JPH11128771A - Pulse power supply device for electric dust collector and operating method therefor - Google Patents

Pulse power supply device for electric dust collector and operating method therefor

Info

Publication number
JPH11128771A
JPH11128771A JP31153097A JP31153097A JPH11128771A JP H11128771 A JPH11128771 A JP H11128771A JP 31153097 A JP31153097 A JP 31153097A JP 31153097 A JP31153097 A JP 31153097A JP H11128771 A JPH11128771 A JP H11128771A
Authority
JP
Japan
Prior art keywords
voltage
power supply
pulse
magnetic flux
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31153097A
Other languages
Japanese (ja)
Inventor
Teruo Tomaki
照夫 戸巻
Kimio Kitajima
喜巳雄 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP31153097A priority Critical patent/JPH11128771A/en
Publication of JPH11128771A publication Critical patent/JPH11128771A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the crossectional area of a magnetic core in a pulse transformer by detecting the magnetic density of the transformer due to the excitation of ripple voltage between a dust collection electrode and an electric discharge electrode and applying a control signal to a power control switch on a high voltage pulse generation circuit for making the switch when the magnetic flux density is reduced from a maximum value by a specified value. SOLUTION: A power control switch S2 on a high voltage pulse generation circuit 5 is turned ON by a control signal from a control part 5B, and in this case, the magnetic flux density of a magnetic core in a pulse transformer PT is detected, in terms of voltage, by voltage detection resistor R1 and R2. Further, the detected voltage is integrated by an integrating circuit IN to obtain a voltage time product corresponding to the actual magnetic flux density. Then, in a comparator CP, a voltage signal from a subtraction circuit SS is compared to a voltage corresponding to the magnetic flux density of the magnetic core in the pulse transformer PT. When the latter is lower than the former, an output signal is sent to a control signal generator CC. The control generator CC receives the output signal and supplies a control signal to the power control switch S2 so that the switch S2 is turned ON.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 本発明はパルス荷電式電気集塵
機に用いられるパルス電源装置及びその運転方法に係
り、特に高電圧パルスを集塵極と放電極間に印加するタ
イミングに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse power supply used in a pulse-charged electric precipitator and an operation method thereof, and more particularly to a timing of applying a high voltage pulse between a precipitating electrode and a discharge electrode.

【0002】[0002]

【従来の技術】 パルス荷電式電気集塵機は、集塵極と
放電極を備える集塵室をコンデンサとし、共振インダク
タンスもしくはパルス変圧器の漏れインダクタンスとの
LC直列共振を利用して、高電圧パルスを直流高電圧に
重畳して集塵極と放電極間に印加するものである。この
ようなパルス荷電式電気集塵機は高抵抗ダストの逆電離
作用に対抗して集塵効率を上げることができ、かつ共振
エネルギーが電源に帰還電流として回収されるので効率
が高い。
2. Description of the Related Art A pulse charging type electric dust collector uses a dust collection chamber having a dust collection electrode and a discharge electrode as a capacitor, and uses a LC series resonance with a resonance inductance or a leakage inductance of a pulse transformer to transmit a high voltage pulse. It is superimposed on the DC high voltage and applied between the dust collection electrode and the discharge electrode. Such a pulse-charged electric precipitator can increase the dust collection efficiency against the reverse ionization action of high-resistance dust, and has high efficiency because the resonance energy is recovered as a feedback current by the power supply.

【0003】 このようなパルス荷電式電気集機の電源
装置は、本発明の実施例を説明するための図1 (高電圧
パルス発生のための制御部5Bを除いた他部分は従来装置
と同じ)からも分かるように、高電圧パルスをパルス変
圧器PTを介して直流高電圧に重畳して放電極2Aと集塵極
2B間に荷電する。リプル電圧が大きい方が集塵効率が良
いので、集塵極と放電極間にはリプル電圧の大きな直流
電圧が印加されると共に、放電極2Aと集塵極2B間にコロ
ナ放電が発生することから、それら電極間の電圧にはか
なり大きなリプル電圧が含まれる。したがって、パルス
変圧器PTの2 次巻線には直流阻止用コンデンサC2を介し
てリプル電圧が印加されるので、パルス変圧器PTにはリ
プル電圧と高電圧パルスが重畳した大きな電圧がかか
り、それらに相当する磁束が発生する。
A power supply device for such a pulse-charged electric collector is the same as a conventional device except for a control unit 5B for generating a high-voltage pulse in FIG. 1 for explaining an embodiment of the present invention. ), The high voltage pulse is superimposed on the DC high voltage via the pulse transformer PT and the discharge electrode 2A and the dust collection electrode are superimposed.
Charge between 2B. Since the higher the ripple voltage, the higher the dust collection efficiency, a DC voltage with a large ripple voltage is applied between the dust collection electrode and the discharge electrode, and corona discharge occurs between the discharge electrode 2A and the dust collection electrode 2B. Therefore, the voltage between these electrodes includes a considerably large ripple voltage. Therefore, a ripple voltage is applied to the secondary winding of the pulse transformer PT via the DC blocking capacitor C2, so that a large voltage in which the ripple voltage and the high-voltage pulse are superimposed is applied to the pulse transformer PT. Is generated.

【0004】 ここで、図 1において直流高電圧電源1
の出力電圧を平均値50kV、リプル電圧を5kV(0Vピー
ク)、リプル周波数を100Hz 、パルス幅を100 μs(ピ
ーク値の半分の時刻での幅) 、パルス高さを60kVにそれ
ぞれ想定し、リプル電圧を正弦波形、パルス電圧を(1-
COS)波形に近似すると、磁束量(電圧時間積VT)はリプ
ル電圧成分(5kV ×2 ×10ms/3.14=31.8Vs)と、高電
圧パルス電圧の成分(60kV×100 μs=6Vs )との合成
になる。
Here, in FIG. 1, a DC high-voltage power supply 1
Assuming an average output voltage of 50 kV, a ripple voltage of 5 kV (0 V peak), a ripple frequency of 100 Hz, a pulse width of 100 μs (width at half the peak value time), and a pulse height of 60 kV, ripple Voltage is sinusoidal, pulse voltage is (1-
Approximate to the COS waveform, the amount of magnetic flux (voltage-time product VT) is a combination of the ripple voltage component (5 kV x 2 x 10 ms / 3.14 = 31.8 Vs) and the high voltage pulse voltage component (60 kV x 100 μs = 6 Vs) become.

