JPH11126601A - Negative electrode for lithium ion secondary battery and battery - Google Patents

Negative electrode for lithium ion secondary battery and battery

Info

Publication number
JPH11126601A
JPH11126601A JP9325098A JP32509897A JPH11126601A JP H11126601 A JPH11126601 A JP H11126601A JP 9325098 A JP9325098 A JP 9325098A JP 32509897 A JP32509897 A JP 32509897A JP H11126601 A JPH11126601 A JP H11126601A
Authority
JP
Japan
Prior art keywords
film
negative electrode
molecular weight
battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9325098A
Other languages
Japanese (ja)
Inventor
Koichi Imai
宏一 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP9325098A priority Critical patent/JPH11126601A/en
Publication of JPH11126601A publication Critical patent/JPH11126601A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve coulomb efficiency in an initial discharge cycle by previously forming a limited permeability layer on a negative electrode. SOLUTION: A limited permeability film is made of a material which is insoluble in an electrolyte and can be molded into an electrode surface layer, and for example, polyacrylonitrile or the like is available. A fraction value of the limited permeability film layer ranges between a maximum molecular weight of a solute moving to the solvent side and a minimum molecular weight of a solute which does not pass through the film, and the desirable fraction value ranges form 8 to 100. If the faction molecular weight is lowered further, lithium ions can hardly pass the film, so that ability as a battery is lost. On the other hand, if the fraction molecular weight is increased further, a solvent actuating an inconvenient reaction is brought into contact with carbon serving as an active material, and a disadvantageous condition is caused. The thickness of the film is not limited specially, however, the thinner film is better from the standpoint of an ion permeating speed, and the thickness ranges about 5-100 μm. If the film is excessively thin, film strength is lowered, while volume of the electrode is increased and a charging energy density is lowered if the film is too thick.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術的分野】本発明は性能、特に可逆容
量が大きく、不可逆容量の少ないリチウムイオン二次電
池用負極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode for a lithium ion secondary battery having high performance, especially high reversible capacity and low irreversible capacity.

【0002】[0002]

【従来技術】リチウム二次電池は、その充電エネルギー
密度が高い点から、次世代二次電池として期待されてい
たが、安全性の間題が解決されず、その負極のリチウム
をリチウムイオンを吸蔵・放出する炭索や、可逆的にリ
チウムイオンを吸収して合金を形成する金属、複合化合
物を形成する金属化合物などに置換えたリチウムイオン
二次電池が取って替って急激に使用量が拡大されつつあ
る。しかし、それらはリチウム二次電池に較べて充電エ
ネルギー密度の点では劣っており、容量の増大が望まれ
ている。エネルギー密度、特に放電容量の充分でない理
由の一つに初回充放電サイクルにおいて、負極活物質の
表面で電解液の分解反応が起こり、リチウムイオンが消
費して不動態膜(SEI;solid electro
lyte interface)を形成すると言われて
いる。かかる反応は活物質として炭素、特に黒鉛を使用
した時に起りやすい。この反応は2サイクル目以降はか
なり少なくはなるがやはり起る。そのために充放電効率
は100%にならず、繰返しサイクルにより容量が少し
づつ低下する。SEIは黒鉛の層間にも入りこむので、
その形成はリチウムイオンを消費するのみでなく、黒鉛
の層間のリチウム収容部分をも消費し、電池の能力を低
下させると考えられている。また、リチウムイオンの黒
鉛内への拡散速度を低下させるとも考えられている。本
願発明はかかる状況においてなされたものである。
2. Description of the Related Art Lithium secondary batteries have been expected as next-generation secondary batteries because of their high charging energy density. However, safety issues have not been solved, and lithium of the negative electrode has been occluded with lithium ions.・ Replacement of lithium ion rechargeable batteries, which have been replaced with charcoal to be released, metals that form alloys by reversibly absorbing lithium ions, and metal compounds that form composite compounds, rapidly increase the usage. Is being done. However, they are inferior in terms of charging energy density as compared with lithium secondary batteries, and an increase in capacity is desired. One of the reasons why the energy density, particularly the discharge capacity is not sufficient, is that in the first charge / discharge cycle, a decomposition reaction of the electrolyte solution occurs on the surface of the negative electrode active material, and lithium ions are consumed to passivate the passive electrode (SEI).
lyte interface). Such a reaction easily occurs when carbon, particularly graphite, is used as the active material. This reaction still occurs, albeit much less, after the second cycle. As a result, the charge / discharge efficiency does not reach 100%, and the capacity gradually decreases with repeated cycles. Since SEI penetrates between graphite layers,
It is believed that the formation not only consumes lithium ions, but also consumes the lithium-containing portion between the graphite layers, thereby lowering the performance of the battery. It is also considered that the diffusion rate of lithium ions into graphite is reduced. The present invention has been made in such a situation.

【0003】[0003]

【発明が解決しようとする課題】本願の目的は初回充放
電サイクルにおけるクーロン効率の高い電池を提供する
ことである。本願の他の目的は放電容量の大きい電池を
提供することである。本願のさらに他の目的は、サイク
ル特性に優れた電池を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a battery having a high coulomb efficiency in an initial charge / discharge cycle. Another object of the present application is to provide a battery having a large discharge capacity. Still another object of the present invention is to provide a battery having excellent cycle characteristics.

