JPH11125797A - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JPH11125797A
JPH11125797A JP30937397A JP30937397A JPH11125797A JP H11125797 A JPH11125797 A JP H11125797A JP 30937397 A JP30937397 A JP 30937397A JP 30937397 A JP30937397 A JP 30937397A JP H11125797 A JPH11125797 A JP H11125797A
Authority
JP
Japan
Prior art keywords
thermal expansion
holder
soldering
coeffts
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30937397A
Other languages
Japanese (ja)
Inventor
Tadakuni Sato
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP30937397A priority Critical patent/JPH11125797A/en
Publication of JPH11125797A publication Critical patent/JPH11125797A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To diminish the difference in the coeffts. of thermal expansion between an optical element and a metallic holder and to suppress the generation of residual strains by a soldering stage by using a coefft. of thermal expansion value of a specific range for the metallic holder. SOLUTION: Polar cores 1 and 1a are fixed by soldering to the metallic holder 2. When the solder is melted at the time of soldering, strains are not generated in the polar cores 1 and 1a together with the metallic holder 2 but at the time of cooling, both shrink and the stress meeting the difference in the coeffts. of thermal expansion between both acts on both, respectively. From such condition, a metallic material having the specific coeffts. of thermal expansion is selected for the polar cores having the small coeffts. of thermal expansion. Further, a holder is desired not to disturb the magnetic field generated by a permanent magnet in view of the point that the polar cores are used in proximity to the permanent magnet. In such a case, the material used for the metallic holder 2 is austenitic and ferritic stainless steels which exhibit nonmagnetism and weak magnetism near ordinary temp.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信システムや
光計測器に用いられる光学部品であり、光源から出射し
た光が光学系の中の光学素子の端面で反射し、光源に戻
るのを防ぐために用いられるような光学用アイソレータ
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical component used in an optical communication system or an optical measuring instrument, and is used to prevent light emitted from a light source from being reflected by an end face of an optical element in the optical system and returning to the light source. The present invention relates to an optical isolator used for prevention.

【0002】[0002]

【従来の技術】光源からの出射光を光学系を用いて伝達
しようとする時、光学系中の光学素子の端面で反射した
光は、光源に戻ってくる。例えば、光通信において、光
源のレーザから出射した光は、結合レンズによって収束
され、光ファイバの端面に集められる。
2. Description of the Related Art When light emitted from a light source is transmitted using an optical system, light reflected at an end face of an optical element in the optical system returns to the light source. For example, in optical communication, light emitted from a laser of a light source is converged by a coupling lens and collected on an end face of an optical fiber.

【0003】この時、大部分の光は、光ファイバ中に入
り、その中を伝搬するが、一部の光は、ファイバ端面で
反射されて、光源のレーザに戻る。レーザ中に戻った光
は、一般に、位相も偏光方向も、レーザ中の光とは異な
り、これによって、レーザ発振が乱され、レーザ光のノ
イズとなる。
At this time, most of the light enters and propagates in the optical fiber, but a part of the light is reflected at the end face of the fiber and returns to the laser of the light source. The light that has returned into the laser generally differs from the light in the laser in both phase and polarization direction, which disturbs laser oscillation and causes laser light noise.

【0004】このようなノイズを防ぐため、戻り光を遮
断する光学用アイソレータが用いられる。光学用アイソ
レータは、戻り光の遮断特性(アイソレーション)の高
いこと、入射光の透過損失(挿入損失)の少ないこと、
が要求される。
In order to prevent such noise, an optical isolator for blocking return light is used. Optical isolators have high blocking characteristics (isolation) of return light, low transmission loss (insertion loss) of incident light,
Is required.

【0005】光学用アイソレータの典型的な構造は、図
1に示すように、板状のファラデー回転素子3の両側に
偏光子1と検光子1aを配置し、ファラデー回転素子3
の周囲には、この素子を一方向に磁化させるための筒型
の永久磁石4が配設され、これらの光学素子、磁石等
は、それぞれ金属製ホルダ2に半田付け等によって固定
され、金属製ホルダ2相互は、位置決め後、レーザ溶接
されているのが普通である。
As shown in FIG. 1, a typical structure of an optical isolator is such that a polarizer 1 and an analyzer 1a are arranged on both sides of a plate-like Faraday rotator 3, and a Faraday rotator 3 is provided.
Is provided around the periphery of the cylindrical permanent magnet 4 for magnetizing the element in one direction. These optical elements, magnets, and the like are fixed to the metal holder 2 by soldering or the like. The holders 2 are usually laser-welded after positioning.