【0005】 ここで、パルス変圧器PTの磁心に方向性
珪素鋼板を使用するとき、高電圧パルスの周波数成分(5
kHz)の鉄損を考慮し、その高電圧パルス成分の磁束密度
変化量を0.6 テスラに選定する。このときリプル成分の
磁束密度変化量は3.18テスラ(最大磁束密度は1.59テス
ラ)となる。
Here, when a grain-oriented silicon steel sheet is used for the magnetic core of the pulse transformer PT, the frequency component (5
kHz), the change in magnetic flux density of the high voltage pulse component is selected to be 0.6 Tesla. At this time, the amount of change in the magnetic flux density of the ripple component is 3.18 Tesla (the maximum magnetic flux density is 1.59 Tesla).

【0006】 直流高電圧電源1 の商用電源の位相と無
関係に高電圧パルスを発生させると、上記選定のパルス
変圧器PTの磁心では最悪時、磁束密度は2.19テスラとな
り飽和する。最大磁束密度を、リプル成分の最大磁束密
度に等しい約1.6テスラ以下に制限するためには、パル
ス変圧器PTの磁心の断面積を1.4 倍増加させなければな
らず、パルス変圧器PTが大型化し、好ましくない。
When a high-voltage pulse is generated irrespective of the phase of the commercial power supply of the DC high-voltage power supply 1, in the worst case, the magnetic flux density of the selected core of the pulse transformer PT becomes 2.19 Tesla and saturates. In order to limit the maximum magnetic flux density to about 1.6 Tesla or less, which is equal to the maximum magnetic flux density of the ripple component, the cross-sectional area of the core of the pulse transformer PT must be increased by 1.4 times. Is not preferred.

【0007】[0007]

【発明が解決しようとする課題】 上述から分かるよう
に、パルス変圧器にはリプル電圧と高電圧パルスとを重
畳した電圧がかかるので、パルス変圧器の磁心の磁束は
二つの電圧の和に等しい電圧で決定され、したがってパ
ルス変圧器は大型化せざるを得なかった。
As can be seen from the above, since a pulse transformer is applied with a voltage obtained by superimposing a ripple voltage and a high-voltage pulse, the magnetic flux of the core of the pulse transformer is equal to the sum of the two voltages. Determined by the voltage, the pulse transformer had to be large.

【0008】 本発明では、パルス変圧器の磁束密度が
リプル電圧により変化して最大値から高電圧パルスによ
る磁束密度増加分にほぼ相当する磁束密度減少した磁束
レベルに達する時点以降で、各周期の始めで双方向電力
制御スイッチをある一定期間オンさせない期間、即ちデ
ッドタイムの終わる直前までの期間に高電圧パルスを集
塵極と放電極間に印加する。あるいはデッドタイムの終
わる直前に高電圧パルスを集塵極と放電極間に印加する
ことに特徴がある。このように運転すれば、実際上のパ
ルス変圧器の磁束密度の最大値は高電圧パルスが印加さ
れない状態でのリプル電圧による最大値より大きくなる
ことはない。
In the present invention, after the magnetic flux density of the pulse transformer changes due to the ripple voltage and reaches a magnetic flux level at which the magnetic flux density decreases from the maximum value to the magnetic flux density increase substantially corresponding to the magnetic flux density increase by the high-voltage pulse, First, a high voltage pulse is applied between the dust collecting electrode and the discharge electrode during a period during which the bidirectional power control switch is not turned on for a certain period of time, that is, a period immediately before the dead time ends. Another feature is that a high voltage pulse is applied between the dust collecting electrode and the discharge electrode immediately before the end of the dead time. With this operation, the actual maximum value of the magnetic flux density of the pulse transformer does not become larger than the maximum value due to the ripple voltage in a state where the high voltage pulse is not applied.

【0009】 本発明は、パルス変圧器の磁束密度があ
るレベルよりも低くなった時点で高電圧パルス発生する
ように高電圧パルスの発生のタイミングを適切に設定し
て、パルス変圧器を小型化することを主目的とする。
The present invention reduces the size of the pulse transformer by appropriately setting the generation timing of the high voltage pulse so that the high voltage pulse is generated when the magnetic flux density of the pulse transformer becomes lower than a certain level. The main purpose is to

【0010】[0010]

【課題を解決するための手段】 上述のような問題を解
決するため、請求項1に記載の発明は、交流電力を制御
する双方向電力制御スイッチと該双方向電力制御スイッ
チの動作を制御する制御部と昇圧変圧器と高電圧整流回
路とを備えて直流高電圧を集塵極と放電極間に印加する
第1の直流高電圧電源、第2の直流高電圧電源、及び前
記第2の直流高電圧電源からの直流高電圧をパルス化す
る高電圧パルス発生回路を備え、該高電圧パルス発生回
路が高電圧パルスを前記第1の直流高電圧電源からの直
流高電圧に重畳するように前記集塵極と放電極間に印加
する電気集塵機用パルス電源装置において、前記集塵極
と放電極間のリプル電圧の励磁による前記変圧器の磁束
密度を検出する磁束密度検出器と、前記変圧器の磁束密
度が最大値から所定値減少したときに検出信号を発生す
る磁束密度設定レベル検出器と、該磁束密度設定レベル
検出器からの検出信号を受け、前記高電圧パルス発生回
路の電力制御スイッチに制御信号を与えて導通させる制
御信号発生器とを備えたことを特徴とする電気集塵機用
パルス電源装置を提供するものである。
Means for Solving the Problems In order to solve the above problems, the invention according to claim 1 controls a bidirectional power control switch for controlling AC power and the operation of the bidirectional power control switch. A first DC high-voltage power supply, a second DC high-voltage power supply, and a second DC high-voltage power supply that includes a control unit, a step-up transformer, and a high-voltage rectifier circuit and that applies a DC high voltage between a dust collection electrode and a discharge electrode; A high-voltage pulse generation circuit for pulsing a high-voltage DC from a high-voltage DC power supply, wherein the high-voltage pulse generation circuit superimposes a high-voltage pulse on the high-voltage DC from the first DC high-voltage power supply. A pulse power supply for an electric precipitator applied between the dust collecting electrode and the discharge electrode, wherein a magnetic flux density detector for detecting a magnetic flux density of the transformer by exciting a ripple voltage between the dust collecting electrode and the discharge electrode; The magnetic flux density of the vessel is determined from the maximum value A magnetic flux density setting level detector for generating a detection signal when the value decreases, a detection signal from the magnetic flux density setting level detector, receiving a detection signal from the magnetic flux density setting level detector, and applying a control signal to a power control switch of the high voltage pulse generation circuit to conduct the signal. A pulse power supply device for an electric precipitator, comprising: a control signal generator.