【0004】[0004]

【課題を解決するための手段】本願の第1の発明は集電
体と、該集電体に塗布された、炭素を含む活負極物質と
を構成要素として有する電極であって、その表面に予め
制限透過膜層を形成させたことを特徴とするリチウムイ
オン二次電池用負極であり、第2の発明は制限透過膜層
の分画分子量が8〜100である請求項1記載のリチウ
ムイオン二次電池用負極であり、第3の発明は制限透過
膜層の分画分子量が10〜80である請求項1記載のリ
チウムイオン二次電池用負極であり、第4の発明は集電
体と、その表面を覆った炭素を含む活負極物質とを構成
要素とし、その表面に予め制限透過膜層を形成させた負
極と、電解質溶液と、正極とからなることを特徴とする
リチウムイオン二次電池であり、第5の発明は電解質溶
液の溶媒が炭酸エステル類である請求項4記載のリチウ
ムイオン二次電池であり、第6の発明は制限透過膜層の
分画分子量が8〜100である請求項5記載のリチウム
イオン二次電池である。これにより、初回充放電サイク
ルのクーロン効率の低下が抑制されて放電容量が大きく
なり、サイクル特性も改善される。
Means for Solving the Problems A first invention of the present application is an electrode having a current collector and an active negative electrode material containing carbon applied to the current collector as constituent elements, the surface of which is provided. The negative electrode for a lithium ion secondary battery, wherein a restricted permeable membrane layer is formed in advance, and the second invention is characterized in that the limited permeable membrane layer has a cut-off molecular weight of 8 to 100. The negative electrode for a secondary battery, the third invention is the negative electrode for a lithium ion secondary battery according to claim 1, wherein the molecular weight cutoff of the restricted permeable membrane layer is 10 to 80, and the fourth invention is a current collector And an active negative electrode material containing carbon covering the surface thereof, and a negative electrode having a restricted permeable membrane layer formed on the surface thereof in advance, an electrolyte solution, and a positive electrode. In a fifth invention, the solvent of the electrolyte solution is carbonic acid. A lithium ion secondary battery according to claim 4, wherein the ethers, the sixth invention is a lithium ion secondary battery according to claim 5, wherein fractionation molecular weight of between 8 and 100 of the semi-permeable membrane layer. This suppresses a decrease in Coulomb efficiency in the first charge / discharge cycle, increases the discharge capacity, and improves cycle characteristics.

【0005】[0005]

【発明の実施の形態】負極活物質として使用される炭素
には特に制限はない。天然黒鉛、人工黒鉛、膨張黒鉛、
ポリアクリロニトリル系もしくは石油ピッチ系の炭素繊
維もしくはその黒鉛化物、メゾカーボンマイクロビーズ
(MCMB)、気相成長炭素繊維もしくはその黒鉛化
物、炭素ナノチューブ、活性炭、無定形炭素その他各種
炭素が使用可能である。電池のエネルギー密度の点から
は、黒鉛構造から主としてなるものが好ましいし、大電
流で使用する場合、ある程度粉砕もしくは切断されたも
のが好ましい。これらの負極活物質は常法によりバイン
ダー溶液と混合して集電体に塗工される。集電体にも特
に制限はない。金属箔、金属メッシュ、パンチングメタ
ル、金属フイラメント焼結体、その他の形態のものが使
用できる。材質は導電性がよければ特に制限はないが、
負極として通常に使用されているのはそれ自身がイオン
化され溶出しにくいとの点から銅が最も好ましい。塗工
された負極は、好ましくは、目的とする電池の寸法に合
わせて裁断され、リード線を取付けられた後に、制限透
過膜層を形成される。
BEST MODE FOR CARRYING OUT THE INVENTION There is no particular limitation on carbon used as a negative electrode active material. Natural graphite, artificial graphite, expanded graphite,
Polyacrylonitrile-based or petroleum-pitch-based carbon fibers or graphitized products thereof, mesocarbon microbeads (MCMB), vapor-grown carbon fibers or graphitized products thereof, carbon nanotubes, activated carbon, amorphous carbon, and other various carbons can be used. From the viewpoint of the energy density of the battery, a battery mainly composed of a graphite structure is preferred, and when used at a large current, a battery which is ground or cut to some extent is preferred. These negative electrode active materials are mixed with a binder solution by a conventional method and applied to a current collector. There is no particular limitation on the current collector. Metal foil, metal mesh, punched metal, sintered metal filament, and other forms can be used. The material is not particularly limited as long as it has good conductivity,
Copper is most preferably used as the negative electrode because copper itself is ionized and hardly eluted. The coated negative electrode is preferably cut in accordance with the size of a target battery, and after a lead wire is attached, a restricted permeable membrane layer is formed.

