JPH11130587A - Production of nitride semiconductor - Google Patents

Production of nitride semiconductor

Info

Publication number
JPH11130587A
JPH11130587A JP29379797A JP29379797A JPH11130587A JP H11130587 A JPH11130587 A JP H11130587A JP 29379797 A JP29379797 A JP 29379797A JP 29379797 A JP29379797 A JP 29379797A JP H11130587 A JPH11130587 A JP H11130587A
Authority
JP
Japan
Prior art keywords
substrate
group iii
iii element
nitride semiconductor
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29379797A
Other languages
Japanese (ja)
Inventor
Hisao Saiki
久雄 齋木
Akira Yoshida
明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GIFU PREFECTURE KENKYU KAIHATS
Gifu Prefecture Kenkyu Kaihatsu Zaidan
Original Assignee
GIFU PREFECTURE KENKYU KAIHATS
Gifu Prefecture Kenkyu Kaihatsu Zaidan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GIFU PREFECTURE KENKYU KAIHATS, Gifu Prefecture Kenkyu Kaihatsu Zaidan filed Critical GIFU PREFECTURE KENKYU KAIHATS
Priority to JP29379797A priority Critical patent/JPH11130587A/en
Publication of JPH11130587A publication Critical patent/JPH11130587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate a step for subsequently forming electrodes by supplying the shortage of nitrogen in the interior of a nitride semiconductor and removing a part of a formed thin film by etching in the case of a light emitting diode(LED) or the like. SOLUTION: A substrate 3 and a raw material target 6 containing a nitride of a group III element are oppositely held in a vacuum chamber 2 and the raw material target 6 is then irradiated with a laser beam 8 to liberate the group III element and nitrogen from the raw material target 6 and deposit a nitride semiconductor of the group III element on the substrate 3. At this time, activated nitrogen is fed from the exterior into the interior of the chamber 2. In the case of an LED or the like, a nitrogen ion is previously injected into one surface of a metallic substrate composed of the group III element and the resultant metallic substrate into which the nitrogen ion is injected is used as the substrate 3 to grow a nitride semiconductor of the group III element on the ion injected surface. An inexpensive and readily available aluminum substrate is preferably used as the metallic substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、III 族元素(イ
ンジウム、ガリウム、アルミニウム等)の窒化物半導体
の単結晶薄膜を成長基板に堆積させる製法に関する。
The present invention relates to a method for depositing a single crystal thin film of a nitride semiconductor of a group III element (indium, gallium, aluminum, etc.) on a growth substrate.

【0002】[0002]

【従来の技術】この種の従来技術として、この発明を得
る前の段階で考えられた製法について図5を参照して説
明する。図において、1は成膜装置、2は真空チャン
バ、3は成長基板で、サファイア等の単結晶絶縁基板が
用いられる。4は基板ホルダでヒータ4aが内蔵され、
回転可能になっている。5はターゲットホルダで、結晶
作製中にターゲットの温度上昇や成膜速度の低下を避け
るために回転式になっている。6は原料ターゲットで、
III 族元素の窒化物半導体の多結晶の粉末を、プレス機
により固めたものである。成長基板3上に窒化物の混晶
を堆積させる場合には、望む組成比になるように各元素
の多結晶体粉末を混合する。7は排気装置で、チャンバ
の排気ポート2aに連結される。8はレーザ光で、集光
レンズ9で集光されチャンバの窓2bから原料ターゲッ
ト6上に照射される。
2. Description of the Related Art As a conventional technique of this kind, a manufacturing method considered at a stage before obtaining the present invention will be described with reference to FIG. In the figure, 1 is a film forming apparatus, 2 is a vacuum chamber, 3 is a growth substrate, and a single crystal insulating substrate such as sapphire is used. Reference numeral 4 denotes a substrate holder having a built-in heater 4a,
It is rotatable. Reference numeral 5 denotes a target holder, which is of a rotary type in order to avoid a rise in the temperature of the target and a decrease in the film forming rate during the crystal production. 6 is a raw material target,
It is obtained by hardening a polycrystalline powder of a nitride semiconductor of a group III element by a press machine. When depositing a mixed crystal of nitride on the growth substrate 3, polycrystalline powder of each element is mixed so as to have a desired composition ratio. An exhaust device 7 is connected to the exhaust port 2a of the chamber. Reference numeral 8 denotes a laser beam, which is condensed by a condenser lens 9 and radiated onto the raw material target 6 from a window 2b of the chamber.

