JPH11128948A - Removal of anionic surfactant in wastewater - Google Patents

Removal of anionic surfactant in wastewater

Info

Publication number
JPH11128948A
JPH11128948A JP31627397A JP31627397A JPH11128948A JP H11128948 A JPH11128948 A JP H11128948A JP 31627397 A JP31627397 A JP 31627397A JP 31627397 A JP31627397 A JP 31627397A JP H11128948 A JPH11128948 A JP H11128948A
Authority
JP
Japan
Prior art keywords
anionic surfactant
aqueous solution
wastewater
anode
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31627397A
Other languages
Japanese (ja)
Inventor
Masayuki Inoue
正之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIROSHIMA GAKUIN
Original Assignee
HIROSHIMA GAKUIN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIROSHIMA GAKUIN filed Critical HIROSHIMA GAKUIN
Priority to JP31627397A priority Critical patent/JPH11128948A/en
Publication of JPH11128948A publication Critical patent/JPH11128948A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new treatment method for removing an anionic surfactant in wastewater in a small scale facility. SOLUTION: This method is for easily removing a synthetic anionic surfactant in wastewater in a relatively small scale facility. A first method includes processes of taking an aqueous solution containing an anionic surfactant and sodium chloride in a cathode chamber and an aqueous sodium chloride solution in an anode chamber, installing a partitioning membrane such as cellophane membrane between both chambers, and applying d.c. while using an iron net as the anode and carbon as the cathode. Consequently, the anionic surfactant is moved to the anode chamber and bonded with iron ion produced in the anode chamber and precipitated and removed. A second method for removing an anionic surfactant includes processes of bonding a cationic pigment and an anionic surfactant in an aqueous solution and passing the resultant anionic surfactant through an adsorptive solid body represented by silica gel or previously depositing a cationic pigment on an adsorptive solid and then passing an aqueous solution containing an anionic surfactant through the solid. An anionic surfactant in wastewater can easily be treated in a relatively small scale facility by employing those methods.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、生活廃水や工業廃水中
の合成陰イオン界面活性剤を除去する方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing synthetic anionic surfactants from domestic wastewater and industrial wastewater.

【0002】[0002]

【従来の技術】従来から陰イオン界面活性剤の除去に
は、活性汚泥による微生物処理、次亜塩素酸を用いる光
酸化法、活性炭による吸着法、塩化アルミニウムや塩化
第二鉄などに由来する正コロイドに吸着・沈殿させる方
法などが用いられている。
2. Description of the Related Art Conventionally, anionic surfactants have been removed by treatment with microorganisms using activated sludge, photo-oxidation using hypochlorous acid, adsorption using activated carbon, and positive ions derived from aluminum chloride or ferric chloride. A method of adsorbing and precipitating on a colloid is used.

【0003】[0003]

【発明が解決しようとする課題】現在、特に家庭廃水中
の陰イオン界面活性剤の処理において一般的に行われて
いる方法は活性汚泥による微生物処理であるが、大規模
な施設が必要であり、処理のために長い時間がかかる。
At present, the method generally used for the treatment of anionic surfactants, particularly in domestic wastewater, is the treatment of microorganisms with activated sludge, but requires a large-scale facility. Takes a long time for processing.

【0004】[0004]

【課題を解決するための手段】発明者は大規模な施設を
用いることなく、簡便に行える合成陰イオン界面活性剤
の処理方法を鋭意検討した結果、本法に到達したもので
ある。鉄に代表されるイオン化傾向の比較的大きな金属
を陽極、炭素に代表される各種電極を陰極に用い、陰極
と陽極の間にセロハン膜に代表される隔膜を置いた。陰
極室内に陰イオン界面活性剤と塩化ナトリウムを含む水
溶液、陽極室内に塩化ナトリウム水溶液を入れて、直流
電圧を印加した。陽極室内のpHを常に10から11の
間に保ちながら電圧を印加すると、合成陰イオン界面活
性剤の濃度が約15分間で当初の15%以下まで減少し
た。
Means for Solving the Problems The present inventors have intensively studied a method for treating a synthetic anionic surfactant which can be easily carried out without using a large-scale facility, and as a result, the present invention has been achieved. A metal having a relatively large ionization tendency, such as iron, was used as an anode, and various electrodes, such as carbon, were used as a cathode. A diaphragm, such as a cellophane film, was placed between the cathode and the anode. An aqueous solution containing an anionic surfactant and sodium chloride was placed in the cathode chamber, and an aqueous sodium chloride solution was placed in the anode chamber, and a DC voltage was applied. When a voltage was applied while the pH in the anode chamber was constantly maintained between 10 and 11, the concentration of the synthetic anionic surfactant decreased to less than the original 15% in about 15 minutes.

