JPH11126527A - Insulating spacer and method and apparatus for manufacturing thereof - Google Patents

Insulating spacer and method and apparatus for manufacturing thereof

Info

Publication number
JPH11126527A
JPH11126527A JP30504497A JP30504497A JPH11126527A JP H11126527 A JPH11126527 A JP H11126527A JP 30504497 A JP30504497 A JP 30504497A JP 30504497 A JP30504497 A JP 30504497A JP H11126527 A JPH11126527 A JP H11126527A
Authority
JP
Japan
Prior art keywords
inorganic filler
mold
insulating spacer
dielectric constant
extruded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30504497A
Other languages
Japanese (ja)
Inventor
Toyoji Kawamoto
豊司 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP30504497A priority Critical patent/JPH11126527A/en
Publication of JPH11126527A publication Critical patent/JPH11126527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Insulating Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an insulating spacer with high reliability and a method and an apparatus for manufacturing the insulating spacer by optimizing the dielectric strength margin of a material for the insulating spacer corresponding to the practical electric field intensity and reducing the extent of variations of the dielectric strength margin and making the dispersion width even. SOLUTION: Three components, which are a thermosetting resin, an inorganic filler, and a low dielectric inorganic filler having a lower dielectric constant than that of the inorganic filler, are dispersed, kneaded, degassed, and extruded into a string-like extruded product which is not yet curved and kept in molten state in order to control the dielectric constant of this material to be high in the high voltage side, which is the metal tool 8 side for connecting a conductor, to be low in the metal flange 9 side, which is the earth side, and to be approximately linearly changed between both sides. After that, the extruded product is spirally coiled in the lower die of spacer dies as to fill the lower die and then the resultant lower die and an upper die of the spacer dies are fastened to cure and mold the coiled product and the obtained product is finally parted from the dies.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力機器のガス絶
縁機器において、その金属容器内に導体を支持するため
に用いられる絶縁スペ−サおよびその製造方法並びにそ
の製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating spacer used for supporting a conductor in a metal container of a gas insulating device of a power device, a method of manufacturing the same, and an apparatus for manufacturing the same.

【0002】[0002]

【従来の技術】現有のガス絶縁機器において、図13に
示すように絶縁スペ−サ1は、絶縁ガスとして六弗化硫
黄ガス2が所定圧封入された密閉金属容器3内に、高電
圧が印加されている導体4を、大地電位の金属容器壁5
との電気絶縁を確保し、支持固定するために、また密閉
室6と7の隔室のための圧力壁として用いられ、そのた
め電気絶縁性能、機械的構造強度性能等が要求されるも
のである。単品としては、図14のような外観を呈して
おり、中央部には導体接続用金具8が、外周部には前述
密閉金属容器との接続用金属フランジ9が、エポキシ樹
脂等の熱硬化性樹脂10に一体に埋め込まれた成形品で
ある。
2. Description of the Related Art In an existing gas insulating apparatus, as shown in FIG. 13, an insulating spacer 1 is provided with a high voltage in a sealed metal container 3 in which a sulfur hexafluoride gas 2 is sealed at a predetermined pressure as an insulating gas. The applied conductor 4 is connected to a metal container wall 5 at the ground potential.
It is used as a pressure wall for securing and supporting and fixing the electrical insulation between the sealing chambers and as a pressure wall for the compartments of the sealed chambers 6 and 7. Therefore, electrical insulation performance, mechanical structural strength performance, etc. are required. . As a single product, it has the appearance as shown in FIG. 14, in which a metal part 9 for connecting a conductor is provided at the center, a metal flange 9 for connection with the above-mentioned closed metal container is provided at the outer part, and a thermosetting resin such as epoxy resin. This is a molded product integrally embedded in the resin 10.

【0003】従来、この絶縁スペ−サは図15に示すよ
うに、例えばエポキシ樹脂に樹脂100部に対し200〜300
部のアルミナ無機質充填材および硬化剤等の添加剤を加
え、加熱下、混合、脱泡、液状化した材料10を、バル
ブ11を通じて、真空室12に置かれた金型13中に湯
口14から注型導入し、充填後大気圧に戻し所定時間加
熱硬化させ、次いで図中矢印方向に型開き離型後エ−ジ
ングが施されることにより製造される。前述の導体接続
用金具8と金属フランジ9は、材料注型前に金型13中
にインサ−トされており、成形の結果、材料10と共に
一体化固定される。
Conventionally, as shown in FIG. 15, this insulating spacer is, for example, 200 to 300 parts per 100 parts of epoxy resin.
Parts of an alumina inorganic filler and an additive such as a hardener are added, and under heating, the mixed, defoamed, and liquefied material 10 is passed through a valve 11 into a mold 13 placed in a vacuum chamber 12 from a gate 14. It is manufactured by casting, filling, returning to atmospheric pressure, heating and curing for a predetermined time, then opening the mold in the direction of the arrow in the drawing, and then aging. The above-described conductor connection metal fitting 8 and metal flange 9 are inserted into a metal mold 13 before material casting, and are integrally fixed together with the material 10 as a result of molding.

