane are closed. I can do it. When a low boiling point compound such as decalin is used as the plasticizer, it can be removed only by heating and drying at a temperature lower than the temperature at which the pores of the microporous membrane are closed. In any case, it is preferable to restrain the film in order to prevent a decrease in physical properties due to contraction of the film.

【0018】最後に、抽出膜を再び少なくとも1軸方向
に延伸する。延伸方法としては特に限定はされないが、
テンター法、ロール法等が使用できる。延伸温度は常温
から高分子ゲルの融点までの範囲、好ましくは80〜1
30℃、さらに好ましくは100〜125℃である。延
伸倍率は面積倍率で1.0〜10倍であり、好ましくは
1.1〜6倍、さらに好ましくは1.2〜4倍である。
延伸倍率1.0倍より低いとセパレーターの屈曲率改善
が不十分であり、10倍より高いと延伸が困難である。
Finally, the extraction membrane is stretched again in at least one axial direction. The stretching method is not particularly limited,
A tenter method, a roll method and the like can be used. The stretching temperature ranges from room temperature to the melting point of the polymer gel, preferably from 80 to 1
The temperature is 30 ° C, more preferably 100 to 125 ° C. The stretching ratio is 1.0 to 10 times, preferably 1.1 to 6 times, and more preferably 1.2 to 4 times in area ratio.
If the stretching ratio is lower than 1.0, the improvement of the separator bending ratio is insufficient, and if it is higher than 10, the stretching is difficult.

【0019】一般に、抽出後延伸は気孔率を上昇させや
すい傾向があるが、延伸温度を上げる等の方法により、
気孔率の上昇を抑えて屈曲率だけ低下させることが可能
である。さらに、透過性を改善したり、寸法安定性を高
めるために、抽出後延伸に続いて、または後に、熱固定
あるいは熱緩和等の熱処理を行う事が好ましい。
In general, stretching after extraction tends to increase the porosity.
It is possible to suppress the increase in the porosity and to reduce only the bending rate. Further, in order to improve the permeability and enhance the dimensional stability, it is preferable to perform a heat treatment such as heat fixing or thermal relaxation subsequent to or after stretching after extraction.

【0020】[0020]