【0006】制限透過膜の材質は、共用される電解液に
不溶であること、電極表面層として成形可能でさえあれ
ば特に制限されない。ポリアクリロニトリル、ポリメチ
ルメタアクリレイトなどのビニル系重合物、ポリエチレ
ン、ポリプロピレン、ポリビリデンフロライドなどのポ
リオレフイン系誘導体重合物、酢酸セルローズ、ニトロ
セルローズなどのセルローズ誘導体、ポリエチレンテレ
フタレートやポリアミドなどの縮合系重合体、フエノー
ル樹脂、エポキシ樹脂などの熱硬化性樹脂、シリコンゴ
ム、ポリブタジエンなどの弾性重合物、などが電池に使
用する電解液により膨潤したり溶解したりしない範囲で
自由に選択できる。使用する材料をカチオン交換樹脂と
することも好ましい態様である。
[0006] The material of the restricted permeable membrane is not particularly limited as long as it is insoluble in the common electrolytic solution and can be molded as an electrode surface layer. Vinyl polymers such as polyacrylonitrile and polymethyl methacrylate, polyolefin derivatives such as polyethylene, polypropylene and polyviridene fluoride, cellulose derivatives such as cellulose acetate and nitrocellulose, and condensation polymers such as polyethylene terephthalate and polyamide A polymer, a thermosetting resin such as a phenol resin or an epoxy resin, an elastic polymer such as silicone rubber or polybutadiene, or the like can be freely selected within a range that does not swell or dissolve in an electrolytic solution used for a battery. In a preferred embodiment, the material used is a cation exchange resin.

【0007】制限透過膜の材料は膜形成能を有するが必
要であり、そのためには、分子量が高いこと、線形重合
体であること、溶媒中で分子が球状に凝集することなく
よく伸びていること、すなわち良溶剤を溶媒として使用
することが必要である。活物質の結着剤として、一般に
ポリフッ化ビニリデンが、N−メチル−2−ビニルピロ
リドンを溶媒として使用されている。使用されているポ
リフッ化ビニリデンは分子量は非常に高いが溶解性が悪
いために膜形成能が低く、条件を選んで何とか膜を形成
できても、微結晶間隙が大きすぎて本願が目的とする制
限透過膜としては機能しない。
[0007] The material of the restricted permeation membrane must have a membrane-forming ability, but for that purpose, it must have a high molecular weight, be a linear polymer, and expand well without agglomeration of molecules in a solvent. That is, it is necessary to use a good solvent as a solvent. As a binder for the active material, polyvinylidene fluoride is generally used with N-methyl-2-vinylpyrrolidone as a solvent. Polyvinylidene fluoride used has a very high molecular weight but poor solubility, so the film forming ability is low, and even if a film can be formed by choosing the conditions, the microcrystal gap is too large and the purpose of the present application is It does not function as a restricted permeable membrane.

【0008】成形方法としては、重合体溶液を電極に塗
るか、溶液に電極を浸漬し、次に非溶剤に浸漬して凝固
させる湿式法、非溶剤に浸漬する変りに乾燥する乾式
法、溶融重合体をコーティングする方法、モノマーに浸
漬した後、加熱するか重合触媒液に浸漬する反応法など
が挙げられる。溶剤を使用する場合、特に乾式法の場
合、溶媒の分子量が必要な分画値より大きい場合も多
く、その場合には必要な分画値が得られないか、溶媒を
完全に除去できないこともあるので、乾燥途中で低分子
液体で溶媒を置換除去するのも好ましい。また、電極を
溶液もしくは熔融物に浸漬する場合、黒鉛と制限透過膜
の間に生じる空間をできるだけ少なくするために、減圧
もしくは真空下で浸漬を行い、条圧に戻してから、液か
ら引上げることも好ましい。
[0008] As a molding method, a polymer solution is applied to the electrode, or the electrode is dipped in the solution, then dipped in a non-solvent and solidified, a wet method is used, and instead of dipping in a non-solvent, a dry method is used, Examples of the method include a method of coating a polymer and a reaction method of immersing in a monomer and then heating or immersing in a polymerization catalyst solution. When using a solvent, especially in the case of a dry method, the molecular weight of the solvent is often larger than the required fractionation value, in which case the required fractionation value cannot be obtained or the solvent cannot be completely removed. Therefore, it is also preferable to replace and remove the solvent with a low molecular liquid during drying. When the electrode is immersed in a solution or a molten material, the electrode is immersed under reduced pressure or vacuum in order to minimize the space generated between the graphite and the restricted permeation membrane, and is returned to a line pressure, and then pulled up from the liquid. It is also preferred.