【0011】 上述のような問題を解決するため、請求
項2に記載の発明は、請求項1において、前記磁束密度
検出器は前記変圧器の巻線に印加される電圧と各周期の
時間との積を検出する積分回路であり、前記磁束密度設
定レベル検出器は前記積分回路の積分値をピークホール
ドするピークホールド回路と、設定磁束に相当する電圧
を呈する設定電圧源と、前記ピークホールド回路の電圧
から前記設定電圧源の電圧を減算する減算回路と、その
減算回路からの電圧信号と前記積分回路の積分値とを比
較するコンパレータとからなることを特徴とする電気集
塵機用パルス電源装置を提供するものである。
[0011] In order to solve the above-described problem, according to a second aspect of the present invention, in the first aspect, the magnetic flux density detector includes a voltage applied to a winding of the transformer and a time of each cycle. A magnetic flux density setting level detector, wherein the magnetic flux density setting level detector peak-holds an integrated value of the integration circuit, a setting voltage source that presents a voltage corresponding to a setting magnetic flux, and the peak holding circuit And a comparator for comparing a voltage signal from the subtraction circuit with an integration value of the integration circuit, the pulse power supply for an electrostatic precipitator, comprising: To provide.

【0012】 上述のような問題を解決するため、請求
項3に記載の発明は、各周期で一定期間オンしないデッ
ドタイムをもって交流電力を制御する双方向電力制御ス
イッチと該双方向電力制御スイッチの動作を制御する制
御部と昇圧変圧器と高電圧整流回路とを備えて直流高電
圧を集塵極と放電極間に印加する第1の直流高電圧電
源、第2の直流高電圧電源、及び前記第2の高電圧電源
からの直流高電圧をパルス化する高電圧パルス発生回路
を備え、該高電圧パルス発生回路が高電圧パルスを前記
第1の直流高電圧電源からの直流高電圧に重畳するよう
に前記集塵極と放電極間に印加する電気集塵機用パルス
電源装置の運転方法において、前記集塵極と放電極間の
リプル電圧の励磁による前記変圧器の磁束密度の最大値
から所定値減少したレベルの時点から前記双方向電力制
御スイッチのデッドタイムの終わる直前までの期間に前
記高電圧パルスを前記集塵極と放電極間に印加すること
を特徴とする電気集塵機用パルス電源装置の運転方法を
提供するものである。
[0012] In order to solve the above-described problem, the invention according to claim 3 provides a bidirectional power control switch for controlling AC power with a dead time that does not turn on for a fixed period in each cycle, and a bidirectional power control switch for the bidirectional power control switch. A first DC high-voltage power supply, a second DC high-voltage power supply, including a control unit for controlling operation, a step-up transformer, and a high-voltage rectifier circuit for applying a DC high voltage between the dust collection electrode and the discharge electrode; A high-voltage pulse generating circuit for pulsing a DC high voltage from the second high-voltage power supply, wherein the high-voltage pulse generating circuit superimposes a high-voltage pulse on the DC high voltage from the first DC high-voltage power supply The method for operating a pulse power supply for an electric precipitator applied between the dust collection electrode and the discharge electrode in such a manner that the predetermined value is determined from the maximum value of the magnetic flux density of the transformer by exciting the ripple voltage between the dust collection electrode and the discharge electrode. Value decreased A method of operating a pulse power supply for an electric dust collector, wherein the high voltage pulse is applied between the dust collecting electrode and the discharge electrode during a period from the time of a bell to immediately before the dead time of the bidirectional power control switch ends. Is provided.

【0013】 上述のような問題を解決するため、請求
項4に記載の発明は、各周期で一定期間オンしないデッ
ドタイムをもって交流電力を制御する双方向電力制御ス
イッチと該双方向電力制御スイッチの動作を制御する制
御部と昇圧変圧器と高電圧整流回路とを備えて直流高電
圧を集塵極と放電極間に印加する第1の直流高電圧電
源、第2の直流高電圧電源、及び前記第2の直流高電圧
電源からの直流高電圧をパルス化する高電圧パルス発生
回路を備え、該高電圧パルス発生回路が高電圧パルスを
前記第1の直流高電圧電源からの直流高電圧に重畳する
ように前記集塵極と放電極間に印加する電気集塵機用パ
ルス電源装置の運転方法において、前記双方向電力制御
スイッチのデッドタイムの終わる前の設定時刻で前記高
電圧パルスを前記集塵極と放電極間に印加することを特
徴とする電気集塵機用パルス電源装置の運転方法を提供
するものである。
[0013] In order to solve the above-described problem, the invention according to claim 4 provides a bidirectional power control switch that controls AC power with a dead time that does not turn on for a predetermined period in each cycle, and a bidirectional power control switch for the bidirectional power control switch. A first DC high-voltage power supply, a second DC high-voltage power supply, including a control unit for controlling operation, a step-up transformer, and a high-voltage rectifier circuit for applying a DC high voltage between the dust collection electrode and the discharge electrode; A high-voltage pulse generating circuit for pulsing the high-voltage DC from the second high-voltage power supply, wherein the high-voltage pulse generating circuit converts the high-voltage pulse to a high-voltage DC from the first high-voltage DC power supply. In the method of operating a pulse power supply for an electric precipitator applied between the dust collecting electrode and the discharge electrode so as to overlap, the high voltage pulse is collected at a set time before a dead time of the bidirectional power control switch ends. The present invention provides a method for operating a pulse power supply device for an electrostatic precipitator, wherein a pulse voltage is applied between a pole and a discharge electrode.