【発明の実施の形態】次に実施例によって本発明をさら
に詳細に説明する。実施例において示される試験方法は
次の通りである。 (1)膜厚 ダイヤルゲージ(尾崎製作所:PEACOCKNo.2
5)にて測定した。 (2)気孔率 20cm角のサンプルを微多孔膜から切り取り、その体
積と重量を求め、得られた結果から次式を用いて計算し
た。 気孔率(%)=(体積(cm3)−重量(g)/密度)
/体積(cm3)×100 (3)突刺強度 カトーテック製KES−G5ハンディー圧縮試験器を用
いて、針先端の曲率半径0.5mm、突刺速度2mm/
secの条件で突刺試験を行い、最大突刺荷重を突刺強
度(g)とした。また、突刺強度に25(μm)/膜厚
(μm)を乗じる事によって25μm換算突刺強度とし
た。 (4)透気度 JIS P−8117準拠のガーレー式透気度計にて測
定した。このときの圧力は0.01276atm、膜面
積は6.424cm2 、透過空気量は100ccであ
る。また、透気度(sec)に25(μm)/膜厚(μ
m)を乗じる事によって25μm換算透気度(sec)
とした。 (5)透水度 直径42mmのステンレス製の透液セルに、あらかじめ
アルコールに浸しておいた微多孔膜をセットし、該膜の
アルコールを水で洗浄したあと約0.5atmの差圧で
水を透過させ、120秒間経過した際の透水量(c
3 )から、単位時間・単位圧力・単位面積当たりの透
水量を計算し、これを透水度(cm3 /cm 2 sec
atm)とした。 (6)孔径および屈曲率 キャピラリー内部の流体は、流体の平均自由工程がキャ
ピラリーの孔径より小さいときはポアズイユの流れ、大
きいときはクヌーセンの流れに従うことが知られてい
る。ここで、JIS P−8117準拠の透気度測定に
おける空気の流れがクヌーセンの流れ、常温での透水度
測定における水の流れがポアズイユの流れに従うと仮定
すると、孔径d(m)と屈曲率τは、空気の透過速度定
数Rgas 、水の透過速度定数Rliq 、水の粘度η(Pa
sec)、標準圧力Ps(101325Pa)、気孔
率ε(無次元)、膜厚L(m)、気体の分子速度ν(m
/sec)から、次式を用いて求めることが出来る。
Next, the present invention will be further described by way of examples.
This will be described in detail. The test method shown in the examples is
It is as follows. (1) Film thickness dial gauge (Ozaki Seisakusho: PEACOCK No. 2)
Measured in 5). (2) Porosity A sample of 20 cm square is cut out from the microporous membrane, and its body is cut out.
Calculate the product and weight, and calculate
Was. Porosity (%) = (Volume (cmThree) -Weight (g) / density)
/ Volume (cmThree) × 100 (3) Puncture strength Use KAT-G5 Handy Compression Tester manufactured by Kato Tech
The radius of curvature at the tip of the needle is 0.5 mm and the piercing speed is 2 mm /
A piercing test is performed under the conditions of sec.
Degree (g). The piercing strength is 25 (μm) / film thickness.
(Μm) to obtain a 25 μm converted piercing strength
Was. (4) Air permeability Measured using a Gurley air permeability meter based on JIS P-8117.
Specified. The pressure at this time is 0.01276 atm, and the film surface
Product is 6.424cmTwo, The amount of permeated air is 100cc
You. Further, the air permeability (sec) is 25 (μm) / film thickness (μm).
multiplied by m) to convert the air permeability into 25 μm (sec)
And (5) Water permeability In a stainless steel liquid-permeable cell with a diameter of 42 mm,
Set the microporous membrane soaked in alcohol,
After washing the alcohol with water, with a differential pressure of about 0.5 atm
Permeate water after passing water for 120 seconds (c
mThree), The permeability per unit time, unit pressure, unit area
Calculate the amount of water and calculate the water permeability (cmThree/ Cm Twosec
atm). (6) Pore size and bending rate Fluid inside the capillary is determined by the mean free path of the fluid.
When the diameter is smaller than the diameter of the pillar, the flow of poiseuille
It is known to follow the Knudsen flow
You. Here, for air permeability measurement in accordance with JIS P-8117,
The air flow is Knudsen's flow, water permeability at room temperature
Assuming that the flow of water in the measurement follows the flow of Poiseuille
Then, the pore diameter d (m) and the bending rate τ are determined by the air transmission velocity
Number Rgas, Water transmission rate constant Rliq, Water viscosity η (Pa
 sec), standard pressure Ps (101325 Pa), pores
Rate ε (dimensionless), film thickness L (m), gas molecular velocity ν (m
/ Sec) from the following equation.

【0021】d=2ν(Rliq /Rgas )(16η/
3)(1/Ps) τ2 =dεν/(3L Ps Rgas ) ここで、Rgas は透気度(sec)から次式を用いて求
められる。 Rgas (m3 /m2 sec Pa)=0.0001/透
気度/0.0006424/(0.01276×101
325) また、Rliq は透水度(cm3 /cm2 sec at
m)から次式を用いて求められる。
D = 2ν (R liq / R gas ) (16η /
3) (1 / Ps) τ 2 = dεν / (3L Ps R gas ) Here, R gas is obtained from the air permeability (sec) using the following equation. R gas (m 3 / m 2 sec Pa) = 0.0001 / air permeability / 0.0006424 / (0.01276 × 101)
325) Also, R liq is the water permeability (cm 3 / cm 2 sec at
m) using the following equation.

【0022】Rliq (m3 /m2 sec Pa)=透水
度/1000000/0.0001/101325 さらに、νは気体定数R(8.314)、絶対温度T
(K)、円周率π、気体の平均分子量M(kg/mo
l)から次式を用いて求められる。 ν2 =8RT/πM (7)直流電気抵抗 JIS C−2313準拠の電気抵抗試験装置にて測定
した。
R liq (m 3 / m 2 sec Pa) = water permeability / 1,000,000 / 0.0001 / 101325 Further, ν is a gas constant R (8.314) and an absolute temperature T
(K), pi, average molecular weight of gas M (kg / mo)
From l), it can be obtained using the following equation. ν 2 = 8RT / πM (7) DC electric resistance It was measured with an electric resistance tester based on JIS C-2313.