【0009】湿式法において、分画値を制御するために
は、ポリマー濃度、凝固温度、凝固液組成、乾燥条件な
どがある。本願発明で使用する分画値は通常の膜より小
さいので、できるだけ分子の集合もしくは結晶を微細化
するこが必要であるが、一方、リチウムイオンの透過速
度を大きくするために、層を緻密化させないことの二つ
の課題の調整が必要である。溶媒としてできるだけ良溶
剤を使用し、凝固液に凝固性の高いものを使用すると、
層表面の孔を小さくし、かつ内層を粗にすることができ
る。また、溶融重合体を塗るか、それに浸漬する場合の
制御は冷却速度のみであり、冷却した非溶剤で急冷する
のが好ましい。また成形終了後、乾燥と膨潤液による膨
潤を繰返すことにより、孔径を小さくすることができ
る。そうして、溶媒や膨潤液の分子より小さい孔を持っ
た制限透過膜層を形成できる。
In the wet method, in order to control the fractionation value, there are a polymer concentration, a coagulation temperature, a coagulation liquid composition, drying conditions and the like. Since the fractionation value used in the present invention is smaller than that of a normal film, it is necessary to make the aggregate of the molecules or the crystals as fine as possible. On the other hand, in order to increase the permeation speed of lithium ions, the layer is densified. Coordination of the two issues of not being done is necessary. When using a good solvent as the solvent as much as possible and using a solidifying liquid with high coagulability,
The pores on the layer surface can be reduced and the inner layer can be roughened. Further, when the molten polymer is applied or immersed in the molten polymer, only the cooling rate is controlled, and rapid cooling with a cooled non-solvent is preferred. After completion of the molding, the pore size can be reduced by repeating drying and swelling with the swelling liquid. In this way, a restricted permeable membrane layer having pores smaller than the molecules of the solvent or the swelling liquid can be formed.

【0010】ここで言う孔とは、必ずしも断面が円形の
孔が表面から内面に向って開口しているものではない。
通常は、微結晶もしくは微集合体の隙間を指しており、
膜分子の粗なる部分が、表面と内面の間を紆余曲折、分
岐し、大きさも種々変動し、あるものは途中で途絶えた
りするが少なくとも一部は両面を貫通する。分画値はそ
の最大の大きな隙間でほぼ決る。制限透過膜は負極全体
を液密に包み込んで形成させるのが好ましい。
The hole referred to here is not necessarily a hole having a circular cross section that opens from the surface toward the inner surface.
Usually refers to the gap between microcrystals or microassemblies,
The rough part of the membrane molecule twists and folds between the surface and the inner surface, and the size varies variously. Some of them are interrupted on the way, but at least a part penetrates both surfaces. The fraction value is almost determined by its largest gap. It is preferable that the restricted permeable membrane is formed by wrapping the entire negative electrode in a liquid-tight manner.

【0011】形成された制限透過膜の分画値の評価方法
について述べる。ここで分画値とは膜を通過する最大の
ものを言う。ここでは分子量で表現する。塗工された負
極の表面に形成した制限透過膜と同一膜をガラス板もし
くは水銀上に形成させる。形成条件は負極の場合と全く
同一に行う。膜をガラス板もしくは水銀から剥がし、例
えば透析装置にセットする。膜の一方に分子量の異なる
複数の溶質を溶解した溶液を、他方には溶媒を対向させ
る。透析装置には必要により溶液側を加圧したり、溶質
が電解質である時は電場を掛けて、溶質の膜の透過を加
速させることができる。若干の時間の経過後に膜の両側
における、各溶質の濃度比率を分析する。
A method for evaluating the fraction value of the formed restricted permeation membrane will be described. Here, the fraction value refers to the maximum value that passes through the membrane. Here, it is expressed by molecular weight. The same film as the limited permeation film formed on the surface of the coated negative electrode is formed on a glass plate or mercury. The formation conditions are exactly the same as those for the negative electrode. The membrane is peeled off from the glass plate or mercury and set, for example, on a dialysis machine. A solution in which a plurality of solutes having different molecular weights is dissolved is placed on one side of the membrane, and a solvent is placed on the other side. If necessary, the solution side may be pressurized in the dialysis device, or an electric field may be applied when the solute is an electrolyte to accelerate the permeation of the solute through the membrane. After some time, the concentration ratio of each solute on both sides of the membrane is analyzed.

【0012】分画値は、溶媒側に移動した溶質の最大分
子量のものと、通過しなかった最少分子量の間に存在す
る。本発明では、制限透過膜層の分画値は好ましくは8
〜100、さらに好ましくは10〜80である。分画分
子量がさらに小さくなると、リチウムイオンの通過が困
難となって、電池としての能力がなくなり、これ以上で
あると、不都合な反応を起す溶媒が活物質である炭素に
接触し、本願の目的を充分には達し得ない。分画値以下
の分子量の溶質の透過性ができるだけ高くなるように膜
を形成させるのが好ましい。そのためには膜の内側を粗
け成形するのが好ましい。膜の厚み方向で分画値が異な
る場合は、分画値が最少の部分の分画値が膜の分画値と
なる。通常は膜表面の分画値がもっとも小さく、それに
より膜の分画値が定る。
The fraction value exists between the maximum molecular weight of the solute that has moved to the solvent side and the minimum molecular weight that has not passed. In the present invention, the fractionation value of the restricted permeable membrane layer is preferably 8
-100, more preferably 10-80. When the molecular weight cut off is further reduced, the passage of lithium ions becomes difficult, and the ability as a battery is lost. Cannot be reached sufficiently. It is preferable to form the membrane so that the permeability of a solute having a molecular weight equal to or less than the fraction value is as high as possible. For that purpose, it is preferable to form the inside of the film roughly. When the fractionation value differs in the thickness direction of the film, the fractionation value of the portion having the smallest fractionation value becomes the fractionation value of the film. Usually, the fractional value of the membrane surface is the smallest, which determines the fractional value of the membrane.