【0014】[0014]

【本発明を実施するための形態及び実施例】 図1によ
りこの電気集塵機用パルス電源装置について説明する。
1Aは第1の直流高電圧電源1 の主回路部であり、商用交
流電源に接続される交流入力端子U とV 、サイリスタの
ような電力制御スイッチを逆並列に接続してなる双方向
電力制御スイッチS1,限流インダクタンスL1,昇圧変圧
器T ,昇圧変圧器T の2次巻線に接続された全波整流回
路Reからなる。1Bは直流高電圧電源1 の主回路部1Aの双
方向電力制御スイッチS1を制御する通常の制御部であ
り、入力電圧と出力電圧とを検出して、双方向電力制御
スイッチS1の導通を制御する。第1の直流高電圧電源1
は通常の回路である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and Examples of the Invention A pulse power supply for an electric precipitator will be described with reference to FIG.
1A is a main circuit part of the first DC high-voltage power supply 1, and is a bidirectional power control comprising an AC input terminals U and V connected to a commercial AC power supply and a power control switch such as a thyristor connected in anti-parallel. It comprises a switch S1, a current limiting inductance L1, a step-up transformer T, and a full-wave rectifier circuit Re connected to the secondary winding of the step-up transformer T. 1B is a normal control unit that controls the bidirectional power control switch S1 of the main circuit unit 1A of the DC high-voltage power supply 1, detects input voltage and output voltage, and controls conduction of the bidirectional power control switch S1. I do. 1st DC high voltage power supply 1
Is a normal circuit.

【0015】 ここで直流高電圧電源1 は、双方向電力
制御スイッチS1により制御された所定の電圧を集塵室2
の放電極2Aと集塵極2Bとの間に印加するが、この電圧は
平滑されない電圧であり、また集塵室2 の放電極2Aと集
塵極2B間にはコロナ放電電流が流れていることもあっ
て、集塵室2 の放電極2Aと集塵極2B間の電圧はかなり大
きなリプル電圧を含む。
Here, the DC high-voltage power supply 1 applies a predetermined voltage controlled by the bidirectional power control switch S 1 to the dust collection chamber 2.
Is applied between the discharge electrode 2A and the dust collection electrode 2B, but this voltage is not smoothed, and a corona discharge current flows between the discharge electrode 2A and the dust collection electrode 2B of the dust collection chamber 2. For this reason, the voltage between the discharge electrode 2A and the dust collection electrode 2B of the dust collection chamber 2 includes a considerably large ripple voltage.

【0016】 3 は通常、インダクタである限流インピ
ーダンス4 を通して高電圧パルス発生回路5 に電力を供
給する第2の高電圧電源である。高電圧パルス発生回路
5 は主回路部5Aと制御部5Bとからなり、主回路部5Aは共
振用コンデンサとしても作用するエネルギー蓄積コンデ
ンサC1、サイリスタのような半導体スイッチとダイオー
ドとを逆並列接続したような電力制御スイッチS2、共振
用インダクタL2、パルス電圧を昇圧するパルス変圧器P
T、及び直流阻止用コンデンサC2などから構成される。
主回路部5Aは通常の回路構成である。
Reference numeral 3 denotes a second high-voltage power supply that supplies power to the high-voltage pulse generating circuit 5 through a current-limiting impedance 4 which is usually an inductor. High voltage pulse generation circuit
5 is composed of a main circuit section 5A and a control section 5B.The main circuit section 5A is an energy storage capacitor C1, which also acts as a resonance capacitor, and a power control switch in which a semiconductor switch such as a thyristor and a diode are connected in anti-parallel. S2, resonance inductor L2, pulse transformer P for boosting pulse voltage
T and DC blocking capacitor C2.
The main circuit section 5A has a normal circuit configuration.

【0017】 高電圧パルス発生回路5 の制御部5Bは、
従来の制御信号発生回路CCに、パルス変圧器PTの1次巻
線間電圧の検出電圧を時間積分する積分回路INと、その
積分値のピーク値を検出するピークホールド回路PHと、
予め決められた電圧をもつ設定電圧源RPと、ピークホー
ルド回路PHのピーク電圧から設定電圧を減算した電圧信
号を出力する減算回路SSと、積分回路INからの積分電圧
と減算回路SSからの電圧検出信号とを比較し、前記積分
電圧が電圧検出信号よりも小さくなるとき信号を発生す
るコンパレータCPとを付加したところに特徴がある。
The control unit 5B of the high voltage pulse generation circuit 5
An integration circuit IN for integrating the detected voltage of the primary winding voltage of the pulse transformer PT with time, a peak hold circuit PH for detecting a peak value of the integrated value, and a conventional control signal generation circuit CC.
A set voltage source RP having a predetermined voltage, a subtraction circuit SS for outputting a voltage signal obtained by subtracting the set voltage from the peak voltage of the peak hold circuit PH, an integration voltage from the integration circuit IN, and a voltage from the subtraction circuit SS It is characterized by adding a comparator CP for comparing a detection signal and generating a signal when the integrated voltage becomes smaller than the voltage detection signal.

【0018】 ここで、パルス変圧器PTの1次巻線間電
圧と時間の積分値はパルス変圧器PTの磁心の磁束密度を
示すから、積分回路INはパルス変圧器PTの磁心の磁束密
度を検出する磁束密度検出器として働く。そしてピーク
ホールド回路PHは、パルス変圧器PTの磁心の最大磁束密
度を検出して、減算回路SSにその最大磁束密度に対応す
る電圧信号を与える。設定電圧源RPは、図2に示すよう
に予め決めた適当な設定磁束密度Bdに相当する電圧を有
する。減算回路SSは、パルス変圧器PTの磁心の最大磁束
密度から予め決めた適当な設定磁束密度Bdだけ減算した
磁束密度に対応する電圧信号を出力し、コンパレータCP
はパルス変圧器PTの磁心の最大磁束密度から予め決めた
適当な設定磁束密度Bdだけ減算した磁束密度とパルス変
圧器PTの磁心の実際の磁束密度とを比較する。したがっ
て、ピークホールド回路PHと設定電圧源RPと減算回路SS
とコンパレータCPは磁束密度設定レベル検出器として働
く。
Here, since the integral value of the voltage between the primary windings of the pulse transformer PT and time indicates the magnetic flux density of the core of the pulse transformer PT, the integrating circuit IN calculates the magnetic flux density of the core of the pulse transformer PT. It works as a magnetic flux density detector to detect. Then, the peak hold circuit PH detects the maximum magnetic flux density of the magnetic core of the pulse transformer PT, and supplies a voltage signal corresponding to the maximum magnetic flux density to the subtraction circuit SS. The set voltage source RP has a voltage corresponding to a predetermined appropriate set magnetic flux density Bd as shown in FIG. The subtraction circuit SS outputs a voltage signal corresponding to the magnetic flux density obtained by subtracting a predetermined appropriate set magnetic flux density Bd from the maximum magnetic flux density of the magnetic core of the pulse transformer PT, and outputs a voltage signal corresponding to the comparator CP.
Compares the magnetic flux density obtained by subtracting a predetermined appropriate set magnetic flux density Bd from the maximum magnetic flux density of the magnetic core of the pulse transformer PT with the actual magnetic flux density of the magnetic core of the pulse transformer PT. Therefore, the peak hold circuit PH, the set voltage source RP, and the subtraction circuit SS
The comparator CP works as a magnetic flux density setting level detector.