【0004】[0004]

【発明が解決しようとする課題】従来法により製造され
る絶縁スペ−サは、図16に示すように、スペ−サにお
ける各位置での材料の誘電率は、成形法の制約により、
当然一定値をもつ。図17は、誘電率6.4一定とした
絶縁スペ−サを機器に取り付け、導体4に750kVのイン
パルス電圧印加を想定した場合の、等電位線群(点線で
示し、右側の数値は各電位値)の解析結果例を示す。図
より電位線15は導体4側に近い所が密になり、金属容
器壁5側になるほど疎となることが判る。言い換えれ
ば、密の所は電界強度が高く、疎の所は低いと言える。
As shown in FIG. 16, in the insulating spacer manufactured by the conventional method, the dielectric constant of the material at each position in the spacer is determined by the limitation of the molding method.
Of course, it has a constant value. FIG. 17 shows equipotential lines (indicated by dotted lines, and the value on the right is each potential) when an insulating spacer with a constant dielectric constant of 6.4 is attached to the equipment and an impulse voltage of 750 kV is applied to the conductor 4. The following shows an example of the analysis result of (Value). From the figure, it can be seen that the potential line 15 becomes denser near the conductor 4 side and becomes sparser toward the metal container wall 5 side. In other words, it can be said that the electric field strength is high in a dense place and low in a sparse place.

【0005】材料設計の観点から考えると、従来のスペ
−サ材料は、均一な材料であるため、導体側に近い箇所
のみ電界強度耐力(絶縁耐力)が必要とされ、金属容器
壁側に近い箇所は、導体側に比べ、余分な電界強度耐力
の裕度をもつ結果となり、その結果、後者に該当する材
料は、電気絶縁のための材料設計上、十分有効に利用さ
れているとは言えない。そこで本発明は、かかる材料の
絶縁耐力の余分な裕度を無くし、スペ−サ材料を有効に
活用し、その結果、従来法と同一の絶縁性能を満足させ
つつ、よりコンパクトな、省材料の絶縁スペ−サおよび
その製造方法並びにその製造装置を提供するものであ
る。
From the viewpoint of material design, since the conventional spacer material is a uniform material, electric field strength strength (dielectric strength) is required only at a portion close to the conductor side, and close to the metal container wall side. The portion has a margin of extra electric field strength proof strength compared with the conductor side, and as a result, the latter material can be said to be used sufficiently effectively in the material design for electrical insulation. Absent. Therefore, the present invention eliminates the extra tolerance of the dielectric strength of such a material, and effectively utilizes the spacer material. As a result, the same insulating performance as that of the conventional method can be satisfied, and a more compact and material-saving material can be obtained. It is an object of the present invention to provide an insulating spacer, a method for manufacturing the same, and an apparatus for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明の絶縁スペ−サに
おいては、無機質充填材と前記無機質充填材に比べ低い
誘電率を有する低誘電体無機質充填材と、 主剤と硬化
剤が一体混合され顆粒もしくはフレ−ク状の熱硬化性樹
脂により形成され、かつ、前記無機質充填材と前記低誘
電体無機質充填材の重量比を変化させ、高電圧側と接地
側間の材料の誘電率を変化させて、高電圧側が接地側に
比べ高い誘電率を保持するように構成されている。本発
明の方法においては、従来の注型成形法とは全く異なる
成形法により、前記課題を達成するもので、成形法は、
以下の複数の工程で構成される。なお、以下に誘電率を
線形に変化させる場合について述べるが、スペ−サ形状
により非線形に変化させる場合も考えられる。主剤と硬
化剤が一体混合された顆粒もしくはフレ−ク状の熱硬化
性樹脂と無機質充填材と前記無機質充填材に比べ低誘電
率を有する低誘電体無機質充填材の三者において、後二
者の無機質充填材と低誘電体無機質充填材の総量と前一
者の熱硬化性樹脂の重量比が常に一定になるように保た
れ、かつ無機質充填材と低誘電体無機質充填材の重量比
を所定時間内に直線的に変化させるようにした三者供給
工程と、供給された前記三者の材料を、分散、混練、脱
気し未硬化、溶融状態の紐状押出品を得る工程と、紐状
押出品を、真空減圧下において絶縁スペ−サ成形用金型
の下型中央部に設置された導体接続用金具近辺から投入
開始し、順次渦巻き状に周回充填供給せしめ、下型キャ
ビティ周辺部に設置された金属フランジまで充填し終え
たのを投入終了とした下型を大気圧に戻すことにより真
空チャンバ−から取り出す工程と、紐状押出品が所定量
充填供給された前記下型を、スペ−サ金型の上型が取り
付けられている加熱プレス機内に導入し、プレス機閉に
より型締めを行い、型締め途中のO−リング気密状態開
始時、型締めを一時中断し、金型内のエア−の真空引き
を行い、しかる後最終のプレス機による型締めを行い、
所定時間投入した押出品をプレス圧と加熱により硬化さ
せ、その後型内を大気圧に戻し、型開き、離型させる工
程により材料誘電率が直線的に徐々に変化した絶縁スペ
−サ成型品を得ることを特徴とする。そして、前記押出
品の無機質充填材と低誘電体無機質充填材の重量比を、
投入開始時、最大になるよう、投入終了直前時、最低に
なるよう、かつまたその間を直線的に変化させることを
特徴とする。
According to the insulating spacer of the present invention, an inorganic filler, a low dielectric inorganic filler having a lower dielectric constant than the inorganic filler, a main agent and a curing agent are integrally mixed. The dielectric constant of the material between the high voltage side and the ground side is changed by changing the weight ratio between the inorganic filler and the low dielectric inorganic filler formed of a granular or flake-shaped thermosetting resin. Thus, the high voltage side is configured to maintain a higher dielectric constant than the ground side. In the method of the present invention, the above-mentioned object is achieved by a molding method completely different from the conventional casting molding method.
It is composed of the following multiple steps. The case where the dielectric constant is changed linearly will be described below, but the case where the dielectric constant is changed non-linearly according to the spacer shape is also conceivable. A granulated or flake-shaped thermosetting resin in which a main agent and a curing agent are integrally mixed, an inorganic filler, and a low-dielectric inorganic filler having a lower dielectric constant than the above-mentioned inorganic filler. The total weight of the inorganic filler and the low dielectric inorganic filler and the weight ratio of the former thermosetting resin are always kept constant, and the weight ratio of the inorganic filler and the low dielectric inorganic filler is kept constant. A three-party supply step so as to linearly change within a predetermined time, and the supplied three-party material is dispersed, kneaded, deaerated and uncured, and a step of obtaining a string-like extruded product in a molten state, The string-shaped extruded product is started under the vacuum reduced pressure from the vicinity of the conductor connection fitting set at the center of the lower mold of the insulating spacer molding die, and is sequentially spirally filled and supplied. After filling up the metal flange installed in the Removing the completed lower mold from the vacuum chamber by returning the pressure to atmospheric pressure, and heating the lower mold in which a predetermined amount of the string-shaped extruded product is supplied and supplied, to which the upper mold of the spacer mold is attached. The mold is introduced into the press machine, and the mold is closed by closing the press machine. At the start of the O-ring airtight state during the mold clamping, the mold clamping is temporarily stopped, and the air in the mold is evacuated. Perform mold clamping with a press machine,
The extruded product charged for a predetermined time is cured by pressing pressure and heating, then the inside of the mold is returned to atmospheric pressure, the mold is opened, and the insulating spacer molded product in which the material dielectric constant gradually changes linearly by the process of releasing the mold. It is characterized by obtaining. And the weight ratio of the inorganic filler and the low dielectric inorganic filler of the extruded product,
It is characterized in that it changes linearly between the start of injection and the minimum, immediately before the end of injection, and to the minimum immediately before the end of injection.