【0013】制限透過膜層の厚みは特に限定かされない
が、イオン透過速度の点からは薄いのが好ましい。該膜
形成前の負極表面にはなにがしかの凹凸が存在するの
で、膜厚は厳密には確定しがたいが、ほぼ5〜100ミ
クロン程度である。薄いと、膜強度が低くなり、厚過ぎ
ると、電極が嵩高くなり、電池の容積当りおよび重量当
りの充電エネルギー密度が低くなる。制限透過膜層を形
成された負極は常法により電池に組み込まれる。
The thickness of the restricted permeable membrane layer is not particularly limited, but is preferably small from the viewpoint of ion transmission speed. Since there are some irregularities on the surface of the negative electrode before the film is formed, the film thickness is hard to be strictly determined, but is about 5 to 100 microns. If it is too thin, the membrane strength will be low. If it is too thick, the electrode will be bulky, and the charging energy density per volume and weight of the battery will be low. The negative electrode on which the restricted permeable membrane layer is formed is incorporated into a battery by a conventional method.

【0014】電解液の溶媒にも、制限透過膜を溶解した
り侵したりさえしなければ、公知のものがそのまま使用
できる。具体的には、テトラヒドロフラン、2−メチル
テトラヒドロフラン、1、4−ジオキサン、アニソー
ル、ジメトキシエタンなどのエーテル類、アセトニトリ
ル、プロピオニトリル、ブチロニトリル、バレロニトリ
ル、ベンゾニトリルなどのニトリル類、γ−ブチロラク
トンなどのアミド類、4メチル−2−ペンタノンなどの
ケトン類、プロピレンカーボネート、エチレンカーボネ
ート、ビニレンカーボネート、ジエチルカーボネート、
ジメチルカーボネート、メチルーエチルーカーボネート
などの炭酸エステル類など、またジメチルスルフオキサ
イド、ジメチルフオルムアミド、スルフオランなど、単
独および2種以上の混合物が、上記の問題さえなければ
使用できる。例えばジメチルスルホオキサイドや、ジメ
チルフオルムアミドは、制隈透過膜としてポリアクリロ
ニトリルを使用するときには用いることができないのは
当然である。本願発明によれば、負極に黒鉛材料を使用
した時に溶剤の分解反応が非常に起りやすく、単独使用
は好ましくないとされていた炭酸エステル類、特にプロ
ピレンカーボネートでも良好に使用できる。
As long as the solvent of the electrolytic solution does not dissolve or invade the restricted permeation membrane, a known solvent can be used as it is. Specifically, ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, anisole, dimethoxyethane, acetonitrile, propionitrile, butyronitrile, valeronitrile, nitriles such as benzonitrile, γ-butyrolactone, etc. Amides, ketones such as 4-methyl-2-pentanone, propylene carbonate, ethylene carbonate, vinylene carbonate, diethyl carbonate,
Carbonate esters such as dimethyl carbonate and methyl-ethyl-carbonate, and singly and a mixture of two or more such as dimethylsulfoxide, dimethylformamide, and sulfolane can be used without the above-mentioned problems. For example, dimethylsulfoxide and dimethylformamide cannot be used when polyacrylonitrile is used as the blind permeable membrane. According to the invention of the present application, when a graphite material is used for the negative electrode, a decomposition reaction of the solvent is very liable to occur, and carbonates, especially propylene carbonate, which have been considered unsuitable for use alone, can be used favorably.

【0015】電解液の電解質も公知のものが制限される
ことなく使用できる。例えば、LiClO、LiBF
、LiAsF、LiPF、LiCFCO、L
iCFSOなどをその一部として挙げることができ
る。正極も、リチウム二次電池の負極、リチウムイオン
二次電池の正極として公知のものをそのまま使用でき
る。活物質の例の一部としてLiCoO、LiMnO
、LiMn、LiNiO、などを挙げること
ができる。これらを導電剤、結着剤と共に結着剤の溶媒
に分散させ、アルミニウム箔などの集電体に塗工せて正
極とすることができる。セパレータも公知のものが広く
使用できる。
Known electrolytes can also be used without limitation. For example, LiClO 4 , LiBF
4, LiAsF 6, LiPF 6, LiCF 3 CO 2, L
iCF 3 SO 3 and the like can be mentioned as a part thereof. As the positive electrode, those known as a negative electrode of a lithium secondary battery and a positive electrode of a lithium ion secondary battery can be used as they are. LiCoO 2 , LiMnO as part of examples of active materials
2 , LiMn 2 O 4 , LiNiO 2 , and the like. These can be dispersed in a binder solvent together with a conductive agent and a binder, and applied to a current collector such as an aluminum foil to form a positive electrode. Known separators can be widely used.