【0003】次に製法を工程順に説明する。 サファイアより成る成長基板3を基板ホルダ4に、ま
た原料ターゲット6をターゲットホルダ5に取付ける。 チャンバ2内を減圧しつつ成長基板3をヒータ4aで
加熱してクリーニングし、その後成膜温度まで下げる。
Next, the manufacturing method will be described in the order of steps. The growth substrate 3 made of sapphire is mounted on the substrate holder 4 and the raw material target 6 is mounted on the target holder 5. While the inside of the chamber 2 is depressurized, the growth substrate 3 is heated and cleaned by the heater 4a, and then cooled to a film forming temperature.

【0004】原料ターゲット6(例えばInNより成
る)を回転させながらその表面上をレーザ光8で走査さ
せ、エネルギを与えてIII 族元素及び窒素の原子、イオ
ン、分子をターゲットより遊離させて、III 族元素の窒
化物半導体を成長基板3上に堆積させる。 図6に示すLEDのようにp型半導体膜とn型半導体
膜のような多層膜を基板3上に作製する場合には、各層
に対応した原料ターゲットを予めターゲットホルダ5に
取付けておき、上述と同様にして成長基板上に順次堆積
させる。
While rotating a raw material target 6 (made of, for example, InN), the surface thereof is scanned with a laser beam 8 to give energy to release group III elements and nitrogen atoms, ions, and molecules from the target, thereby obtaining III. A nitride semiconductor of a group III element is deposited on the growth substrate 3. When a multilayer film such as a p-type semiconductor film and an n-type semiconductor film is formed on the substrate 3 as in the LED shown in FIG. 6, raw material targets corresponding to each layer are attached to the target holder 5 in advance, and Are sequentially deposited on the growth substrate in the same manner as described above.

【0005】[0005]

【発明が解決しようとする課題】 従来の製法では原料ターゲット6より例えば、InN
→In+Nのように遊離されたIII 族元素と窒素は、そ
の一部が、In+N→InN;N+N→N2 のように結
合し、特に窒素イオンが不足することが多く、このため
成膜した半導体薄膜内の窒素原子が不足することとな
り、そのため導電性が低下する問題があった。
In the conventional production method, for example, InN
A part of the group III element and nitrogen released like In + N are combined like In + N → InN; N + N → N 2 , and nitrogen ions are often deficient in many cases. There is a problem that the nitrogen atoms in the thin film become insufficient and the conductivity is reduced.

【0006】LED等を製造する場合には、図6に示
すように、絶縁基板を成長基板として、その上にn型I
nN膜201を成膜し、その上にp型InN膜202を
成膜した後、上のp型InN膜の一部をエッチング除去
して、その除去されたあとのn型InN膜201の表面
に電極21を、またp型InN膜202上に電極22を
形成していた。この内特に、p型InN膜202の一部
をエッチング除去して、その除去されたあとの面上に電
極21を形成する工程は作業工数が多く、生産性を低下
させる原因となっていた。
When manufacturing an LED or the like, as shown in FIG. 6, an insulating substrate is used as a growth substrate and an n-type
After forming an nN film 201 and forming a p-type InN film 202 thereon, a part of the upper p-type InN film is removed by etching, and the surface of the n-type InN film 201 after the removal is removed. And the electrode 22 was formed on the p-type InN film 202. In particular, the step of etching and removing a part of the p-type InN film 202 and forming the electrode 21 on the surface after the removal has a large number of work steps, which causes a decrease in productivity.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

(1)請求項1の発明は、真空チャンバ内に基板と、II
I 族元素の窒化物を含む原料ターゲットとを対向して保
持し、その原料ターゲットの前記窒化物にエネルギを与
えて、前記III 族元素と窒素とを原料ターゲットより遊
離させ、前記基板の対向面にIII 族元素の窒化物半導体
を堆積させる窒化物半導体の製造方法に関する。請求項
1では特に、基板に窒化物半導体を堆積させる際に、外
部よりチャンバ内に活性化窒素を供給する。
(1) The invention according to claim 1 includes a substrate in a vacuum chamber;
A raw material target containing a nitride of a group I element is held oppositely, and energy is applied to the nitride of the raw material target to release the group III element and nitrogen from the raw material target, and to face the opposite surface of the substrate. The present invention relates to a method for manufacturing a nitride semiconductor, in which a nitride semiconductor of a group III element is deposited. In particular, when depositing the nitride semiconductor on the substrate, activated nitrogen is supplied into the chamber from the outside.