【0019】 ここで重要なのは、予め決めた適当な設
定磁束密度Bdを次のように決めたことである。図2をも
用いて説明すると、設定磁束密度Bdの最小値は、リプル
電圧によるパルス変圧器PTの磁心の磁束密度B1に、高電
圧パルス発生回路5 からの高電圧パルスHPによる磁束密
度B2が重畳されても、最大磁束密度Bpを越えることが無
いように設定されるのが好ましい。また、回路のインダ
クタンスなどによる電流が流れているために、その電流
の通流が止むまでの期間、商用電源電圧の各サイクルで
双方向電力制御スイッチS1を設計上オンさせない非導通
角度、即ちデッドタイムを設けるが、設定磁束密度Bdの
最大値は、最大磁束密度からそのデッドタイムにほぼ相
当する時刻の磁束密度を差し引いた磁束密度とするのが
好ましい。したがって、設定磁束密度Bdは前記最小値か
ら最大値の範囲で任意に設定される。
What is important here is that a predetermined appropriate set magnetic flux density Bd is determined as follows. Explaining also with reference to FIG. 2, the minimum value of the set magnetic flux density Bd is such that the magnetic flux density B1 of the high voltage pulse HP from the high voltage pulse generation circuit 5 is equal to the magnetic flux density B1 of the core of the pulse transformer PT due to the ripple voltage. It is preferable that the magnetic flux density is set so as not to exceed the maximum magnetic flux density Bp even if they are superimposed. In addition, since the current flows due to the inductance of the circuit, the non-conduction angle at which the bidirectional power control switch S1 is not turned on by design in each cycle of the commercial power supply voltage until the current stops flowing, that is, the dead angle. Although a time is provided, the maximum value of the set magnetic flux density Bd is preferably a magnetic flux density obtained by subtracting the magnetic flux density at a time substantially corresponding to the dead time from the maximum magnetic flux density. Therefore, the set magnetic flux density Bd is arbitrarily set in the range from the minimum value to the maximum value.

【0020】 次にこの装置の動作について説明する。
前述のとおり、パルス変圧器PTにはリプル電圧が印加さ
れており、高電圧パルス発生回路5 の電力制御スイッチ
S2がその制御部5Bからの制御信号でターンオンすると、
コンデンサC1−パルス変圧器PT- 共振用インダクタL2−
電力制御スイッチS2−コンデンサC1の閉回路に共振電流
i1が流れる。同時に、パルス変圧器PTの作用により、パ
ルス変圧器PT−集塵室2 の静電容量−コンデンサC2−パ
ルス変圧器PTの閉回路にも共振電流i2が流れる。共振電
流i2の正の半周期では、集塵室2 の放電極2Aの電圧は負
方向に増大し、そして共振電流i2が負の半周期では集塵
室2 の放電極2Aの負方向電圧が減少し、始めの電圧に戻
る。
Next, the operation of this device will be described.
As described above, the ripple voltage is applied to the pulse transformer PT, and the power control switch of the high-voltage pulse generation circuit 5
When S2 is turned on by the control signal from the control unit 5B,
Capacitor C1-Pulse transformer PT-Inductor for resonance L2-
Resonant current in closed circuit of power control switch S2-capacitor C1
i1 flows. At the same time, due to the action of the pulse transformer PT, the resonance current i2 also flows through the closed circuit of the pulse transformer PT, the capacitance of the dust collection chamber 2, the capacitor C2, and the pulse transformer PT. In the positive half cycle of the resonance current i2, the voltage of the discharge electrode 2A of the dust collection chamber 2 increases in the negative direction, and in the negative half cycle of the resonance current i2, the negative voltage of the discharge electrode 2A of the dust collection chamber 2 increases. Decreases and returns to the starting voltage.

【0021】 パルス変圧器PTの磁心の磁束密度は、そ
の1次巻線間に接続された電圧検出抵抗R1とR2により電
圧として検出される。その検出電圧は高電圧パルス発生
回路5 の制御部5Bの積分回路INで積分され、実際の磁束
密度に対応する電圧時間積(VT)が得られる。ピークホー
ルド回路PHは積分回路INからの電圧時間積(VT)信号をピ
ークホールドして、パルス変圧器PTの磁心の最大磁束密
度( 例えば1.9 テスラ)に相当する電圧ピーク値( 時刻
t1) を検出し、減算回路SSへ送出する。減算回路SSは、
パルス変圧器PTの磁心の最大磁束密度に相当する電圧ピ
ーク値から、設定電圧源RPからの前述のように決められ
た設定磁束密度Bd(例えば0.6 テスラ)に相当する直流
電圧を減算し、それらの差に対応する電圧信号をコンパ
レータCPに送出する。コンパレータCPは、その電圧信号
と積分回路INからのパルス変圧器PTの磁心の磁束密度に
相当する電圧とを比較し、前者よりも後者が低いとき出
力信号を制御信号発生器CCに送出する( 時刻t2) 。制御
信号発生器CCはその出力信号を受けて制御信号を電力制
御スイッチS2に供給してターンオンさせる。
The magnetic flux density of the magnetic core of the pulse transformer PT is detected as a voltage by voltage detecting resistors R1 and R2 connected between the primary windings. The detected voltage is integrated by the integration circuit IN of the control unit 5B of the high-voltage pulse generation circuit 5, and a voltage-time product (VT) corresponding to the actual magnetic flux density is obtained. The peak hold circuit PH peak-holds the voltage-time product (VT) signal from the integration circuit IN, and generates a voltage peak value (for example, 1.9 Tesla) corresponding to the maximum magnetic flux density (for example, 1.9 Tesla) of the magnetic core of the pulse transformer PT.
t1) is detected and sent to the subtraction circuit SS. The subtraction circuit SS
From the voltage peak value corresponding to the maximum magnetic flux density of the core of the pulse transformer PT, the DC voltage corresponding to the set magnetic flux density Bd (for example, 0.6 Tesla) determined as described above from the set voltage source RP is subtracted. A voltage signal corresponding to the difference is sent to the comparator CP. The comparator CP compares the voltage signal with a voltage corresponding to the magnetic flux density of the core of the pulse transformer PT from the integration circuit IN, and sends an output signal to the control signal generator CC when the latter is lower than the former ( Time t2). The control signal generator CC receives the output signal and supplies a control signal to the power control switch S2 to turn it on.