【0006】半田付け時には、光学素子、金属製ホルダ
等は、均一に高温に加熱され、半田付け後、室温にまで
冷却する時、それぞれの材料が持つ熱膨張係数が異なる
ため、素子やホルダに残留歪みが発生する。
At the time of soldering, the optical element, metal holder, etc. are uniformly heated to a high temperature, and when cooled to room temperature after soldering, the respective materials have different coefficients of thermal expansion. Residual distortion occurs.

【0007】[0007]

【発明が解決しようとする課題】この歪みの発生によっ
て、光学素子の光学的均一性が低下し、アイソレーショ
ン特性が劣化したり、光学素子に割れ等の損傷が生じ、
光の正常な透過が妨げられる場合がある。
Due to the occurrence of the distortion, the optical uniformity of the optical element is reduced, the isolation characteristics are degraded, and the optical element is damaged such as cracks.
Normal transmission of light may be hindered.

【0008】従って、本発明は、このような問題点を解
決するためになされもので、光学素子の光学特性が劣化
したり、割れ等の損傷を生ずることのない光学用アイソ
レータを提供することを目的とする。
Accordingly, the present invention has been made to solve such a problem, and an object of the present invention is to provide an optical isolator which does not deteriorate optical characteristics of an optical element or cause damage such as cracks. Aim.

【0009】[0009]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明では、金属製ホルダの熱膨張係数の値に着
目し、特定の範囲の熱膨張係数値を用いることにより、
光学素子と金属製ホルダの間の熱膨張係数差を小さくし
て、半田付け工程による残留歪みの発生を抑制するもの
である。
In order to achieve the above object, the present invention focuses on the value of the coefficient of thermal expansion of a metal holder and uses a value of the coefficient of thermal expansion in a specific range.
This is to reduce the difference in thermal expansion coefficient between the optical element and the metal holder, thereby suppressing the occurrence of residual distortion due to the soldering process.

【0010】図1は、光学用アイソレータの説明図で、
本発明は、製造上、特に歩留を左右する偏光素子(偏光
子1、検光子1aの総称)として用いたポーラコアの割
れの問題に着目したものである。
FIG. 1 is an explanatory view of an optical isolator.
The present invention pays attention to the problem of cracking of a polar core used as a polarizing element (general term for the polarizer 1 and the analyzer 1a) which affects the yield in manufacturing, particularly.

【0011】図1において、ポーラコア1及び1aは、
金属製ホルダ2に半田付けで固定されている。半田付け
時おいて、半田が溶融している時、ポーラコア1及び1
aは、金属製ホルダ2とともに歪みは生じていないが、
冷却時は、両者とも収縮し、両者の熱膨張係数の差に応
じた応力が、両者それぞれに働く。
In FIG. 1, polar cores 1 and 1a are:
It is fixed to the metal holder 2 by soldering. At the time of soldering, when the solder is molten, the polar cores 1 and 1
a is not distorted together with the metal holder 2,
At the time of cooling, both contract, and a stress corresponding to the difference between the thermal expansion coefficients of both acts on both.

【0012】両者が半田を介して接続している界面近傍
では、ほぼ等しい応力が働くが、破壊に至る応力は、一
般的に、金属よりもポーラコアのようなセラミックの方
が小さいため、セラミックが、まず破壊する。金属は、
弾性変形、塑性変形によって、応力緩和しやすいが、セ
ラミックは、殆ど塑性変形せずに破壊に至る。また、圧
縮応力よりも引っ張り応力に弱い点が、セラミックの特
徴である。
In the vicinity of the interface where the two are connected via solder, substantially the same stress acts. However, since the stress leading to destruction is generally smaller in a ceramic such as a polar core than in a metal, the ceramic is First, destroy. Metal
Although the stress is easily relaxed by the elastic deformation and the plastic deformation, the ceramic is hardly plastically deformed and is broken. A feature of ceramic is that it is weaker to tensile stress than to compressive stress.

【0013】このような状況から、熱膨張係数の小さい
ポーラコアに対して、特定範囲の熱膨張係数を持つ金属
材料わホルダに選ぶことが、本発明における作用の原点
であり、更に、永久磁石に近接して用いる観点から、ホ
ルダは、非磁性、あるいは、弱磁性材料であって、永久
磁石の発する磁界を乱さぬことが望ましいことを見いだ
した。
Under such circumstances, it is the starting point of the operation in the present invention to select a metal material holder having a specific range of thermal expansion coefficient for a polar core having a small thermal expansion coefficient. From the viewpoint of close use, it has been found that it is desirable that the holder is made of a non-magnetic or weak magnetic material and does not disturb the magnetic field generated by the permanent magnet.