【0008】(2)請求項2の発明では、前記(1)に
おいて、原料ターゲットにレーザ光を照射することによ
って、III 族元素と窒素とを原料ターゲットより遊離さ
せる。 (3)請求項3の発明では、前記(1)において、III
族元素より成る金属基板の一面に予め窒素イオンを注入
し、その注入された金属基板を前記基板として用い、そ
のイオン注入面にIII 族元素の窒化物半導体を成長させ
る。
(2) In the invention of claim 2, in the above (1), a group III element and nitrogen are liberated from the material target by irradiating the material target with laser light. (3) In the invention of claim 3, in the above (1), III
Nitrogen ions are implanted in advance on one surface of a metal substrate made of a group III element, and the implanted metal substrate is used as the substrate, and a group III element nitride semiconductor is grown on the ion implanted surface.

【0009】(4)請求項4の発明では、前記(3)に
おいて、金属基板としてアルミニウム基板を用いる。
(4) In the invention of claim 4, in (3), an aluminum substrate is used as the metal substrate.

【0010】[0010]

【発明の実施の形態】この発明の実施例を図1に、図5
と対応する部分に同じ符号を付けて示し、重複説明を省
略する。この発明では、従来技術で述べた成膜した窒化
物半導体単結晶薄膜に含まれる窒素原子が不足する問題
を解決するために、窒化物半導体を堆積させる際に、外
部よりチャンバ内に活性化窒素を供給するようにしてい
る。即ち、図1ではチャンバ2の側壁に石英管12を貫
通、保持させ、窒素ボンベ13を石英管12の一端に連
結し、その他端を成長基板3の半導体薄膜を形成すべき
面の近傍に延長させる。チャンバの外部の石英管12の
外周にリング状の電極11a,11bを対向して取付
け、それらの電極の間に高周波電源14を接続する。
FIG. 1 shows an embodiment of the present invention, and FIG.
The same reference numerals are given to portions corresponding to and the description thereof will not be repeated. In this invention, in order to solve the problem of lack of nitrogen atoms contained in a formed nitride semiconductor single crystal thin film described in the prior art, when depositing a nitride semiconductor, activated nitrogen is introduced into the chamber from the outside. To supply. That is, in FIG. 1, the quartz tube 12 is penetrated and held on the side wall of the chamber 2, the nitrogen cylinder 13 is connected to one end of the quartz tube 12, and the other end is extended near the surface of the growth substrate 3 where the semiconductor thin film is to be formed. Let it. Ring-shaped electrodes 11a and 11b are attached to the outer periphery of a quartz tube 12 outside the chamber so as to face each other, and a high-frequency power source 14 is connected between the electrodes.

【0011】次にこの発明の製法を工程順に説明する。 基板3を基板ホルダ4に、また原料ターゲット6をタ
ーゲットホルダ5にそれぞれ取付ける。 チャンバ2内を減圧しつつ、基板3をヒータ4aで加
熱してクリーニングし、その後成膜温度まで下げる。
Next, the manufacturing method of the present invention will be described in the order of steps. The substrate 3 is mounted on the substrate holder 4 and the raw material target 6 is mounted on the target holder 5. While the inside of the chamber 2 is decompressed, the substrate 3 is heated and cleaned by the heater 4a, and then the temperature is lowered to the film forming temperature.