【0023】また、電気抵抗値を膜厚で除した値の逆数
を膜厚換算電気伝導度とし、膜厚換算電気伝導度を気孔
率で除した値を膜厚気孔率換算電気伝導度とし、イオン
透過性の指標とした。
Further, the reciprocal of the value obtained by dividing the electric resistance value by the film thickness is defined as a film-conversion electric conductivity, and the value obtained by dividing the film-conversion electric conductivity by a porosity is defined as a film-porosity-converted electric conductivity. It was used as an index of ion permeability.

【0024】[0024]

【実施例1】高密度ポリエチレン(重量平均分子量25
万、分子量分布7、密度0.956)50重量部、流動
パラフィン50重量部及び該ポリエチレンに対して0.
3重量部のテトラキス−[メチレン−3−(3’,5’
−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピ
オネート]メタンを35mmの2軸押出機を用いて20
0℃で混練し、高分子溶液を調整し、リップ間1.7m
mのハンガーコートダイから冷却ロール上に同高分子溶
液をキャストして厚さ1.7mmのシートを得た。得ら
れたシートを同時2軸テンター延伸機を用いて、延伸温
度120℃で7×7倍に抽出前延伸し、続いて塩化メチ
レン中に浸漬して流動パラフィンを抽出除去した。さら
に、テンター延伸機を用いて、延伸温度120℃で幅方
向に1.8倍抽出後延伸した後、幅方向の延伸を17%
緩和させつつ熱処理した。膜の物性を表1及び表2に記
載した。
Example 1 High-density polyethylene (weight average molecular weight 25
10,000, molecular weight distribution 7, density 0.956) 50 parts by weight, liquid paraffin 50 parts by weight and 0.1 part by weight of the polyethylene.
3 parts by weight of tetrakis- [methylene-3- (3 ′, 5 ′)
-Di-t-butyl-4'-hydroxyphenyl) propionate] methane using a 35 mm twin screw extruder.
Knead at 0 ° C. to prepare polymer solution, 1.7 m between lips
The resulting polymer solution was cast from a hanger coat die on a cooling roll to obtain a sheet having a thickness of 1.7 mm. The obtained sheet was stretched by a simultaneous biaxial tenter stretching machine at a stretching temperature of 120 ° C. 7 × 7 times before extraction, and then immersed in methylene chloride to extract and remove liquid paraffin. Furthermore, after stretching 1.8 times in the width direction after stretching at a stretching temperature of 120 ° C. using a tenter stretching machine, the stretching in the width direction was reduced by 17%.
Heat treatment was performed while relaxing. The physical properties of the film are shown in Tables 1 and 2.

【0025】[0025]

【実施例2】流動パラフィンを抽出したシートを、抽出
後延伸工程で2枚重ねて延伸温度120℃、延伸倍率
1.8倍でロール延伸し、その後テンター延伸機を用い
て延伸温度120℃で幅方向に1.7倍延伸した後、幅
方向に固定し熱処理する以外は実施例1と同様にして微
多孔膜を得た。得られた膜の物性を表1及び表2に記載
した。
Example 2 Two sheets from which liquid paraffin had been extracted were rolled and stretched at a stretching temperature of 120 ° C. and a stretching ratio of 1.8 times in a stretching step after the extraction, and then stretched at a stretching temperature of 120 ° C. using a tenter stretching machine. After stretching 1.7 times in the width direction, a microporous film was obtained in the same manner as in Example 1 except that the film was fixed in the width direction and heat-treated. The physical properties of the obtained film are shown in Tables 1 and 2.

【0026】[0026]