【0005】水溶液中の陰イオン界面活性剤の初期濃度
は、3〜10ppm が好ましい。また処理水溶液中の電解
質は、廃水中に一般的に多く含まれる電解質である塩化
ナトリウムが最も効果的である。塩化ナトリウムの濃度
は水1リットルに対して、10g以上が望ましい。
[0005] The initial concentration of the anionic surfactant in the aqueous solution is preferably 3 to 10 ppm. As the electrolyte in the treatment aqueous solution, sodium chloride, which is an electrolyte generally contained in wastewater, is most effective. The concentration of sodium chloride is preferably 10 g or more per liter of water.

【0006】一方で発明者は、メチルバイオレットに代
表されるカチオン性色素と陰イオン界面活性剤が水溶液
中で強く結合することに着目し、カチオン性色素を担持
した微粉末状固体中に陰イオン界面活性剤を含む水溶液
を通じると、陰イオン界面活性剤が効果的に吸着され、
その濃度が大きく減少することを見出した。
On the other hand, the inventor has noticed that a cationic dye typified by methyl violet and an anionic surfactant are strongly bonded in an aqueous solution, and an anionic surfactant is contained in a fine powdery solid carrying a cationic dye. When passed through an aqueous solution containing a surfactant, the anionic surfactant is effectively adsorbed,
It has been found that its concentration is greatly reduced.

【0007】色素を担持する固体としては、クロマトグ
ラフィー用シリカゲルに代表される吸着表面積の大きい
微粉末状の固体が有効である。
As a solid carrying a dye, a fine powdery solid having a large adsorption surface area represented by silica gel for chromatography is effective.

【0008】用いるカチオン性色素としては、メチルバ
イオレットの他にもエチルバイオレット、クリスタルバ
イオレット、フクシン、メチルグリーン、ニュートラル
レッド、ブリリアントクレシルブルー、ロ−ダミンB、
サフラニンなど多くのものが有効であったが、最も効果
的なものはメチルバイオレットであった。
The cationic dyes used include, in addition to methyl violet, ethyl violet, crystal violet, fuchsin, methyl green, neutral red, brilliant cresyl blue, rhodamine B,
Many were effective, such as safranin, but the most effective was methyl violet.

【0009】カチオン性色素と陰イオン界面活性剤をあ
らかじめ混合して固体に吸着させる方法では、クロマト
グラフィー用シリカゲルを用いた場合、メチルバイオレ
ットのみが有効であり、他のカチオン性色素では良好な
結果が得られなかった。
In the method in which a cationic dye and an anionic surfactant are preliminarily mixed and adsorbed on a solid, only methyl violet is effective when silica gel for chromatography is used, and good results are obtained with other cationic dyes. Was not obtained.

【実施例】以下に実施例をあげて本発明をさらに具体的
に説明するが、本発明はこれに限定されるものではな
い。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto.