【0016】[0016]

【実施例】ポリフッ化ビニリデン30gを420ミリリ
ットルのN−メチル−2−ピロリドンに溶解し、天然黒
鉛270gを加え、超音波分散機で充分に分散した。得
られた分散液を厚み10μmの銅箔に塗工した。乾燥後
の塗工量は1.56g/cmであった。得られた材料
を所定の大きさに裁断し、リード線を溶接した。一方、
分子量約60、000のポリアクリロニトリルを濃度6
重量%でヂメチルスルフオキサイドに溶解した。ここに
前記塗工済みの負極を浸漬し、引上げ、40℃の大量の
水の中に浸漬し、凝固させた。これを、100℃乾燥と
水浸漬を繰返して3回行い、制限透過膜層を形成させ
た。
EXAMPLE 30 g of polyvinylidene fluoride was dissolved in 420 ml of N-methyl-2-pyrrolidone, 270 g of natural graphite was added, and the mixture was sufficiently dispersed with an ultrasonic disperser. The obtained dispersion was applied to a copper foil having a thickness of 10 μm. The coating amount after drying was 1.56 g / cm 2 . The obtained material was cut into a predetermined size, and the lead wire was welded. on the other hand,
Polyacrylonitrile with a molecular weight of about 60,000
It was dissolved in dimethyl sulfoxide by weight. Here, the coated negative electrode was immersed, pulled up, immersed in a large amount of water at 40 ° C., and solidified. This was repeated three times with drying at 100 ° C. and immersion in water to form a restricted permeable membrane layer.

【0017】負極に変えてガラス板にも同様にして制限
透過膜を形成させた。最後の乾燥は膜をガラス板から剥
がして行った。ガラス板から剥がされ、乾燥された膜を
挟んで両側に透析室を形成する透析器を組立てた。両透
析室には、それぞれに白金電極を設けた。そうして、一
方の透析室のはCaClとZnClのそれぞれ0.
1モル/リットルの濃度に溶解した水溶液を入れ、他方
には純水を入れ、純水側に+1Vの電圧(溶液側に対し
て)をかけ、10時間後に純水側の試料を、原子吸光分
析により、カルシウムイオン濃度と亜鉛イオン濃度を測
定したら、それぞれ0.012モル/リットルおよび0
モル/リットルであった。すなわち、前記負極上に形成
された制限透過膜において、カルシウムイオンの原子量
40と亜鉛イオン分子量65.4の間に分画分子量が存
在することが明らかとなった。
A limited permeation film was similarly formed on a glass plate instead of the negative electrode. The final drying was performed by peeling the film from the glass plate. A dialyzer was assembled that formed a dialysis chamber on both sides of the membrane that was peeled off from the glass plate and dried. Each dialysis chamber was provided with a platinum electrode. Then, one of the dialysis chambers contains 0.1 mL of CaCl 2 and ZnCl 2 respectively.
An aqueous solution dissolved at a concentration of 1 mol / liter was charged, pure water was charged into the other, a voltage of +1 V (with respect to the solution side) was applied to the pure water side, and after 10 hours, the sample on the pure water side was subjected to atomic absorption spectrometry. When the calcium ion concentration and the zinc ion concentration were measured by analysis, 0.012 mol / liter and 0
Mol / l. That is, it became clear that the molecular weight cutoff exists between the calcium ion atomic weight of 40 and the zinc ion molecular weight of 65.4 in the restricted permeable membrane formed on the negative electrode.

【0018】上記負極を使用し、正極に正極活物質とし
てLiCoO、導電剤としてアセチレンブラック、結
着剤としてポリフッ化ビニリデン、を集電材としてのア
ルミ箔に塗工したものを使用、セパレーターとしてポリ
プロピレン多孔性シートを、電解液として1.5モル/
リットルのLiPFプロピレンカーボネート溶液を使
用して円筒型電池を組んだ。正極に使用するLiCoO
の、負極に使用する天然黒鉛に対する重量比率は3.
0になるように設定した。この電池を電流を黒鉛に対し
て3.7mA/gの電流で、電圧2.5〜4.1Vの間
で充放電を繰返した。初回の充放電効率率(放電量/充
電量)は99.5%であり、1000サイクル後の放電
容量は、天然黒鉛あたり320.3mAhr/gであっ
た。
The above-mentioned negative electrode is used. A positive electrode is made by coating LiCoO 2 as a positive electrode active material, acetylene black as a conductive agent, polyvinylidene fluoride as a binder on an aluminum foil as a current collector, and polypropylene as a separator. The porous sheet was used as an electrolyte at 1.5 mol / mol.
A cylindrical battery was assembled using 1 liter of LiPF 6 propylene carbonate solution. LiCoO used for positive electrode
The weight ratio of No. 2 to the natural graphite used for the negative electrode was 3.
It was set to be 0. The battery was charged and discharged repeatedly at a voltage of 2.5 to 4.1 V at a current of 3.7 mA / g with respect to graphite. The initial charge / discharge efficiency ratio (discharge amount / charge amount) was 99.5%, and the discharge capacity after 1000 cycles was 320.3 mAhr / g per natural graphite.