【実施例3】高密度ポリエチレン(重量平均分子量40
万、分子量分布8、密度0.950)45重量部、流動
パラフィン55重量部及び該ポリエチレンに対して0.
3重量部のテトラキス−[メチレン−3−(3’,5’
−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピ
オネート]メタンを35mmの2軸押出機を用いて20
0℃で混練し高分子溶液を調整しリップ間1.7mmの
ハンガーコートダイから冷却ロール上にキャストして厚
さ1.7mmのシートを得た。得られたシートを同時2
軸テンター延伸機を用いて、延伸温度125℃で7×7
倍に抽出前延伸し、続いて塩化メチレン中に浸漬して流
動パラフィンを抽出除去した。さらに、テンター延伸機
を用いて、延伸温度120℃で幅方向に1.8倍抽出後
延伸した後、幅方向の延伸を22%緩和させつつ熱処理
した。膜の物性を表1及び表2に記載した。
Example 3 High density polyethylene (weight average molecular weight 40
10,000 parts, molecular weight distribution 8, density 0.950) 45 parts by weight, liquid paraffin 55 parts by weight and 0.1 part by weight of the polyethylene.
3 parts by weight of tetrakis- [methylene-3- (3 ′, 5 ′)
-Di-t-butyl-4'-hydroxyphenyl) propionate] methane using a 35 mm twin screw extruder.
The polymer solution was adjusted by kneading at 0 ° C., and cast on a cooling roll from a hanger coat die having a lip of 1.7 mm to obtain a sheet having a thickness of 1.7 mm. Simultaneous sheet 2 obtained
7 × 7 at a stretching temperature of 125 ° C. using an axial tenter stretching machine
It was stretched twice before extraction and then immersed in methylene chloride to extract and remove liquid paraffin. Further, using a tenter stretching machine, the film was stretched after extracting 1.8 times in the width direction at a stretching temperature of 120 ° C., and then heat-treated while relaxing the stretching in the width direction by 22%. The physical properties of the film are shown in Tables 1 and 2.

【0027】[0027]

【実施例4】高密度ポリエチレン(重量平均分子量25
万、分子量分布7、密度0.956)40.5重量部、
線状共重合ポリエチレン(メルトインデックス0.01
7、密度0.930プロピレン含有率1.6モル%)
4.5重量部、流動パラフィン55重量部及び該ポリエ
チレンに対して0.3重量部のテトラキス−[メチレン
−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキ
シフェニル)プロピオネート]メタンを35mmの2軸
押出機を用いて混練し、高分子溶液を調整し、リップ間
1.8mmのハンガーコートダイから冷却ロール上に同
高分子溶液をキャストして厚さ1.8mmのシートを得
た。得られたシートを同時2軸テンター延伸機を用い
て、延伸温度120℃で7×4倍に抽出前延伸し、続い
て塩化メチレン中に浸漬して流動パラフィンを抽出除去
した。さらに、テンター延伸機を用いて、延伸温度11
0℃で幅方向に2.8倍抽出後延伸した後、幅方向の延
伸を35%緩和させつつ熱処理した。膜の物性を表1及
び表2に記載した。また、得られた膜の最大孔径は、
0.25μmであった。
Example 4 High-density polyethylene (weight average molecular weight 25
10,000, molecular weight distribution 7, density 0.956) 40.5 parts by weight,
Linear copolymerized polyethylene (melt index 0.01
7, density 0.930 propylene content 1.6 mol%)
4.5 parts by weight, 55 parts by weight of liquid paraffin and 0.3 parts by weight based on the polyethylene of tetrakis- [methylene-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate ] Methane is kneaded using a 35 mm twin screw extruder to prepare a polymer solution, and the polymer solution is cast on a cooling roll from a hanger coat die with a lip between 1.8 mm, and then cast to a thickness of 1.8 mm. I got a sheet. The obtained sheet was stretched before extraction at a stretching temperature of 120 ° C. by 7 × 4 times using a simultaneous biaxial tenter stretching machine, and then immersed in methylene chloride to extract and remove liquid paraffin. Further, using a tenter stretching machine, a stretching temperature of 11
After extracting 2.8 times in the width direction at 0 ° C. and then stretching, heat treatment was performed while relaxing the stretching in the width direction by 35%. The physical properties of the film are shown in Tables 1 and 2. The maximum pore size of the obtained membrane is
It was 0.25 μm.