【0012】チャンバ2内に窒素ボンベ13より石英
管12を通じて窒素ガスを導入し、適当な圧力を維持す
る。 電極11a,11b間に高周波電圧を印加し、管内の
窒素をプラズマ状態にして(活性化と言う)チャンバ2
内に導入する。これと同時に、原料ターゲット6にレー
ザ光8を照射して、原料ターゲット6よりIII 族元素及
び窒素の原子、分子、イオンを遊離させる。遊離した窒
素イオン及び外部より導入した活性化窒素ガスは遊離し
たIII 族元素の原子、分子、イオンと反応し、成長基板
3上にIII 族元素の窒素化物半導体が堆積する。
Nitrogen gas is introduced into the chamber 2 from the nitrogen cylinder 13 through the quartz tube 12 to maintain an appropriate pressure. A high frequency voltage is applied between the electrodes 11a and 11b, and the nitrogen in the tube is turned into a plasma state (called activation).
Introduce within. At the same time, the raw material target 6 is irradiated with the laser beam 8 to release the group III element and nitrogen atoms, molecules and ions from the raw material target 6. The released nitrogen ions and the activated nitrogen gas introduced from the outside react with the released atoms, molecules and ions of the group III element, and a nitride semiconductor of the group III element is deposited on the growth substrate 3.

【0013】基板3上に図4に示すような薄膜201
〜206より成る多層膜を形成する場合には、図3に示
すように、薄膜201〜206にそれぞれ対応した原料
ターゲット6−1〜6−6をターゲットホルダ5に予め
用意し、最初に原料ターゲット6−1にレーザ光を照射
して、薄膜201を所定の厚さに成膜し、次にターゲッ
トホルダ5を次の位置に回転させてレーザ光を原料ター
ゲット602に照射させ同様にして薄膜202を堆積さ
せる。以下同様にして順次薄膜201〜206を堆積さ
せる。
A thin film 201 as shown in FIG.
In the case of forming a multi-layered film composed of the raw material targets 6-1 to 6-6 corresponding to the thin films 201 to 206, respectively, as shown in FIG. 6-1 is irradiated with a laser beam to form a thin film 201 to a predetermined thickness, and then the target holder 5 is rotated to the next position to irradiate the laser beam onto the raw material target 602, and the thin film 202 is similarly irradiated. Is deposited. Hereinafter, thin films 201 to 206 are sequentially deposited in the same manner.

【0014】図3の例では、原料ターゲット6−1〜6
−6はターゲットホルダ5の回転とは独立して回転でき
るようにしてあり、原料ターゲットのレーザ光照射面よ
り一様にターゲット物質が遊離するようになっている。
従来のLED製造工程において、堆積させた薄膜の一部
をエッチング除去して、そのあとに電極を形成する工程
が必要となり、作業工数が多く、生産性が低下する問題
を解決するために、この発明では基板3上に最初に堆積
させるIII 族元素の窒化物と同じ元素の金属基板を用
い、その一面にイオン注入装置によって予め窒素イオン
を注入し、そのイオンを注入された金属基板を基板3と
して用い、そのイオン注入面に窒化物半導体n型InN
201及びp型InN202を順次成長させる。
In the example of FIG. 3, the raw material targets 6-1 to 6
Reference numeral -6 indicates that the target holder 5 can be rotated independently of the rotation of the target holder 5, so that the target material is uniformly released from the laser beam irradiation surface of the raw material target.
In the conventional LED manufacturing process, a step of etching and removing a part of the deposited thin film and thereafter forming an electrode is required, and in order to solve the problem that the number of work steps is increased and the productivity is reduced, In the present invention, a metal substrate of the same element as the nitride of the group III element deposited first on the substrate 3 is used, and nitrogen ions are implanted into one surface of the substrate 3 in advance by an ion implanter. And a nitride semiconductor n-type InN
201 and p-type InN 202 are sequentially grown.

【0015】このようにすると、基板3が金属であるの
で従来の電極21の代りに用いることができる。従っ
て、従来必要であった、p型InN薄膜202の一部を
エッチング除去して、そのあとに電極21を形成する工
程が不要となり、生産性を大幅に向上できる。なお、図
1の例では、レーザ光は1つであったが、場合によって
は複数個用いるようにしてもよい。この発明の製法をL
ED等のデバイス化に適用する場合には、III 族元素の
基板3′としては、安価で入手の容易なアルミニウム基
板を用いるのが望ましい。
In this case, since the substrate 3 is made of metal, it can be used instead of the conventional electrode 21. Therefore, the step of etching and removing a part of the p-type InN thin film 202, which is conventionally required, and then forming the electrode 21 is not required, and the productivity can be greatly improved. Although one laser beam is used in the example of FIG. 1, a plurality of laser beams may be used in some cases. The manufacturing method of the present invention
In the case of application to a device such as an ED, it is desirable to use an inexpensive and easily available aluminum substrate as the group III element substrate 3 '.