【0010】実施例1 底部にセロハン膜を固定した容器内に約1%の塩化ナト
リウムと4ppm の陰イオン界面活性剤(ドデシルベンゼ
ンスルホン酸系とアルキルエーテル硫酸エステル系の混
合物)を含む水溶液150ml(以下これを陰極室溶液と
称す)を入れ、炭素電極(備長炭)を挿入した。この容
器を同濃度の塩化ナトリウム水溶液(以下、これを陽極
室溶液と称す)250ml中につけ、固定した。陽極室溶
液中に1mmメッシュの鉄網を5cm×10cmに切断したも
のを挿入した。直流電源装置の負極に炭素電極、正極に
鉄網電極を結線し、6Vの電圧を印加した。陽極室溶液
中には水酸化ナトリウム水溶液を適宜加え、そのpH値を
10〜11の間に保つようにした。一定時間ごとに陰極
室溶液と陽極室溶液を採取し、各溶液中に含まれる陰イ
オン界面活性剤の濃度をエチルバイオレット法の常法に
従って測定した。得られた陰イオン界面活性剤の濃度変
化のグラフを図1に示す。
Example 1 A 150 ml aqueous solution containing about 1% sodium chloride and 4 ppm of an anionic surfactant (a mixture of dodecylbenzenesulfonic acid type and alkyl ether sulfate type) was placed in a container having a cellophane film fixed to the bottom. Hereinafter, this is referred to as a cathode chamber solution), and a carbon electrode (Bincho charcoal) was inserted. This container was placed in 250 ml of an aqueous solution of sodium chloride of the same concentration (hereinafter, referred to as an anode compartment solution) and fixed. A 1 mm mesh iron mesh cut into 5 cm × 10 cm was inserted into the anode compartment solution. A carbon electrode was connected to the negative electrode of the DC power supply, and a wire mesh electrode was connected to the positive electrode, and a voltage of 6 V was applied. An aqueous solution of sodium hydroxide was appropriately added to the solution in the anode chamber, and the pH value was kept between 10 and 11. The cathode compartment solution and the anode compartment solution were sampled at regular intervals, and the concentration of the anionic surfactant contained in each solution was measured according to the usual method of the ethyl violet method. FIG. 1 shows a graph of the change in the concentration of the obtained anionic surfactant.

【0011】実施例2 直径3cmのプラスチック製カラム内に脱脂綿を敷いた
後、けい砂を1g 入れ、その上からクロマトグラフィー
用シリカゲル10.0g を充填した。この中に0.1 %のメチ
ルバイオレットを含む水溶液50mlを流した。カラム先
端部から水を完全に流出させた後、3ppm の陰イオン界
面活性剤(ドデシルベンゼンスルホン酸系とアルキルエ
ーテル硫酸エステル系の混合物)を含む水溶液100ml
をカラム内に流した。先端部から流出する水溶液を10
mlずつ採取し(サンプル番号1〜10)、各サンプル中
に含まれる陰イオン界面活性剤の濃度をエチルバイオレ
ット法の常法に従って測定した。得られた濃度変化のグ
ラフを図2に示す。
Example 2 After arranging absorbent cotton in a plastic column having a diameter of 3 cm, 1 g of silica sand was added, and 10.0 g of silica gel for chromatography was filled from above. Into this, 50 ml of an aqueous solution containing 0.1% of methyl violet was poured. After the water was completely drained from the end of the column, 100 ml of an aqueous solution containing 3 ppm of an anionic surfactant (a mixture of dodecylbenzenesulfonic acid type and alkyl ether sulfate type) was used.
Was flowed through the column. The aqueous solution flowing out from the tip
Each ml was collected (sample numbers 1 to 10), and the concentration of the anionic surfactant contained in each sample was measured in accordance with the usual method of the ethyl violet method. FIG. 2 shows a graph of the obtained concentration change.