【0007】また、本発明の装置においては、 熱硬化
性樹脂、無機質充填材および低誘電体無機質充填材を各
々調整して供給する装置と、紐状押出品を得る押出機
と、材料を充填して成形する金型と、前記紐状押出品を
真空下、渦巻き状に順次下型に充填するための真空チャ
ンバ−、X−Yステ−ジと、紐状押出品を加熱圧縮して
硬化させるための加熱プレス機とを備えたことを特徴と
する。
Further, in the apparatus of the present invention, there are provided an apparatus for adjusting and supplying a thermosetting resin, an inorganic filler and a low dielectric inorganic filler, an extruder for obtaining a cord-like extruded product, And an XY stage for filling the string-shaped extruded product into the lower mold in a spiral under vacuum in a vacuum and an XY stage. And a heating press for causing the heating press.

【0008】本発明によると、スペ−サにおける各材料
位置での誘電率が、導体接続金具側は高く、金属フラン
ジ側は低く、その間はほぼ直線的に変化する絶縁スペ−
サが得られることが予想される。このことより、電界強
度は、材料の誘電率の逆数に比例するため、本発明は、
従来の図17の等電位線群において、導体接続金具付近
の密であった所は疎に、また金属フランジ付近の疎であ
った所は逆に密に変化させる作用となる。前者は電界強
度の緩和を、後者は材料の余分な電界強度耐力の裕度の
削減につながる。このように、等電位線群の等ピッチ化
が図られ、電界強度がスペ−サの各材料位置で平均して
一定となり、 その結果、材料の絶縁耐力マ−ジンの適
正化、またそのバラツキ幅の縮小、一定化が図られるこ
とになる。本発明の製造による絶縁スペ−サは、従来と
スペ−サ同一形状の場合、さらなる高電圧使用が可能と
なり、従来と同一定格電圧仕様の場合、スペ−サ外径の
縮小化が可能となり、コンパクト化、省材料化が実現さ
れるものである。また、スペ−サにおける各材料位置に
おいて、無機充填材総量と熱硬化性樹脂の重量比を一定
とするため、二種類の無機充填材を、その平均粒径、粒
度分布等類似の物を用いる限り、本発明のスペ−サの機
械的構造強度は従来品と遜色無いものが得られることは
言うまでもない。
According to the present invention, the dielectric constant at each material position in the spacer is high on the side of the conductor connection fitting, low on the side of the metal flange, and varies substantially linearly between them.
Is expected to be obtained. From this, because the electric field strength is proportional to the reciprocal of the dielectric constant of the material, the present invention,
In the conventional equipotential line group of FIG. 17, the dense portion near the conductor connection fitting has a sparse effect, and the sparse portion near the metal flange has a reverse effect. The former leads to a reduction in the electric field strength, and the latter leads to a reduction in the margin of the extra electric field strength of the material. In this way, the equipotential line group is made equal in pitch, and the electric field intensity becomes constant on average at each material position of the spacer. As a result, the dielectric strength margin of the material is optimized and its variation is improved. The width can be reduced and made constant. The insulation spacer manufactured according to the present invention can use a higher voltage when the spacer has the same shape as the conventional one, and can reduce the outer diameter of the spacer when the same rated voltage specification as the conventional one is used. Compactness and material saving are realized. In addition, at each material position in the spacer, in order to keep the weight ratio of the total amount of the inorganic filler and the thermosetting resin constant, two kinds of inorganic fillers having similar average particle size, particle size distribution and the like are used. It goes without saying that the spacer of the present invention has mechanical strength equal to that of the conventional product.