【0016】実験によって得られた望ましい製造条件を
次に示す。
The desirable manufacturing conditions obtained by experiments are as follows.

【0017】[0017]

【発明の効果】 この発明では、成膜の際、外部より活性化窒素を供給
するようにしたので、従来問題となっていた薄膜中の窒
素の不足分が補充され導電性を向上できる。 LEDの製造においては、堆積させる面に窒素イオン
を注入したIII 族元素の金属基板を成長基板に採用した
ので、従来必要であったp型InN膜の一部をエッチン
グ除去して、そのあとに電極を形成する工程が不要とな
り、これにより製造工程を低減し、生産性を大幅に向上
できる。
According to the present invention, activated nitrogen is supplied from the outside at the time of film formation, so that the shortage of nitrogen in the thin film, which has been a problem in the past, is replenished, and the conductivity can be improved. In the manufacture of LEDs, a metal substrate of a group III element having nitrogen ions implanted on the surface to be deposited was adopted as a growth substrate. Therefore, a part of the p-type InN film, which was conventionally required, was removed by etching, and thereafter, The step of forming an electrode is not required, thereby reducing the number of manufacturing steps and greatly improving productivity.

【0018】この発明の製法では成膜温度が400〜
800℃と比較的低くて済み、図4のような多層膜を形
成した場合に、膜と膜との境界で起こる構成分子の拡散
が極めて少なく、このためpn接合面を有するLEDの
ようなデバイス化が容易となる。
In the manufacturing method of the present invention, the film forming temperature is 400 to
A relatively low temperature of 800 ° C. is required, and when a multilayer film as shown in FIG. 4 is formed, diffusion of constituent molecules occurring at the boundary between the films is extremely small. Therefore, a device such as an LED having a pn junction surface. It becomes easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示すための成膜装置の原理
的な構成図。
FIG. 1 is a principle configuration diagram of a film forming apparatus showing an embodiment of the present invention.

【図2】図1の基板3に用いられる金属基板の製法を説
明するための原理的な断面図。
FIG. 2 is a principle sectional view for explaining a method of manufacturing a metal substrate used for the substrate 3 of FIG.

【図3】図1の基板3に多層膜を形成する場合に、複数
種の原料ターゲットがターゲットホルダ5に取付けられ
ている状態を示す斜視図。
FIG. 3 is a perspective view showing a state where a plurality of types of raw material targets are mounted on a target holder 5 when a multilayer film is formed on the substrate 3 of FIG.

【図4】図1の基板上に形成された多層膜の断面図。FIG. 4 is a sectional view of a multilayer film formed on the substrate of FIG. 1;

【図5】この発明を得る前の段階で考えられた成膜装置
の原理的な構成図。
FIG. 5 is a diagram showing the basic configuration of a film forming apparatus conceived before obtaining the present invention.

【図6】従来のLEDの原理的な構成を示す断面図。FIG. 6 is a cross-sectional view showing a basic configuration of a conventional LED.

フロントページの続き (51)Int.Cl.6 識別記号 FI C30B 29/38 C30B 29/38 Z H01L 21/203 H01L 21/203 M Continued on the front page (51) Int.Cl. 6 Identification code FI C30B 29/38 C30B 29/38 Z H01L 21/203 H01L 21/203 M