【0028】[0028]

【実施例5】高密度ポリエチレン(重量平均分子量25
万、分子量分布7、密度0.956)28重量部、線状
共重合ポリエチレン(メルトインデックス0.017、
密度0.930プロピレン含有率1.6モル%)12重
量部、流動パラフィン60部、及び該ポリエチレンに対
して0.3重量部のテトラキス−[メチレン−3−
(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェ
ニル)プロピオネート]メタンを抽出前延伸を7×7
倍、抽出後延伸を1.87倍とした後、緩和率を10%
とする以外は実施例1同様にして微多孔膜を得た。得ら
れた膜の物性を表1及び表2に記載した。
Example 5 High-density polyethylene (weight average molecular weight 25
28 parts by weight, molecular weight distribution 7, density 0.956), linear copolymer polyethylene (melt index 0.017,
Density 0.930 Propylene content 1.6 mol%) 12 parts by weight, liquid paraffin 60 parts, and 0.3 parts by weight based on the polyethylene of tetrakis- [methylene-3-
(3 ', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] stretch before extraction of methane by 7 × 7
, And after elongation after extraction was 1.87, the relaxation rate was 10%.
A microporous membrane was obtained in the same manner as in Example 1 except for the above. The physical properties of the obtained film are shown in Tables 1 and 2.

【0029】[0029]

【比較例1】抽出後延伸および熱処理を行わない以外は
実施例1と同様にして微多孔膜を得た。得られた膜の物
性を表1及び表2に記載した。
Comparative Example 1 A microporous membrane was obtained in the same manner as in Example 1 except that stretching and heat treatment were not performed after extraction. The physical properties of the obtained film are shown in Tables 1 and 2.

【0030】[0030]

【比較例2】抽出後延伸及び熱処理を行わない以外は、
実施例2と同様にして微多孔膜を得た。得られた膜の物
性を表1及び表2に記載した。
[Comparative Example 2] Except not performing stretching and heat treatment after extraction,
A microporous membrane was obtained in the same manner as in Example 2. The physical properties of the obtained film are shown in Tables 1 and 2.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【発明の効果】上述のように、本発明は従来からセパレ
ーターに要求されている強度、厚み、気孔率の値を損な
わずに、屈曲率を1.0〜1.5と低いものとすること
によって、電池特性として要求されるイオン透過性を向
上させたポリエチレン微多孔膜を提供するものである。
As described above, the present invention provides a separator having a low flexural modulus of 1.0 to 1.5 without impairing the strength, thickness and porosity values conventionally required for a separator. The present invention provides a microporous polyethylene membrane having improved ion permeability required as battery characteristics.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 屈曲率が1.0〜1.5、気孔率が10
%〜80%、平均孔径が0.01μm〜0.3μmであ
ることを特徴とするポリエチレン微多孔膜。
1. A flexural modulus of 1.0 to 1.5 and a porosity of 10
% To 80% and an average pore diameter of 0.01 μm to 0.3 μm.
【請求項2】 請求項1記載の微多孔膜からなる電池用
セパレーター。
2. A battery separator comprising the microporous membrane according to claim 1.
JP9294095A 1997-10-27 1997-10-27 Finely porous polyethylene membrane Pending JPH11130900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9294095A JPH11130900A (en) 1997-10-27 1997-10-27 Finely porous polyethylene membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9294095A JPH11130900A (en) 1997-10-27 1997-10-27 Finely porous polyethylene membrane

Publications (1)

Publication Number Publication Date
JPH11130900A true JPH11130900A (en) 1999-05-18

Family

ID=17803230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9294095A Pending JPH11130900A (en) 1997-10-27 1997-10-27 Finely porous polyethylene membrane

Country Status (1)