【0022】 したがって、高電圧パルス発生回路5 は
時刻t2とほぼ同時刻t3でパルス変圧器PTを通して高電圧
パルスHPを発生し、その高電圧パルスHPはコンデンサC2
を介して放電極2Aと集塵極2Bとの間に印加される。この
ようなタイミングで高電圧パルスHPを発生することによ
り、図 2からも明らかなように、リプル電圧のある程度
低下した時点で高電圧パルスHPが発生され、パルス変圧
器PTにおけるリプル電圧に高電圧パルスHPが重畳された
電圧に相当する磁束密度B2は最大磁束密度を越えないの
が分かる。
Therefore, the high-voltage pulse generating circuit 5 generates the high-voltage pulse HP through the pulse transformer PT at substantially the same time t3 as the time t2, and the high-voltage pulse HP is connected to the capacitor C2.
Is applied between the discharge electrode 2A and the dust collection electrode 2B via By generating the high-voltage pulse HP at such a timing, as is clear from FIG. 2, the high-voltage pulse HP is generated when the ripple voltage drops to some extent, and the high voltage is applied to the ripple voltage in the pulse transformer PT. It can be seen that the magnetic flux density B2 corresponding to the voltage on which the pulse HP is superimposed does not exceed the maximum magnetic flux density.

【0023】 次に図 3により本発明の別の実施例につ
いて説明する。前に述べたが、回路のインダクタンスな
どによる電流が流れているために、その電流の通流が止
むまでの期間、商用電源電圧の各サイクルで双方向電力
制御スイッチS1を設計上オンさせない。この時間をデッ
ドタイムと呼んだが、このデッドタイムの終了前の設定
時刻に高電圧パルス発生回路5 の電力制御スイッチS2を
導通させれば、双方向電力制御スイッチS1の導通前に高
電圧パルスHPを発生させ、終了させることができる。
Next, another embodiment of the present invention will be described with reference to FIG. As described above, the bidirectional power control switch S1 is not turned on by design in each cycle of the commercial power supply voltage until the current stops flowing because the current flows due to the inductance of the circuit and the like. This time is called dead time. If the power control switch S2 of the high voltage pulse generation circuit 5 is turned on at a set time before the end of the dead time, the high voltage pulse HP is turned on before the bidirectional power control switch S1 is turned on. Can be generated and terminated.

【0024】 図3 から分かるように、パルス変圧器PT
の磁心の磁束密度は双方向電力制御スイッチS1の導通ま
で減少傾向にあるから、前記デッドタイムの終了前の設
定時刻で設定磁束密度Bdが最大となるが、この実施例で
は、双方向電力制御スイッチS1をオンさせないデッドタ
イムが設計上から決められ、高電圧パルスHPのパルス幅
や高電圧パルス発生回路5 の電力制御スイッチS2の導通
遅れを回路定数などから予め知ることができるので、そ
れらを考慮して電力制御スイッチS2の導通時刻を固定す
ることができ。
As can be seen from FIG. 3, the pulse transformer PT
Since the magnetic flux density of the magnetic core has a tendency to decrease until the conduction of the bidirectional power control switch S1, the set magnetic flux density Bd becomes maximum at the set time before the end of the dead time, but in this embodiment, the bidirectional power control The dead time during which the switch S1 is not turned on is determined from the design, and the pulse width of the high-voltage pulse HP and the conduction delay of the power control switch S2 of the high-voltage pulse generation circuit 5 can be known in advance from circuit constants. Considering this, the conduction time of the power control switch S2 can be fixed.

【0025】 この場合には、商用電源電圧の各サイク
ルの電圧ゼロ点を検出し、その電圧ゼロ点を基準にして
前記デッドタイム内の適当な一定時刻に、制御信号発生
器CCが導通制御信号を発生するようにすれば良い。例え
ば、前記デッドタイムが電圧ゼロ点から20度までの角度
範囲であったとすると、ほぼ15度の角度で制御信号発生
器CCが導通制御信号を発生するのが好ましい。
In this case, a voltage zero point in each cycle of the commercial power supply voltage is detected, and at an appropriate constant time within the dead time based on the voltage zero point, the control signal generator CC turns on the conduction control signal. Should be generated. For example, if the dead time is in the angle range from the voltage zero point to 20 degrees, it is preferable that the control signal generator CC generates the conduction control signal at an angle of about 15 degrees.

【0026】 この実施例の場合には、制御部5Bから積
分回路IN、ピークホールド回路PH、減算回路SS、設定電
圧源RP、及びコンパレータCP、あるいはこれら回路の機
能に相当する機能を省略することができる。
In the case of this embodiment, the integration circuit IN, the peak hold circuit PH, the subtraction circuit SS, the set voltage source RP, the comparator CP, or the functions corresponding to the functions of these circuits are omitted from the control unit 5B. Can be.