【0009】[0009]

【発明の実施の形態】図1に、本発明の絶縁スペ−サ9
0の断面図と、材料の誘電率と絶縁スペ−サ90の各位
置の関係グラフを併せて示す。絶縁スペ−サ90は高電
圧が印加される導体を絶縁支持するための導体接続用金
具8と接地側である金属容器に取り付け固定するための
金属フランジ9および絶縁部材19とで構成される。本
発明では、この絶縁部材19を、無機質充填材と前記無
機質充填材に比べ低い誘電率を有する低誘電体無機質充
填材と主剤と硬化剤が一体混合された顆粒もしくはフレ
−ク状の熱硬化性樹脂の三者混合で形成し、かつ、前記
無機質充填材と前記低誘電体無機質充填材の重量比を変
化させることにより、その結果、グラフに示すように、
高電圧側と接地側の材料の誘電率を変化させ、高電圧側
が接地側に比べ高い誘電率を保持するように構成する。
以下、本発明の実施の形態の一例について、図2〜図1
2を参照しながら説明する。図2に紐状押出品20を得
る装置の外観を示す。装置は三台の材料供給装置30、
31、32と供給された材料を分散、混練、脱気および
溶融し、連続して紐状押出品20を作る押出機40から
成る。図3に材料供給装置30、31、32の動作原理
説明図を示す。ホッパ−33に投入された材料34は電
動モ−タが直結した回転羽35によりベルトコンベア3
6上に落ち、電動モ−タが直結したロ−ラ37と単なる
回転伝達のロ−ラ38により矢印のA方向に搬送され
る。単位時間当たりの材料搬送量は、回転羽35とロ−
ラ37の各々の回転速度で決められるのは言うまでもな
い。図4に押出機40の動作原理説明図を示す。材料が
投入口41に投入されると、材料は第一段目のスクリュ
42の回転により、図の左のほうに分散、混練、移動
し、ヒ−タ43により徐々に溶融され、真空槽44に到
達する。スクリュ42の回転は、電動モ−タ45の回転
を減速機46およびベルト、プ−リ等の伝達機47を通
して行われる。真空槽44では、材料中のエア−、分解
ガス等の脱気がおこなわれ、材料は続いて第二段目のス
クリュ48に送られ、ヒ−タ49により完全溶融され、
ヘッド50より紐状押出品20となって連続的に押し出
される。スクリュ48の回転も同様に電動モ−タ51、
減速機52および伝達機53によって行われる。
FIG. 1 shows an insulating spacer 9 according to the present invention.
0 and a graph showing the relationship between the dielectric constant of the material and each position of the insulating spacer 90. The insulating spacer 90 includes a conductor connecting metal fitting 8 for insulating and supporting a conductor to which a high voltage is applied, a metal flange 9 for attaching and fixing to a metal container on the ground side, and an insulating member 19. According to the present invention, the insulating member 19 is formed by granulating or flake-like thermosetting in which an inorganic filler, a low-dielectric inorganic filler having a lower dielectric constant than the inorganic filler, a main agent and a curing agent are integrally mixed. By forming a three-component mixture of the conductive resin, and by changing the weight ratio of the inorganic filler and the low dielectric inorganic filler, as a result, as shown in the graph,
The dielectric constant of the material on the high voltage side and that of the ground side are changed so that the high voltage side has a higher dielectric constant than the ground side.
Hereinafter, an example of an embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. FIG. 2 shows the appearance of an apparatus for obtaining the cord-shaped extruded product 20. The apparatus is composed of three material supply devices 30,
It comprises an extruder 40 for dispersing, kneading, degassing and melting the supplied materials 31 and 32 and continuously forming the cord-like extruded product 20. FIG. 3 is a diagram illustrating the operation principle of the material supply devices 30, 31, and 32. The material 34 put into the hopper 33 is fed to the belt conveyor 3 by rotating blades 35 directly connected to the electric motor.
6 and is conveyed in the direction of arrow A by the roller 37 to which the electric motor is directly connected and the roller 38 for simple rotation transmission. The amount of material transported per unit time is determined by rotating blade 35
It goes without saying that the rotation speed is determined by the rotation speed of each of the wheels 37. FIG. 4 is a diagram illustrating the principle of operation of the extruder 40. When the material is introduced into the inlet 41, the material is dispersed, kneaded, and moved toward the left side of the drawing by the rotation of the first-stage screw 42, and is gradually melted by the heater 43. To reach. The rotation of the screw 42 is performed by rotating the electric motor 45 through a speed reducer 46 and a transmission device 47 such as a belt or a pulley. In the vacuum chamber 44, deaeration of air, decomposed gas, and the like in the material is performed, and the material is subsequently sent to a second-stage screw 48, where it is completely melted by a heater 49.
The extruded product 20 is continuously extruded from the head 50 as a string-shaped extruded product 20. Similarly, the rotation of the screw 48 is controlled by the electric motor 51,
This is performed by the speed reducer 52 and the transmission 53.