【0012】実施例3 直径3cmのプラスチック製カラム内に脱脂綿を敷いた
後、けい砂を1g 入れ、その上からクロマトグラフィー
用シリカゲル10.0g を充填した。6ppm の陰イオン界面
活性剤(ドデシルベンゼンスルホン酸系とアルキルエー
テル硫酸エステル系の混合物)を含む水溶液50mlと0.
1 %のメチルバイオレットを含む水溶液50mlを混合し
た水溶液をカラム中に流した。先端部から流出する水溶
液を10mlずつ採取し(サンプル番号1〜10)、各サ
ンプル中に含まれる陰イオン界面活性剤の濃度をエチル
バイオレット法の常法に従って測定した。得られた濃度
変化のグラフを図3に示す。
Example 3 After arranging absorbent cotton in a plastic column having a diameter of 3 cm, 1 g of silica sand was added, and 10.0 g of silica gel for chromatography was filled thereon. 50 ml of an aqueous solution containing 6 ppm of an anionic surfactant (a mixture of dodecylbenzenesulfonic acid-based and alkyl ether sulfate-based) was added to 0.5 ml of an aqueous solution.
An aqueous solution mixed with 50 ml of an aqueous solution containing 1% methyl violet was passed through the column. A 10 ml portion of the aqueous solution flowing out from the tip was sampled (sample numbers 1 to 10), and the concentration of the anionic surfactant contained in each sample was measured according to the standard method of the ethyl violet method. FIG. 3 shows a graph of the obtained concentration change.

【発明の効果】【The invention's effect】

【0013】本発明の方法を利用することより、比較的
小規模な施設で、単時間で陰イオン界面活性剤の処理を
行うことができる。
By utilizing the method of the present invention, the treatment of an anionic surfactant can be performed in a relatively small facility in a single hour.

【手続補正書】[Procedure amendment]

【提出日】平成10年4月17日[Submission date] April 17, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】追加[Correction method] Added

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1における陰極室内の陰イオン界面活性
剤濃度の時間変化を表した図である。図中の実線は陰イ
オン界面活性剤の濃度変化を、点線は陰イオン界面活性
剤の初期濃度を100としたときの、界面活性剤濃度の
減少率(%)を表している。
FIG. 1 is a diagram showing a change over time in the concentration of an anionic surfactant in a cathode chamber in Example 1. The solid line in the figure represents the concentration change of the anionic surfactant, and the dotted line represents the decrease rate (%) of the surfactant concentration when the initial concentration of the anionic surfactant is set to 100.

【図2】実施例2におけるカラムからの流出水溶液(サ
ンプル番号0〜10)中の陰イオン界面活性剤濃度を表
した図である。図中の実線は陰イオン界面活性剤の濃度
変化を、点線は陰イオン界面活性剤の初期濃度を100
としたときの、界面活性濃度の減少率(%)を表してい
る。
FIG. 2 is a diagram showing the concentration of an anionic surfactant in an aqueous solution (sample numbers 0 to 10) flowing out of a column in Example 2. The solid line in the figure represents the concentration change of the anionic surfactant, and the dotted line represents the initial concentration of the anionic surfactant of 100.
Represents the reduction rate (%) of the surfactant concentration.

【図3】実施例3におけるカラムからの流出水溶液(サ
ンプル番号0〜10)中の陰イオン界面活性剤濃度を表
した図である。図中の実線は陰イオン界面活性剤の濃度
変化を、点線は陰イオン界面活性剤の初期濃度を100
としたときの、界面活性濃度の減少率(%)を表してい
る。
FIG. 3 is a diagram showing the concentration of an anionic surfactant in an aqueous solution (sample numbers 0 to 10) flowing out of a column in Example 3. The solid line in the figure represents the concentration change of the anionic surfactant, and the dotted line represents the initial concentration of the anionic surfactant of 100.
Represents the reduction rate (%) of the surfactant concentration.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属陽極を用いる隔膜二室直流電解によ
り陰イオン界面活性剤を陽極室に移動させた上で、電極
反応によって生じた金属陽イオンに結合させ、これを沈
殿させることによって陰イオン界面活性剤を水溶液中か
ら除去する処理方法。
1. An anionic surfactant is moved to an anode chamber by a two-chamber DC electrolysis using a metal anode, and then bound to a metal cation generated by an electrode reaction, and then precipitated, whereby the anion is precipitated. A treatment method for removing a surfactant from an aqueous solution.
【請求項2】 カチオン性イオン色素を吸着させた固体
を充填したカラム内に、陰イオン界面活性剤を含む水溶
液を通過させる方法によって、陰イオン界面活性剤を水
溶液中から除去する方法。またはカチオン性色素水溶液
と陰イオン界面活性剤水溶液を混合した後、固体を充填
したカラム内を通過させて陰イオン界面活性剤を水溶液
中から除去する方法。
2. A method for removing an anionic surfactant from an aqueous solution by passing an aqueous solution containing an anionic surfactant through a column packed with a solid on which a cationic ionic dye has been adsorbed. Alternatively, a method in which a cationic dye aqueous solution and an anionic surfactant aqueous solution are mixed, and the mixture is passed through a column filled with a solid to remove the anionic surfactant from the aqueous solution.
【請求項3】 請求項1と請求項2の方法を組み合わせ
ることによって、陰イオン界面活性剤を水溶液中から除
去する方法。
3. A method for removing an anionic surfactant from an aqueous solution by combining the methods of claim 1 and 2.
JP31627397A 1997-10-31 1997-10-31 Removal of anionic surfactant in wastewater Pending JPH11128948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31627397A JPH11128948A (en) 1997-10-31 1997-10-31 Removal of anionic surfactant in wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31627397A JPH11128948A (en) 1997-10-31 1997-10-31 Removal of anionic surfactant in wastewater