【0027】 なお、図1の積分回路INは図示していな
いが、商用電源電圧の各半サイクルで積分値をほぼゼロ
にリセットするリセット用スイッチを備えている。ま
た、図2及び図3では説明の便宜上、パルス変圧器の磁
束密度、集塵室に印加される電圧のリプル電圧成分と高
電圧パルスの極性を逆に表示している。
Although not shown, the integrating circuit IN of FIG. 1 includes a reset switch for resetting the integrated value to almost zero in each half cycle of the commercial power supply voltage. 2 and 3, the magnetic flux density of the pulse transformer, the ripple voltage component of the voltage applied to the dust collection chamber, and the polarity of the high-voltage pulse are displayed in reverse for convenience of explanation.

【0028】[0028]

【発明の効果】 本発明は、以上説明したような特徴を
有しており、リプル電圧に対する高電圧パルスの発生タ
イミングを適切にすることで、パルス変圧器の磁心の断
面積を大幅に減少させ、変圧器の小型化ができる。
The present invention has the features as described above, and can reduce the cross-sectional area of the magnetic core of the pulse transformer significantly by optimizing the generation timing of the high voltage pulse with respect to the ripple voltage. In addition, the size of the transformer can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係わる電気集塵機用パルス電源装置
の一実施例を示す。
FIG. 1 shows an embodiment of a pulse power supply for an electric dust collector according to the present invention.

【図2】 本発明に係わる電気集塵機用パルス電源装置
を説明するための波形図である。
FIG. 2 is a waveform diagram for explaining a pulse power supply device for an electric dust collector according to the present invention.

【図3】 本発明に係わる電気集塵機用パルス電源装置
の制御方法を説明するための波形図である。
FIG. 3 is a waveform diagram for explaining a control method of the pulse power supply device for an electric dust collector according to the present invention.

【符号の説明】[Explanation of symbols]

1 ── 直流高電圧電源 PT ──
パルス変圧器 2 ── 電気集塵室 IN ──
積分器 2A ── 放電極 PH ──
ピークホールド回路 2B ── 集塵極 RP ──
設定電圧源 3 ── 直流高電圧電源 SS ──
減算回路 4 ── 限流インピーダンス CP ──
コンパレータ 5 ── 高電圧パルス発生回路 CC ──
制御信号発生器 S1 ── 双方向電力制御スイッチ S2 ── 電力制御スイッチ
1 直流 DC high voltage power supply PT ──
Pulse transformer 2 ── Electric precipitator IN ──
Integrator 2A ── Discharge electrode PH ──
Peak hold circuit 2B 塵 Dust collection electrode RP ──
Set voltage source 3 高 DC high voltage power supply SS ──
Subtraction circuit 4 ── Current limiting impedance CP ──
Comparator 5 ── High-voltage pulse generator circuit CC ──
Control signal generator S1 双方 向 Bidirectional power control switch S2 電力 Power control switch