【00010】図2において、材料供給装置30、3
1、32を各々、主剤と硬化剤が既に一体混合された顆
粒もしくはフレ−ク状の熱硬化性樹脂材料、無機質充填
材としてのアルミナ粉および低誘電体無機質充填材とし
てのシリカ粉用供給装置とし、三者の材料の投入口41
への添加量の関係が、図5に示すように、アルミナとシ
リカの充填材総量を樹脂材料100部に対して300部と一定
となるよう、かつ二つの充填材量を図のように直線的に
増大、減少するよう、押出機のスクリュ42、48の単
位時間当たりの材料搬送量と材料供給装置30、31、
32の各々の前記回転羽35およびベルトコンベア36
駆動用ローラ37の回転速度を同期制御するものとす
る。また、全紐状押出品量についても、後述の下型キャ
ビィ容積に不足しないよう、多少上回る程度の量が必要
となるため、これもまた同期制御により満足させるもの
とする。
In FIG. 2, material supply devices 30, 3
A supply device for granules or flakes of a thermosetting resin material in which a main agent and a curing agent are already mixed together, an alumina powder as an inorganic filler, and a silica powder as a low dielectric inorganic filler. And the input port 41 of the three materials
As shown in FIG. 5, the relationship between the amounts of the fillers added is such that the total amount of the alumina and silica fillers is constant at 300 parts with respect to 100 parts of the resin material, and the two filler amounts are linearly adjusted as shown in the figure. The amount of material transported per unit time of the screws 42, 48 of the extruder and the material supply devices 30, 31,
32 and the belt conveyor 36
It is assumed that the rotational speed of the driving roller 37 is synchronously controlled. Also, the amount of the whole cord-like extruded product needs to be slightly larger than the lower mold cavity volume to be described later, so that it is also satisfied by the synchronous control.

【00011】以上のことより、充填材として用いるア
ルミナ粉は単品で誘電率9.3を、またシリカ粉は4.
5を保有するので、用いる熱硬化性樹脂材料の誘電率を
2.8とすると、得られる紐状押出品20の誘電率は、
図6に示すように直線的に減少変化するものとなる。
As described above, the alumina powder used as the filler has a dielectric constant of 9.3 as a single product, and the silica powder has a dielectric constant of 4.
5, the permittivity of the obtained extruded string-shaped product 20 is as follows, assuming that the permittivity of the thermosetting resin material used is 2.8.
As shown in FIG. 6, it decreases linearly.

【00012】次に、図7に示すように、所定温度に加
熱温調されたスペ−サ金型の下型60をX−Yステ−ジ
61に載せ、前記紐状押出品20を下型60に投入開始
する。投入は、成形品への空気ボイド混入防止のため、
図8のように、所定の真空圧に真空引きされた真空チャ
ンバ−62内で行う。投入の詳細を図9に示す。図9
(a)のように、投入開始時は、下型60に事前インサ−
トされた導体接続用金具8に近接するよう溶融した紐状
押出品20を沿わす。紐状押出品20を順次渦巻き状に
周回するよう、X−Yステージを調整作動させて、同図
(b)に至る。同図(c)は、下型60にこれもまた事前に
インサ−トされた金属フランジ9近辺まで投入された様
子を示す。同図(c)が投入終了を意味する。同図(a)から
(b)を経て(c)に至るまでの全紐状押出品量は、この下型
60のキャビティ全容積に不足しないよう、多少上回る
程度の投入が望まれる。単位時間当たりの紐状押出品
量、X−Yステ−ジによる下型の作動の仕方、全投入量
および投入終了時の判定等については、下型キャビティ
全容積量から前もって算出され、各々同期制御により満
足させるものとする。投入終了した下型は、真空チャン
バ−62を大気圧に戻し、取り出される。
Next, as shown in FIG. 7, a lower mold 60 of a spacer mold heated to a predetermined temperature is placed on an XY stage 61, and the cord-like extruded product 20 is moved to a lower mold. 60 is started. Injection is to prevent air voids from entering the molded product.
As shown in FIG. 8, the process is performed in a vacuum chamber 62 evacuated to a predetermined vacuum pressure. FIG. 9 shows details of the introduction. FIG.
As shown in FIG.
Along the melted string-shaped extruded product 20 so as to be close to the conductor-fitting metal fitting 8 thus set. The XY stage is adjusted and operated so that the cord-shaped extruded product 20 sequentially spirals, and reaches FIG. FIG. 6C shows the lower die 60 which has been inserted into the vicinity of the metal flange 9 which has also been inserted in advance. FIG. 14C shows the end of the charging. From figure (a)
It is desired that the total amount of the cord-shaped extruded product from (b) to (c) be slightly increased so as not to be insufficient in the total volume of the cavity of the lower die 60. The amount of the cord-shaped extruded product per unit time, the method of operating the lower mold by the XY stage, the total charging amount, and the judgment at the end of the charging are calculated in advance from the total volume of the lower mold cavity, and are synchronized with each other. It shall be satisfied by control. The lower mold that has been charged is returned to the atmospheric pressure in the vacuum chamber 62 and is taken out.