Country Link
JP (1) JPH11130900A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081221A (en) * 1999-09-17 2001-03-27 Asahi Kasei Corp Polyolefin microporous film
JP2001087632A (en) * 1999-09-21 2001-04-03 Asahi Kasei Corp Method for preparing hollow fibrous porous film
JP2002184383A (en) * 2000-12-18 2002-06-28 Nitto Denko Corp Separator for cell
JP2002265658A (en) * 2001-03-09 2002-09-18 Asahi Kasei Corp Highly permeable microporous film
JPWO2004085525A1 (en) * 2003-03-24 2006-06-29 旭化成ケミカルズ株式会社 Polyethylene microporous membrane
JP2007311264A (en) * 2006-05-20 2007-11-29 Nissan Motor Co Ltd Battery structure
JP2009269941A (en) * 2008-04-30 2009-11-19 Asahi Kasei E-Materials Corp Microporous polyolefin membrane
JP2010270342A (en) * 2010-09-09 2010-12-02 Asahi Kasei E-Materials Corp Polyolefin microporous film
WO2011055596A1 (en) 2009-11-09 2011-05-12 東レ株式会社 Porous film and electricity storage device
WO2011118660A1 (en) * 2010-03-23 2011-09-29 帝人株式会社 Microporous polyolefin film, separator for non-aqueous secondary battery, non-aqueous secondary battery, and process for production of microporous polyolefin film
JP2012502426A (en) * 2008-09-03 2012-01-26 エルジー・ケム・リミテッド Separator provided with porous coating layer and electrochemical device provided with the same
CN104756284A (en) * 2013-03-20 2015-07-01 株式会社Lg化学 Separator for electrochemical cell and a method of making the same
US9627672B2 (en) 2012-03-28 2017-04-18 Asahi Kasei E-Materials Corporation Separator for nonaqueous electrolyte batteries containing a porous membrane
KR20180101251A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180101263A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180101261A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180101249A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180101256A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180101241A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180101259A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180101262A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
US20180342720A1 (en) 2017-05-29 2018-11-29 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
KR20190013632A (en) 2017-07-31 2019-02-11 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery
KR20190030614A (en) 2017-09-14 2019-03-22 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR102002272B1 (en) 2018-02-09 2019-07-19 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery
KR102004120B1 (en) 2018-02-09 2019-07-25 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery
US10566594B2 (en) 2017-03-03 2020-02-18 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
KR20210055003A (en) 2019-11-06 2021-05-14 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator, nonaqueous electrolyte secondary battery member, and nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
WO2021211914A1 (en) * 2020-04-17 2021-10-21 Celgard, Llc Assymetric porous membrane
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
CN113745757A (en) * 2021-09-07 2021-12-03 广东九彩新材料有限公司 Preparation method of lithium battery safety diaphragm material
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4606532B2 (en) * 1999-09-17 2011-01-05 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
JP2001081221A (en) * 1999-09-17 2001-03-27 Asahi Kasei Corp Polyolefin microporous film
JP2001087632A (en) * 1999-09-21 2001-04-03 Asahi Kasei Corp Method for preparing hollow fibrous porous film
JP4605840B2 (en) * 1999-09-21 2011-01-05 旭化成ケミカルズ株式会社 Method for forming hollow fiber porous membrane
JP2002184383A (en) * 2000-12-18 2002-06-28 Nitto Denko Corp Separator for cell
JP2002265658A (en) * 2001-03-09 2002-09-18 Asahi Kasei Corp Highly permeable microporous film
JPWO2004085525A1 (en) * 2003-03-24 2006-06-29 旭化成ケミカルズ株式会社 Polyethylene microporous membrane
JP4884008B2 (en) * 2003-03-24 2012-02-22 旭化成イーマテリアルズ株式会社 Polyethylene microporous membrane
JP2007311264A (en) * 2006-05-20 2007-11-29 Nissan Motor Co Ltd Battery structure
US8304103B2 (en) 2006-05-20 2012-11-06 Nissan Motor Co., Ltd. Battery structure
JP2009269941A (en) * 2008-04-30 2009-11-19 Asahi Kasei E-Materials Corp Microporous polyolefin membrane
JP2012502426A (en) * 2008-09-03 2012-01-26 エルジー・ケム・リミテッド Separator provided with porous coating layer and electrochemical device provided with the same
WO2011055596A1 (en) 2009-11-09 2011-05-12 東レ株式会社 Porous film and electricity storage device
WO2011118660A1 (en) * 2010-03-23 2011-09-29 帝人株式会社 Microporous polyolefin film, separator for non-aqueous secondary battery, non-aqueous secondary battery, and process for production of microporous polyolefin film
US9680142B2 (en) 2010-03-23 2017-06-13 Teijin Limited Polyolefin microporous membrane, separator for non-aqueous secondary battery, non-aqueous secondary battery and method of producing polyolefin microporous membrane
JP2010270342A (en) * 2010-09-09 2010-12-02 Asahi Kasei E-Materials Corp Polyolefin microporous film
US9627672B2 (en) 2012-03-28 2017-04-18 Asahi Kasei E-Materials Corporation Separator for nonaqueous electrolyte batteries containing a porous membrane
US9911960B2 (en) 2012-03-28 2018-03-06 Asahi Kasei E-Materials Corporation Porous membrane and multilayer porous membrane
US9911959B2 (en) 2012-03-28 2018-03-06 Asahi Kasei E-Materials Corporation Porous membrane and multilayer porous membrane
CN104756284A (en) * 2013-03-20 2015-07-01 株式会社Lg化学 Separator for electrochemical cell and a method of making the same
JP2015537339A (en) * 2013-03-20 2015-12-24 エルジー・ケム・リミテッド Separation membrane for electrochemical device and method for producing the same
US10177359B2 (en) 2013-03-20 2019-01-08 Lg Chem, Ltd. Separator for electrochemical device and method for manufacturing the same
KR20180101262A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180101261A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180101249A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180101256A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180101241A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180101259A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180101263A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
JP2018147684A (en) * 2017-03-03 2018-09-20 住友化学株式会社 Separator for nonaqueous electrolyte secondary battery
KR20180114530A (en) 2017-03-03 2018-10-18 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180114527A (en) 2017-03-03 2018-10-18 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180114531A (en) 2017-03-03 2018-10-18 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180114526A (en) 2017-03-03 2018-10-18 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180114528A (en) 2017-03-03 2018-10-18 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
US11121431B2 (en) 2017-03-03 2021-09-14 Sumitomo Chemical Company, Limited Method for producing nonaqueous electrolyte secondary battery separator
US10693115B2 (en) 2017-03-03 2020-06-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator
KR20180101251A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
US10566594B2 (en) 2017-03-03 2020-02-18 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator
KR20190028680A (en) 2017-05-29 2019-03-19 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery
US20180342720A1 (en) 2017-05-29 2018-11-29 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
KR20180130455A (en) 2017-05-29 2018-12-07 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery
US10727538B2 (en) 2017-07-31 2020-07-28 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
KR20190013632A (en) 2017-07-31 2019-02-11 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery
KR20190030614A (en) 2017-09-14 2019-03-22 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
US10784481B2 (en) 2017-09-14 2020-09-22 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
KR102002272B1 (en) 2018-02-09 2019-07-19 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery
KR102004120B1 (en) 2018-02-09 2019-07-25 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery
KR20210055003A (en) 2019-11-06 2021-05-14 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator, nonaqueous electrolyte secondary battery member, and nonaqueous electrolyte secondary battery
WO2021211914A1 (en) * 2020-04-17 2021-10-21 Celgard, Llc Assymetric porous membrane
CN113745757A (en) * 2021-09-07 2021-12-03 广东九彩新材料有限公司 Preparation method of lithium battery safety diaphragm material