【0019】[0019]

【比較例1】制限透過膜を形成させない以外は実施例1
と全く同様に製造した電池を同様の試験に付した時は、
初回充放電効率は70.2%、1000サイクル後の放
電容量は天然黒鉛当り105.3mAhr/gであっ
た。
Comparative Example 1 Example 1 except that no restricted permeation film was formed.
When a battery manufactured in exactly the same way was subjected to the same test,
The initial charge / discharge efficiency was 70.2%, and the discharge capacity after 1000 cycles was 105.3 mAhr / g per natural graphite.

【0020】[0020]

【実施例3】実施例1で作成した、裁断かつリード線溶
接した負極を使用した。分子量約100、000のポリ
アクリロニトリルを濃度3%でジメチルスルフキサイド
に溶解し、上記負極を浸漬した。ついで、それを−3℃
の濃度50のジメチルスルフオキサイド水溶液に浸漬、
次に−3℃の20%ジメチルスルフオキサイド水溶液に
浸漬した後、よく水洗した。その後80℃で十分に乾燥
した。
Embodiment 3 The cut and lead-welded negative electrode prepared in Embodiment 1 was used. Polyacrylonitrile having a molecular weight of about 100,000 was dissolved in dimethyl sulfoxide at a concentration of 3%, and the negative electrode was immersed. Then put it at -3 ° C
Immersed in an aqueous solution of dimethyl sulfoxide having a concentration of 50,
Next, it was immersed in a 20% aqueous solution of dimethyl sulfoxide at −3 ° C., and was thoroughly washed with water. Thereafter, it was sufficiently dried at 80 ° C.

【0021】一方、負極をガラス板に替えて、全く同様
に膜を成形した。乾燥は膜をガラス板から剥がしてから
行った。得られた膜を実施例1と同様な透析装置に組込
んだ。一方の透析室に、SnClを0.05モル/リ
ットル溶解した水を他方に純水を入れ、電圧1Vを掛け
て10時間後に純水側試料を原子吸光分析にかけた。カ
ルシウムイオン濃度は0.0015モル/リットルであ
った。すなわち、分画分子量は錫イオンの118.7よ
り大きいことが判る。上記制限透過膜を表面に形成させ
た負極を使用して、実施例1と同じ電池を組んだ。さら
に実施例1と同様の充放電試験に供した。初回充放電効
率は86.5%、1000サイクル後の放電容量は黒鉛
重量あたり202.6mAhr/gであった。
On the other hand, a film was formed in exactly the same manner except that the negative electrode was replaced with a glass plate. Drying was performed after peeling the film from the glass plate. The obtained membrane was assembled in the same dialysis apparatus as in Example 1. In one dialysis chamber, water in which 0.05 mol / l of SnCl 2 was dissolved was charged with pure water, and after applying a voltage of 1 V, the pure water side sample was subjected to atomic absorption analysis 10 hours later. The calcium ion concentration was 0.0015 mol / l. That is, it is understood that the molecular weight cut-off is larger than 118.7 of tin ion. The same battery as in Example 1 was assembled using the negative electrode having the above-described restricted permeation film formed on the surface. Further, the same charge / discharge test as in Example 1 was performed. The initial charge / discharge efficiency was 86.5%, and the discharge capacity after 1000 cycles was 202.6 mAhr / g per graphite weight.

【0022】[0022]