【00013】続いて図10に示すように、前図(c)の
所定量溶融した紐状押出品が投入充填されたスペ−サ下
型を、上固定板71、上熱板72、上熱板72に取り付
けられたスペ−サ上型73、下熱板74、下移動板75
および油圧シリンダロッド76からなる加熱プレス機7
0の下熱板74の上に載せる。これを模式的に表したの
が図11(a)である。ここにおいて、斜線部が投入され
た紐状押出品20である。次いで、プレス機70を作動
させ型締めを行い、同図(b)に至る。上型73と下型6
0とがO−リング77を介して、気密状態開始時、上型
に設置された通し穴78から型内のエア−を真空引きす
る。所定真空度達成後、最終の型締めを行い同図(c)に
至る。多少多めに投入した材料79がキャビティからは
み出され、所定温度下、所定時間後、投入された材料8
0は硬化をむかえ固化する。その後、上型に設置された
もう一つの通し穴81から大気を導入し、型開きし、成
形品を離型し、材料79等のバリを除去仕上げし、本発
明の絶縁スペ−サ90を得ることができる。
Subsequently, as shown in FIG. 10, a spacer lower die into which a predetermined amount of molten string-like extruded product shown in FIG. Upper spacer 73, lower heating plate 74, lower moving plate 75 attached to plate 72
Press machine 7 including a hydraulic cylinder rod 76
0 on the lower heating plate 74. This is schematically shown in FIG. Here, the hatched portion is the string-shaped extruded product 20 that has been put in. Next, the press 70 is operated to perform mold clamping, and the process proceeds to FIG. Upper mold 73 and lower mold 6
When the airtight state is started via the O-ring 77, the air in the mold is evacuated from the through hole 78 provided in the upper mold. After a predetermined degree of vacuum is achieved, final mold clamping is performed, and the process proceeds to FIG. The material 79 charged a little more protrudes from the cavity, and after a predetermined time at a predetermined temperature, the charged material 8
0 solidifies for curing. Thereafter, air is introduced from another through hole 81 provided in the upper die, the die is opened, the molded product is released, and burrs such as material 79 are removed and finished. Obtainable.

【00014】この本発明の製造方法に基づいて製造し
た絶縁スペ−サ90は、図1に示すように、材料の誘電
率が、高電圧側である導体接続用金具8側が高く、接地
側である金属フランジ9側が低く、その間をほぼ直線的
に変化するものと予想される。このような場合を想定し
て数値解析した結果を図12に示す。結果では、等電位
線が等ピッチに配列し、絶縁スペ−サにおける各材料位
置で、電界強度がほぼ一定値に達成されたことが判る。
また紐状押出品20を得る工程、同品を下型60に投入
充填する工程および同下型を上型73と共に加熱プレス
機70で、型締め硬化させる工程において、真空引きに
よる減圧脱泡、圧縮の過程を経るため、製造される絶縁
スペ−サ90は、電気的欠陥となるボイドを全く含まな
いものになることはいうまでもない。
As shown in FIG. 1, an insulating spacer 90 manufactured according to the manufacturing method of the present invention has a high dielectric constant of the material on the side of the conductor connection fitting 8 on the high voltage side, and has a high dielectric constant on the ground side. It is expected that a certain metal flange 9 side is low and changes almost linearly therebetween. FIG. 12 shows the result of a numerical analysis assuming such a case. The results show that the equipotential lines are arranged at an equal pitch, and that the electric field intensity is almost constant at each material position in the insulating spacer.
In the step of obtaining the cord-shaped extruded product 20, the step of charging and filling the same into the lower mold 60, and the step of hardening the lower mold together with the upper mold 73 with the heating press 70, vacuum degassing by vacuuming, It goes without saying that the insulating spacer 90 to be manufactured does not include any voids that cause electrical defects due to the compression process.

【00015】[00015]

【発明の効果】本発明によれば、導体接続用金具に高電
圧が印加されると、絶縁スペ−サ材料中の各等電位線が
等ピッチに配列するので、電界強度の一定値化となり、
その結果、材料の絶縁耐力マ−ジンの適正化、またその
バラツキ幅の縮小、一定化が図ることができ、信頼性の
高い絶縁スペ−サを提供することができる。
According to the present invention, when a high voltage is applied to the conductor connection fitting, the equipotential lines in the insulating spacer material are arranged at an equal pitch, and the electric field intensity becomes constant. ,
As a result, the dielectric strength margin of the material can be optimized, and the variation width can be reduced and fixed, and a highly reliable insulating spacer can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の絶縁スペ−サの一例を示す図である。FIG. 1 is a diagram showing an example of an insulating spacer according to the present invention.

【図2】本発明の供給装置と押出機の一例を示す図であ
る。
FIG. 2 is a diagram illustrating an example of a supply device and an extruder according to the present invention.

【図3】本発明の供給装置の一例を示す図である。FIG. 3 is a diagram showing an example of a supply device of the present invention.

【図4】本発明の押出機の一例を示す図である。FIG. 4 is a view showing one example of an extruder of the present invention.

【図5】本発明の熱硬化性樹脂に対して、無機質充填材
と低誘電体無機質充填材の添加割合の一例を示す図であ
る。
FIG. 5 is a diagram showing an example of an addition ratio of an inorganic filler and a low dielectric inorganic filler to the thermosetting resin of the present invention.

【図6】本発明の紐状押出品の誘電率変化の一例を示す
図である。
FIG. 6 is a diagram showing an example of a change in the dielectric constant of a cord-shaped extruded product of the present invention.

【図7】本発明の製造工程を示す図である。FIG. 7 is a diagram showing a manufacturing process of the present invention.

【図8】本発明の製造工程を示す図である。FIG. 8 is a diagram showing a manufacturing process of the present invention.

【図9】本発明の製造工程を示す図である。FIG. 9 is a diagram showing a manufacturing process of the present invention.

【図10】本発明の製造工程を示す図である。FIG. 10 is a diagram showing a manufacturing process of the present invention.

【図11】本発明の製造工程を示す図である。FIG. 11 is a diagram showing a manufacturing process of the present invention.

【図12】本発明の絶縁スペ−サの数値解析の一例を示
す図である。
FIG. 12 is a diagram showing an example of a numerical analysis of the insulating spacer of the present invention.

【図13】従来の絶縁スペ−サの機器組み付け構成を示
す図である。
FIG. 13 is a diagram showing a device assembling configuration of a conventional insulating spacer.