Publications (1)

Publication Number Publication Date
JPH11128948A true JPH11128948A (en) 1999-05-18

Family

ID=18075274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31627397A Pending JPH11128948A (en) 1997-10-31 1997-10-31 Removal of anionic surfactant in wastewater

Country Status (1)

Country Link
JP (1) JPH11128948A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320821A (en) * 2005-05-18 2006-11-30 Kawamura Inst Of Chem Res Method for adsorbing anionic compound
JP2010540974A (en) * 2007-10-09 2010-12-24 シーアールシー ケア プロプライエタリー リミテッド Detection of anionic surfactant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320821A (en) * 2005-05-18 2006-11-30 Kawamura Inst Of Chem Res Method for adsorbing anionic compound
JP2010540974A (en) * 2007-10-09 2010-12-24 シーアールシー ケア プロプライエタリー リミテッド Detection of anionic surfactant

Similar Documents

Publication Publication Date Title
JP3181795B2 (en) Electrolyzed water production equipment
JPS584550B2 (en) Save horned rhinoceros snail
CA2468856A1 (en) Method and apparatus for producing negative and positive oxidative reductive potential (orp) water
GB2150597A (en) Electrochemical deionization
GB2148325A (en) Electro-elution
CN106977013A (en) A kind of purifying treatment method of high chlorine waste water containing thallium and its application
EP0915059A1 (en) Process for the electrochemically controlled absorption of soluble organic substances and of heavy metal ions extracted from aqueous solutions, and corresponding apparatus
JPH11128948A (en) Removal of anionic surfactant in wastewater
JP2001524029A (en) Electrochemical treatment of ion exchange materials
US11795087B2 (en) System for purifying fresh, combined and saline wastewater from radioactive heavy metals
JP3118793B2 (en) Separation method of toxic metals in sludge
GB1378475A (en) Electrolytic treatment of emulsified wastes
RU2001118335A (en) The method of water treatment
JP5818053B2 (en) Method for treating boron-containing groundwater
RU2080305C1 (en) Process for deferrization and stabilization of natural waters
JPS6057369B2 (en) How to regenerate activated carbon
JP3889089B2 (en) Method for producing skin coating
RU2295388C1 (en) Method of modification or regeneration of zeolites and the device for its realization
JPS6328061B2 (en)
JPS6354904A (en) Production of deoxyribonucleic acid membrane
SU1214599A1 (en) Method of purifying liquid
JPS55159893A (en) Remover for ammonium ion in water
JPH06304552A (en) Removing method of phosphorus and ammonia
SU464534A1 (en) The method of purification of aqueous solutions by filtration through a membrane
SU1627521A1 (en) Process for purification and neutralization of slime-containing liquid