Similar Documents

Publication Publication Date Title
JPH11130900A (en) Finely porous polyethylene membrane
KR101162403B1 (en) Gas separation membrane
RU2422191C2 (en) Microporous polyolefin membranes and method of their production
EP1873193B1 (en) Process for producing microporous polyolefin film and microporous polyolefin film
JP2657434B2 (en) Polyethylene microporous membrane, method for producing the same, and battery separator using the same
KR101699296B1 (en) Hydrophobic ozone-stable membrane made of polyvinylidene fluoride
EP3098256B1 (en) Polyolefin microporous membrane and method for producing same
JP2657430B2 (en) Polyolefin microporous membrane and method for producing the same
JP4195810B2 (en) Polyolefin microporous membrane and production method and use thereof
JPH06104736B2 (en) Polyolefin microporous membrane
JPH07188440A (en) Microporous polyolefin film and production thereof
US10960362B2 (en) Microporous polyvinyl fluoride planar membrane and production thereof
JP2015120786A (en) Microporous film and separator using the same
JP5171012B2 (en) Method for producing polyolefin microporous membrane
JP2001081221A (en) Polyolefin microporous film
JPH0912756A (en) Finely porous polyolefin film and its production
KR20140051181A (en) Method of manufacturing a microporous polyethylene film
JP3072163B2 (en) Polyolefin microporous membrane, method for producing the same, and battery separator using the same
CN112063006B (en) Polyolefin microporous membrane and preparation method thereof
JP3009495B2 (en) Polyolefin microporous membrane and method for producing the same
JPH093228A (en) Production of polyolefin finely porous membrane
JPH11106533A (en) Polyolefin porous membrane
JP2711633B2 (en) Method for producing microporous polyolefin membrane
JP2022049164A (en) Polyolefin microporous film
JP2021098849A (en) Polyolefin-based microporous film, laminate, and non-aqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516