【図14】従来の絶縁スペ−サの外観の一例を示す図で
ある。
FIG. 14 is a diagram showing an example of the appearance of a conventional insulating spacer.

【図15】従来の注型法の一例を示す図である。FIG. 15 is a diagram showing an example of a conventional casting method.

【図16】従来の注型法により成形した絶縁スペ−サの
材料誘電率の一例を示す図である。
FIG. 16 is a diagram showing an example of a material dielectric constant of an insulating spacer formed by a conventional casting method.

【図17】従来の注型法により成形した絶縁スペ−サの
数値解析の一例を示す図である。
FIG. 17 is a diagram showing an example of numerical analysis of an insulating spacer formed by a conventional casting method.

【符号の説明】[Explanation of symbols]

8 導体接続用金具 9 金属フランジ 19 絶縁部材 20 紐状押出品 30、31、32 供給する装置 40 押出機 60 絶縁スペ−サ成形用金型の下型 61 X−Yステ−ジ 62 真空チャンバ− 70 加熱プレス機 73 絶縁スペ−サ成形用金型の上型 77 O−リング 90 絶縁スペ−サ REFERENCE SIGNS LIST 8 Conductor connection metal fitting 9 Metal flange 19 Insulating member 20 String-shaped extruded product 30, 31, 32 Supplying device 40 Extruder 60 Lower mold for insulating spacer molding die 61 XY stage 62 Vacuum chamber Reference Signs List 70 Heating press machine 73 Upper die for insulating spacer molding 77 O-ring 90 Insulating spacer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ガス絶縁機器の金属容器内に収納され、高
電圧が印加される導体を絶縁支持する絶縁スペ−サにお
いて、無機質充填材と前記無機質充填材に比べ低い誘電
率を有する低誘電体無機質充填材と、 主剤と硬化剤が
一体混合された顆粒もしくはフレ−ク状の熱硬化性樹脂
により形成され、かつ、前記無機質充填材と前記低誘電
体無機質充填材の重量比を変化させ、高電圧側と接地側
間の材料の誘電率を変化させて、高電圧側が接地側に比
べ高い誘電率を保持するように構成されたことを特徴と
する絶縁スペ−サ。
1. An insulating spacer, which is housed in a metal container of a gas insulating device and insulates and supports a conductor to which a high voltage is applied, comprises an inorganic filler and a low dielectric material having a lower dielectric constant than the inorganic filler. And a thermosetting resin in the form of granules or flakes in which a base material and a curing agent are integrally mixed, and the weight ratio of the inorganic filler to the low dielectric inorganic filler is changed. An insulating spacer characterized in that the dielectric constant of a material between the high voltage side and the ground side is changed so that the high voltage side has a higher dielectric constant than the ground side.
【請求項2】ガス絶縁機器の金属容器内に収納された請
求項1の絶縁スペ−サにおいて、無機質充填材と前記無
機質充填材に比べ低い誘電率を有する低誘電体無機質充
填材の総量と、主剤と硬化剤が一体混合された顆粒もし
くはフレ−ク状の熱硬化性樹脂の重量比が常に一定にな
るように保たれ、かつ、前記無機質充填材と前記低誘電
体無機質充填材の重量比を所定時間内に直線的に変化さ
せるようにした三者供給工程と、 供給された前記三者の材料を、分散、混練、脱気し未硬
化、溶融状態の紐状押出品を得る工程と、 紐状押出品を、真空減圧下において絶縁スペ−サ成形用
金型の下型中央部に設置された導体接続用金具近辺から
投入開始し、順次渦巻き状に周回充填供給せしめ、下型
キャビティ周辺部に設置された金属フランジまで充填し
終えたのを投入終了とした下型を大気圧に戻すことによ
り真空チャンバ−から取り出す工程と、 紐状押出品が所定量充填供給された前記下型を、スペ−
サ金型の上型が取り付けられている加熱プレス機内に導
入し、プレス機閉により型締めを行い、型締め途中のO
−リング気密状態開始時、型締めを一時中断し、金型内
のエア−の真空引きを行い、しかる後最終のプレス機に
よる型締めを行い、所定時間投入した押出品をプレス圧
と加熱により硬化させ、その後型内を大気圧に戻し、型
開き、離型させる工程により成型品を形成する絶縁部材
の誘電率を直線的に徐々に変化させたことを特徴とする
絶縁スペ−サの製造方法。
2. The insulating spacer according to claim 1, which is housed in a metal container of a gas insulating device, wherein the total amount of the inorganic filler and the low dielectric inorganic filler having a lower dielectric constant than the inorganic filler is: The weight ratio of the thermosetting resin in the form of granules or flakes in which the main agent and the curing agent are integrally mixed is kept constant, and the weight of the inorganic filler and the low dielectric inorganic filler is kept constant. A three-part supply step in which the ratio is changed linearly within a predetermined time; and a step of dispersing, kneading, and degassing the supplied three-part material to obtain an uncured, molten, string-like extruded product. And the string-shaped extruded product is started under the vacuum reduced pressure from the vicinity of the conductor connection fitting set at the center of the lower mold of the insulating spacer molding die, and is sequentially spirally filled and supplied. Fill up to the metal flange installed around the cavity The the was finished turned ends and the lower vacuum chamber by returning to the atmospheric pressure - taking out from the lower die string-like extrudate was filled with a predetermined amount supply, space -
The mold is introduced into a heating press equipped with an upper mold, and the mold is closed by closing the press.
-At the start of the ring airtight state, the mold clamping is temporarily interrupted, the air in the mold is evacuated, and then the mold is clamped by the final press machine. A method of manufacturing an insulating spacer wherein the dielectric constant of an insulating member forming a molded product is gradually changed linearly by a process of curing, then returning the inside of the mold to atmospheric pressure, opening the mold, and releasing the mold. Method.
【請求項3】 請求項2において、押出品の前記無機質
充填材と前記低誘電体無機質充填材の重量比を、投入開
始時、最大になるよう、投入終了直前時、最低になるよ
う、かつまたその間を直線的に変化させるのを特徴とす
る絶縁スペ−サの製造方法。
3. The extruded product according to claim 2, wherein the weight ratio of the inorganic filler and the low-dielectric inorganic filler is maximized at the start of charging, minimized immediately before the end of charging, and minimized. A method for manufacturing an insulating spacer, characterized in that the interval is changed linearly.
【請求項4】熱硬化性樹脂、無機質充填材および前記無
機質充填材に比べ低誘電率を有する低誘電体無機質充填
材を各々調整して供給する装置と、紐状押出品を得る押
出機と、材料を充填して成形する金型と、前記紐状押出
品を真空下、渦巻き状に順次下型に周回充填させるため
の真空チャンバ−、X−Yステ−ジと、前記紐状押出品
を加熱圧縮して硬化させるための加熱プレス機とを備え
たことを特徴とする絶縁スペ−サの製造装置。
4. An apparatus for adjusting and supplying a thermosetting resin, an inorganic filler and a low-dielectric inorganic filler having a lower dielectric constant than the inorganic filler, and an extruder for obtaining a cord-like extruded product. A mold for filling and molding a material, a vacuum chamber for circulating the cord-shaped extruded product into a lower mold in a spiral shape under vacuum, an XY stage, and the cord-shaped extruded product. And a heating press for heat-compressing and hardening the resin.
JP30504497A 1997-10-21 1997-10-21 Insulating spacer and method and apparatus for manufacturing thereof Pending JPH11126527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30504497A JPH11126527A (en) 1997-10-21 1997-10-21 Insulating spacer and method and apparatus for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30504497A JPH11126527A (en) 1997-10-21 1997-10-21 Insulating spacer and method and apparatus for manufacturing thereof