【発明の効巣】この発明によると、溶媒の炭素表面への
拡散が制限されるので、溶媒の分解反応が抑制され、そ
のために、初回充放電効率が高く、繰返し充放電後の放
電容量が高も高いリチウムイオン二次電池が得られる。
さらに電解液の分解によって生成するとされているガス
発生も少なく、ひいては電池内の昇圧も少なく、各種の
事故における安全性が高くなる。また、溶媒や溶媒和し
たリチウムイオンに表面を占領されるために充電容量が
低かった活性炭を活物質として使用しても、高い充電容
量の電池とすることができる。さらに、制限透過膜の分
画値を小さく、かつカットオフをシャープにできれば、
水と負極との接触も防止でき、電解液中の脱水にそれほ
ど気を使う必要がなくなるという長所も有する。
According to the present invention, since the diffusion of the solvent to the carbon surface is restricted, the decomposition reaction of the solvent is suppressed, so that the initial charge / discharge efficiency is high and the discharge capacity after repeated charge / discharge is reduced. A high lithium ion secondary battery can be obtained.
Further, the amount of gas generated by decomposition of the electrolytic solution is small, and the pressure in the battery is also small, so that the safety in various accidents is increased. Further, even if activated carbon having a low charge capacity is used as an active material because its surface is occupied by a solvent or solvated lithium ions, a battery with a high charge capacity can be obtained. Furthermore, if the fractionation value of the limiting transmission membrane can be reduced and the cutoff can be sharpened,
It also has the advantage that contact between water and the negative electrode can be prevented, and that much care is not required for dehydration in the electrolytic solution.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】集電体と、該集電体に塗布された、炭素を
含む活負極物質とを構成要素として有する電極であっ
て、その表面に予め制限透過膜層を形成させたことを特
徴とするリチウムイオン二次電池用負極。
1. An electrode comprising a current collector and a carbon-containing active negative electrode material applied to the current collector as constituent elements, wherein a restricted permeable membrane layer is previously formed on the surface of the electrode. Characteristic negative electrode for lithium ion secondary batteries.
【請求項2】制限透過膜層の分画分子量が8〜100で
ある請求項1記載のリチウムイオン二次電池用負極。
2. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the molecular weight cutoff of the restricted permeable membrane layer is 8 to 100.
【請求項3】制限透過膜の分画分子量が10〜80であ
る請求項1記載のリチウムイオン二次電池用負極。
3. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the molecular weight cutoff of the restricted permeation membrane is 10 to 80.
【請求項4】集電体と、その表面を覆った炭素を含む活
負極物質とを構成要素とし、その表面に予め制限透過膜
層を形成させた負極と、電解質溶液と、正極とからなる
ことを特徴とするリチウムイオン二次電池。
4. A negative electrode comprising a current collector and an active negative electrode material containing carbon covering the surface thereof, a negative electrode having a restricted permeable membrane layer previously formed on the surface thereof, an electrolyte solution, and a positive electrode. A lithium ion secondary battery characterized by the above-mentioned.
【請求項5】電解質溶液の溶媒が炭酸エステル類である
請求項4記載のリチウムイオン二次電池。
5. The lithium ion secondary battery according to claim 4, wherein the solvent of the electrolyte solution is a carbonate.
【請求項6】制限透過膜の分画分子量が8〜100であ
る請求項5記載のリチウムイオン二次電池
6. The lithium ion secondary battery according to claim 5, wherein the molecular weight cutoff of the restricted permeation membrane is 8 to 100.
JP9325098A 1997-10-22 1997-10-22 Negative electrode for lithium ion secondary battery and battery Pending JPH11126601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9325098A JPH11126601A (en) 1997-10-22 1997-10-22 Negative electrode for lithium ion secondary battery and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9325098A JPH11126601A (en) 1997-10-22 1997-10-22 Negative electrode for lithium ion secondary battery and battery

Publications (1)

Publication Number Publication Date
JPH11126601A true JPH11126601A (en) 1999-05-11

Family

ID=18173123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9325098A Pending JPH11126601A (en) 1997-10-22 1997-10-22 Negative electrode for lithium ion secondary battery and battery

Country Status (1)

Country Link
JP (1) JPH11126601A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104904049A (en) * 2014-01-06 2015-09-09 株式会社Lg化学 Anode for secondary battery and lithium secondary battery including same
US9627688B2 (en) 2014-01-06 2017-04-18 Lg Chem, Ltd. Anode for secondary battery and lithium secondary battery including same
CN110416468A (en) * 2018-04-30 2019-11-05 现代自动车株式会社 Lithium secondary battery and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104904049A (en) * 2014-01-06 2015-09-09 株式会社Lg化学 Anode for secondary battery and lithium secondary battery including same
JP2016505203A (en) * 2014-01-06 2016-02-18 エルジー・ケム・リミテッド Negative electrode for secondary battery and lithium secondary battery including the same
US9620780B2 (en) 2014-01-06 2017-04-11 Lg Chem, Ltd. Anode for secondary battery and lithium secondary battery including same
US9627688B2 (en) 2014-01-06 2017-04-18 Lg Chem, Ltd. Anode for secondary battery and lithium secondary battery including same
CN110416468A (en) * 2018-04-30 2019-11-05 现代自动车株式会社 Lithium secondary battery and its manufacturing method
CN110416468B (en) * 2018-04-30 2023-03-10 现代自动车株式会社 Lithium secondary battery and method for manufacturing same

Similar Documents

Publication Publication Date Title
EP1307934B1 (en) Particulate electrode including electrolyte for a rechargeable lithium battery
CA2321431C (en) Composite polymer electrolyte for a rechargeable lithium battery
JP4629902B2 (en) Method for manufacturing lithium secondary battery
KR100390099B1 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary cell
JP2001135359A (en) Nonaqueous electrolyte battery
WO2018025469A1 (en) Lithium ion secondary battery and method for manufacturing same
JP3443773B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
WO2020184502A1 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP2007311296A (en) Nonaqueous electrolyte secondary battery
JPWO2002091514A1 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP3503697B2 (en) Non-aqueous electrolyte battery
JP3351765B2 (en) Non-aqueous electrolyte secondary battery
JP2000036325A (en) Secondary power supply
JPH11126608A (en) Negative electrode active material for secondary battery, and secondary battery
JP2001143755A (en) Non-aqueous electrolyte secondary cell
JPH11126601A (en) Negative electrode for lithium ion secondary battery and battery
JP2002042868A (en) Nonaqueous electrolyte battery and its manufacturing method
JP3954682B2 (en) Method for producing polymer solid electrolyte battery
KR20060063371A (en) Electrode added with polyethyleneglycol and lithium secondary batteries using the same
JP3516133B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4817483B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JPH1126025A (en) Cylindrical nonaqueous battery
JP4039071B2 (en) Secondary power supply
JP4041998B2 (en) Method for producing non-aqueous electrolyte battery
JP2003526183A (en) Polymer electrolyte cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041102