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 真空チャンバ内に基板と、III 族元素の
窒化物を含む原料ターゲットとを対向して保持し、その
原料ターゲットの前記窒化物にエネルギを与えて、前記
III 族元素と窒素とを原料ターゲットより遊離させ、前
記基板の対向面にIII 族元素の窒化物半導体を堆積させ
る窒化物半導体の製造方法において、 前記基板に前記窒化物半導体を堆積させる際に、外部よ
り前記チャンバ内に活性化窒素を供給することを特徴と
する窒化物半導体の製造方法。
A substrate and a raw material target containing a nitride of a group III element are held in a vacuum chamber so as to face each other, and energy is applied to the nitride of the raw material target to produce the nitride.
In a nitride semiconductor manufacturing method in which a group III element and nitrogen are released from a raw material target and a group III element nitride semiconductor is deposited on an opposite surface of the substrate, when the nitride semiconductor is deposited on the substrate, A method for manufacturing a nitride semiconductor, wherein activated nitrogen is supplied into the chamber from outside.
【請求項2】 請求項1において、前記原料ターゲット
にレーザ光を照射することによって、前記III 族元素と
窒素とを原料ターゲットより遊離させることを特徴とす
る窒化物半導体の製造方法。
2. The method for manufacturing a nitride semiconductor according to claim 1, wherein the group III element and nitrogen are released from the material target by irradiating the material target with laser light.
【請求項3】 請求項1において、III 族元素より成る
金属基板の一面に予め窒素イオンを注入し、その注入さ
れた金属基板を前記基板として用い、そのイオン注入面
に前記III 族元素の窒化物半導体を成長させることを特
徴とする窒化物半導体の製造方法。
3. The method according to claim 1, wherein nitrogen ions are implanted into one surface of a metal substrate made of a group III element in advance, and the implanted metal substrate is used as the substrate, and nitriding of the group III element is performed on the ion-implanted surface. A method for producing a nitride semiconductor, comprising: growing a nitride semiconductor.
【請求項4】 請求項3において、前記金属基板として
アルミニウム基板を用いることを特徴とする窒化物半導
体の製造方法。
4. The method according to claim 3, wherein an aluminum substrate is used as the metal substrate.
JP29379797A 1997-10-27 1997-10-27 Production of nitride semiconductor Pending JPH11130587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29379797A JPH11130587A (en) 1997-10-27 1997-10-27 Production of nitride semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29379797A JPH11130587A (en) 1997-10-27 1997-10-27 Production of nitride semiconductor

Publications (1)

Publication Number Publication Date
JPH11130587A true JPH11130587A (en) 1999-05-18

Family

ID=17799289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29379797A Pending JPH11130587A (en) 1997-10-27 1997-10-27 Production of nitride semiconductor

Country Status (1)

Country Link
JP (1) JPH11130587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189874A (en) * 2013-03-28 2014-10-06 Sumitomo Heavy Ind Ltd Film deposition device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189874A (en) * 2013-03-28 2014-10-06 Sumitomo Heavy Ind Ltd Film deposition device

Similar Documents

Publication Publication Date Title
JP2006075979A (en) Laser ablasion device and nanoparticle preparing method using the same
TWI575772B (en) Method for depositing a group iii nitride semiconductor film
JP2002534807A (en) Method for depositing copper seed layer to promote improved feature surface coverage
JPH0920591A (en) Formation of diamond film
KR20190131541A (en) Method for producing gallium nitride thin film
JP2000223421A (en) Film growth method and its device
CN1777977A (en) Film forming method
KR102546214B1 (en) Injection of UV-assisted materials into porous films
US8932896B2 (en) Solar cell manufacturing apparatus and solar cell manufacturing method
JPH11130587A (en) Production of nitride semiconductor
CN115044973A (en) Method for obtaining local enhanced color center luminescence by epitaxial growth of metal array on surface of diamond
JP3898575B2 (en) Method for forming GaInN layer
JPH0335825B2 (en)
DE112021004352T5 (en) FILM EDUCATION DEVICE AND FILM EDUCATION METHOD
KR20020086222A (en) A method of producing a diamond film and a diamond film produced thereby
JPH0555194A (en) Apparatus for forming thin film
JP2000188257A (en) Manufacture of crystalline silicon-based semiconductor thin film
JP2679023B2 (en) Method for manufacturing substrate for diamond thin film deposition
JPH03196643A (en) Vapor phase epitaxy
JPH07105342B2 (en) Method for manufacturing compound semiconductor
JP3945195B2 (en) Manufacturing method of electronic device
JPH05213695A (en) Method for depositing thin diamond film
JP2005260093A (en) Heteroepitaxial growth method of gallium nitride
JP2858095B2 (en) Method for forming fine embedded structure of compound semiconductor
JPH05166726A (en) Manufacture of compound thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070814