Publications (1)

Publication Number Publication Date
JPH11126527A true JPH11126527A (en) 1999-05-11

Family

ID=17940442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30504497A Pending JPH11126527A (en) 1997-10-21 1997-10-21 Insulating spacer and method and apparatus for manufacturing thereof

Country Status (1)

Country Link
JP (1) JPH11126527A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327580A (en) * 2004-05-14 2005-11-24 Hitachi Ltd Insulating spacer and gas-insulation equipment
CN102543323A (en) * 2011-11-29 2012-07-04 河南电力试验研究院 Staging dielectric constant composite insulator
CN108717888A (en) * 2018-05-29 2018-10-30 南方电网科学研究院有限责任公司 Insulator with high dielectric constant film and preparation method thereof
CN112908586A (en) * 2021-01-20 2021-06-04 陆同玉 Electric power porcelain insulator forming and processing system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327580A (en) * 2004-05-14 2005-11-24 Hitachi Ltd Insulating spacer and gas-insulation equipment
CN102543323A (en) * 2011-11-29 2012-07-04 河南电力试验研究院 Staging dielectric constant composite insulator
CN108717888A (en) * 2018-05-29 2018-10-30 南方电网科学研究院有限责任公司 Insulator with high dielectric constant film and preparation method thereof
CN112908586A (en) * 2021-01-20 2021-06-04 陆同玉 Electric power porcelain insulator forming and processing system

Similar Documents

Publication Publication Date Title
CN104916378B (en) The dielectric constant gradient insulator printed based on 3D manufactures device and method
JP3288356B2 (en) Method and apparatus for injection-molding plastic moldings made of thermoplastics
CA2119694A1 (en) Process and an Apparatus for Producing Insulators
CN111136856A (en) Double-component mixed epoxy casting dielectric function gradient insulation manufacturing device and method
US2893061A (en) Method for encapsulating electrical equipment
KR970067802A (en) Resin sealing molding method of electronic parts
JPH11126527A (en) Insulating spacer and method and apparatus for manufacturing thereof
JP3973625B2 (en) Method for manufacturing molded products
US3969461A (en) Transfer molding thermosetting polymeric material
CN111372744B (en) Method for producing a spacer for a winding unit and voltage-proof spacer for a resin-cast transformer
JPH09187848A (en) Characteristics control technique for material in manufacturing process
US3911075A (en) Transfer molding thermosetting polymeric material
JPH05124087A (en) Combination device of extruder and gear pump
JP2691505B2 (en) Extrusion molding equipment
JPH05182546A (en) Manufacture of insulator
CN107452439A (en) A kind of compound insulation sleeve high voltage bus and its manufacture method
US3949905A (en) Device for the production of articles with a compact smooth skin and a cellular core from polymer materials
KR20020071630A (en) Equipment for producing construction material using wastes
CN112497596B (en) Gradient structure non-porous three-post insulator rotary pouring forming device and process
CN108648965A (en) A kind of preparation process of solid sealing electrode pole of high voltage vacuum breaker
CN216914696U (en) Mould for forming connector shell
CN219338375U (en) High-efficient former of POM mould
CN217257864U (en) Injection molding equipment of socket pin
WO2001052283A1 (en) Continuous extrusion processes for the manufacture of ring magnets
KR830002607B1 (en) Manufacturing method of small electric motor made of synthetic resin