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 交流電力を制御する双方向電力制御スイ
ッチと該双方向電力制御スイッチの動作を制御する制御
部と昇圧変圧器と高電圧整流回路とを備えて直流高電圧
を集塵極と放電極間に印加する第1の直流高電圧電源、
第2の直流高電圧電源、及び前記第2の直流高電圧電源
からの直流高電圧をパルス化する高電圧パルス発生回路
を備え、該高電圧パルス発生回路が高電圧パルスを前記
第1の直流高電圧電源からの直流高電圧に重畳するよう
に前記集塵極と放電極間に印加する電気集塵機用パルス
電源装置において、 前記集塵極と放電極間のリプル電圧の励磁による前記変
圧器の磁束密度を検出する磁束密度検出器と、前記変圧
器の磁束密度が最大値から所定値減少したときに検出信
号を発生する磁束密度設定レベル検出器と、該磁束密度
設定レベル検出器からの検出信号を受け、前記高電圧パ
ルス発生回路の電力制御スイッチに制御信号を与えて導
通させる制御信号発生器とを備えたことを特徴とする電
気集塵機用パルス電源装置。
1. A bidirectional power control switch for controlling AC power, a control unit for controlling the operation of the bidirectional power control switch, a step-up transformer, and a high voltage rectifier circuit. A first DC high-voltage power supply applied between discharge electrodes,
A second DC high-voltage power supply; and a high-voltage pulse generation circuit for pulsating the DC high voltage from the second DC high-voltage power supply, wherein the high-voltage pulse generation circuit generates a high-voltage pulse from the first DC high-voltage power supply. In a pulse power supply device for an electric precipitator applied between the dust collecting electrode and the discharge electrode so as to be superimposed on a DC high voltage from a high voltage power supply, the transformer is configured by exciting a ripple voltage between the dust collecting electrode and the discharge electrode. A magnetic flux density detector for detecting a magnetic flux density, a magnetic flux density setting level detector for generating a detection signal when the magnetic flux density of the transformer decreases from a maximum value by a predetermined value, and a detection from the magnetic flux density setting level detector And a control signal generator for receiving a signal and supplying a control signal to a power control switch of the high-voltage pulse generation circuit to make the power control switch conductive.
【請求項2】 請求項1において、前記磁束密度検出器
は前記変圧器の巻線に印加される電圧と各周期の時間と
の積を検出する積分回路であり、前記磁束密度設定レベ
ル検出器は前記積分回路の積分値をピークホールドする
ピークホールド回路と、設定磁束に相当する電圧を呈す
る設定電圧源と、前記ピークホールド回路の電圧から前
記設定電圧源の電圧を減算する減算回路と、その減算回
路からの電圧信号と前記積分回路の積分値とを比較する
コンパレータとからなることを特徴とする電気集塵機用
パルス電源装置。
2. The magnetic flux density setting level detector according to claim 1, wherein the magnetic flux density detector is an integration circuit for detecting a product of a voltage applied to a winding of the transformer and a time of each cycle. A peak hold circuit for peak-holding the integrated value of the integration circuit, a set voltage source presenting a voltage corresponding to a set magnetic flux, a subtraction circuit for subtracting the voltage of the set voltage source from the voltage of the peak hold circuit, A pulse power supply for an electrostatic precipitator, comprising: a comparator for comparing a voltage signal from a subtraction circuit with an integration value of the integration circuit.
【請求項3】 各周期で一定期間オンしないデッドタイ
ムをもって交流電力を制御する双方向電力制御スイッチ
と該双方向電力制御スイッチの動作を制御する制御部と
昇圧変圧器と高電圧整流回路とを備えて直流高電圧を集
塵極と放電極間に印加する第1の直流高電圧電源、第2
の直流高電圧電源、及び前記第2の高電圧電源からの直
流高電圧をパルス化する高電圧パルス発生回路を備え、
該高電圧パルス発生回路が高電圧パルスを前記第1の直
流高電圧電源からの直流高電圧に重畳するように前記集
塵極と放電極間に印加する電気集塵機用パルス電源装置
の運転方法において、 前記集塵極と放電極間のリプル電圧の励磁による前記変
圧器の磁束密度の最大値から所定値減少したレベルの時
点から前記双方向電力制御スイッチのデッドタイムの終
わる直前までの期間に前記高電圧パルスを前記集塵極と
放電極間に印加することを特徴とする電気集塵機用パル
ス電源装置の運転方法。
3. A bidirectional power control switch for controlling AC power with a dead time that does not turn on for a fixed period in each cycle, a control unit for controlling the operation of the bidirectional power control switch, a step-up transformer, and a high-voltage rectifier circuit. A first DC high-voltage power supply for applying a DC high voltage between the collection electrode and the discharge electrode,
DC high voltage power supply, and a high voltage pulse generating circuit for pulsing the DC high voltage from the second high voltage power supply,
The method of operating a pulse power supply for an electric precipitator, wherein the high voltage pulse generating circuit applies a high voltage pulse between the dust collecting electrode and the discharge electrode so as to superimpose a high voltage pulse on a DC high voltage from the first DC high voltage power supply. The period from the time point of the level reduced by a predetermined value from the maximum value of the magnetic flux density of the transformer due to the excitation of the ripple voltage between the dust collection electrode and the discharge electrode until immediately before the end of the dead time of the bidirectional power control switch, A method for operating a pulse power supply for an electric dust collector, wherein a high voltage pulse is applied between the dust collecting electrode and the discharge electrode.
【請求項4】 各周期で一定期間オンしないデッドタイ
ムをもって交流電力を制御する双方向電力制御スイッチ
と該双方向電力制御スイッチの動作を制御する制御部と
昇圧変圧器と高電圧整流回路とを備えて直流高電圧を集
塵極と放電極間に印加する第1の直流高電圧電源、第2
の直流高電圧電源、及び前記第2の直流高電圧電源から
の直流高電圧をパルス化する高電圧パルス発生回路を備
え、該高電圧パルス発生回路が高電圧パルスを前記第1
の直流高電圧電源からの直流高電圧に重畳するように前
記集塵極と放電極間に印加する電気集塵機用パルス電源
装置の運転方法において、 前記双方向電力制御スイッチのデッドタイムが終わる前
の設定時刻に前記高電圧パルスを前記集塵極と放電極間
に印加することを特徴とする電気集塵機用パルス電源装
置の運転方法。
4. A bidirectional power control switch for controlling AC power with a dead time that does not turn on for a fixed period in each cycle, a control unit for controlling the operation of the bidirectional power control switch, a step-up transformer, and a high-voltage rectifier circuit. A first DC high-voltage power supply for applying a DC high voltage between the collection electrode and the discharge electrode,
And a high-voltage pulse generating circuit for pulsing a high-voltage DC from the second high-voltage power supply, wherein the high-voltage pulse generating circuit generates a high-voltage pulse from the first high-voltage power supply.
A method of operating a pulse power supply for an electric precipitator applied between the dust collection electrode and the discharge electrode so as to be superimposed on a DC high voltage from a DC high voltage power supply, wherein the dead time of the bidirectional power control switch before the end is over. A method of operating a pulse power supply for an electric dust collector, wherein the high voltage pulse is applied between the dust collecting electrode and the discharge electrode at a set time.
JP31153097A 1997-10-27 1997-10-27 Pulse power supply device for electric dust collector and operating method therefor Withdrawn JPH11128771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31153097A JPH11128771A (en) 1997-10-27 1997-10-27 Pulse power supply device for electric dust collector and operating method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31153097A JPH11128771A (en) 1997-10-27 1997-10-27 Pulse power supply device for electric dust collector and operating method therefor

Publications (1)

Publication Number Publication Date
JPH11128771A true JPH11128771A (en) 1999-05-18

Family

ID=18018354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31153097A Withdrawn JPH11128771A (en) 1997-10-27 1997-10-27 Pulse power supply device for electric dust collector and operating method therefor

Country Status (1)

Country Link
JP (1) JPH11128771A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160072930A (en) * 2014-12-15 2016-06-24 한국과학기술원 Ultra-fine Particulate Matter Barrier System using Tesla Coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160072930A (en) * 2014-12-15 2016-06-24 한국과학기술원 Ultra-fine Particulate Matter Barrier System using Tesla Coil

Similar Documents

Publication Publication Date Title
KR0137389B1 (en) Electric dust collector
JP4667066B2 (en) Magnetizer power supply
JP3490051B2 (en) Capacitor charging apparatus and charging method
JPH06225172A (en) Switching mode power supply
JPH11128771A (en) Pulse power supply device for electric dust collector and operating method therefor
JP3906403B2 (en) Discharge lamp lighting device
JP4420520B2 (en) Resistance welding power supply
JPS63171267A (en) Power unit for ac arc welding machine
JP3514603B2 (en) High power factor high intensity discharge lamp lighting device and driving method thereof
JP3573733B2 (en) Power supply circuit
JPH0631680Y2 (en) Discharge lamp lighting device
JP3981908B2 (en) High pressure discharge lamp lighting device
JP4151107B2 (en) High pressure discharge lamp lighting device
JP3252540B2 (en) Inverter device
JPS63286275A (en) Power unit for ac arc welding machine
JP3158796B2 (en) Pulse power supply for electric dust collector
JP3215273B2 (en) Switching power supply
JP3234348B2 (en) Power supply
JP3886608B2 (en) DC arc welding power supply
JP3577300B2 (en) Power supply circuit
JP3579789B2 (en) High power factor switching power supply
JPH06847Y2 (en) Pulse laser device
JPH1133720A (en) Power source equipment for direct current arc welding
JPH0585264B2 (en)
JPH0547272B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104