【0014】即ち、本発明は、永久磁石より発生する磁
界を印加したファラデー回転素子の前後に配置されるセ
ラミック製の偏光子及び検光子を、金属製ホルダに半田
接着して保持した光学用アイソレータにおいて、前記金
属製ホルダは、オーステナイト・フェライト系ステンレ
ス鋼である光学用アイソレータである。
That is, the present invention provides an optical isolator in which a ceramic polarizer and an analyzer arranged before and after a Faraday rotator to which a magnetic field generated by a permanent magnet is applied are held by soldering to a metal holder. In the above, the metal holder is an optical isolator made of austenitic ferritic stainless steel.

【0015】[0015]

【発明の実施の形態】以下、図1により、本発明の実施
の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0016】図1において、寸法が1.6mm×1.6m
m×0.2mmの平板状ポーラコア(セラミック製、熱
膨張係数6.5×10-6/℃)1及び1aを、寸法が、
外径4.0mm、内径1.4mm、厚さ約0.4mmの金
属製ホルダ2に、金錫半田を用いて接着した。なお、ポ
ーラコア1及び1aと金属製ホルダ2の接着部位には、
金を被覆し、370℃に保持して接着している。
In FIG. 1, the dimensions are 1.6 mm × 1.6 m.
m × 0.2 mm flat polar core (made of ceramic, coefficient of thermal expansion 6.5 × 10 −6 / ° C.) 1 and 1a
It was bonded to a metal holder 2 having an outer diameter of 4.0 mm, an inner diameter of 1.4 mm, and a thickness of about 0.4 mm using gold-tin solder. In addition, in the adhesion part of the polar cores 1 and 1a and the metal holder 2,
It is coated with gold and held at 370 ° C. for adhesion.

【0017】ここで、金属製ホルダ2に用いた材質は、
常温近傍で非磁性、弱磁性を示すオーステナイト・フェ
ライト系ステンレス鋼であるSUS−329J1及びA
−SUS−329LJ2であり、Fe,Cr,Niを主
成分として含有している。
Here, the material used for the metal holder 2 is as follows.
SUS-329J1 and A, austenitic ferritic stainless steels that exhibit non-magnetic and weak magnetic properties near room temperature
-SUS-329LJ2, which contains Fe, Cr and Ni as main components.

【0018】これらの金属製ホルダについて、各100
個の接着を行い、ポーラコアの割れ発生率を求めた。そ
の結果を、非磁性又は弱磁性のオーステナイトステンレ
ス鋼として一般的によく使用されるSUS−304を使
用した場合と比較して表1に示す。
For each of these metal holders, 100
The pieces were bonded to each other, and the rate of occurrence of cracks in the polar core was determined. The results are shown in Table 1 in comparison with the case where SUS-304, which is commonly used as a nonmagnetic or weakly magnetic austenitic stainless steel, is used.

【0019】 [0019]

【0020】表1より、オーステナイト系ステンレス鋼
であるSUS−304に比べ、オーステナイト・フェラ
イト系のステンレス鋼であるSUS−329J1、及び
A−SUS−329LJ2を金属製ホルダとして使用し
たものは、ポーラコアの割れ発生率は著しく減少し、工
業上、有益であると言える。
From Table 1, it can be seen that, compared to SUS-304, which is an austenitic stainless steel, those using SUS-329J1 and A-SUS-329LJ2, which are austenitic / ferritic stainless steels, as metal holders have polar cores. The crack occurrence rate is remarkably reduced, which is industrially beneficial.

【0021】なお、これらとTbBi系ガーネット膜を
ファラデー回転素子とし、Sm2Co17系磁石と組み合
わせて、アイソレータを構成し、波長が1.55μmで
のアイソレーションを測定したところ、全て35dB以
上であった。
The TbBi-based garnet film and the TbBi-based garnet film were used as a Faraday rotator and combined with a Sm 2 Co 17- based magnet to form an isolator. there were.

【0022】[0022]

【発明の効果】本発明によれば、光学特性の劣化がな
く、光学素子(ポーラコア)の割れ等の損傷を低減した
光学用アイソレータを提供できる。
According to the present invention, it is possible to provide an optical isolator which is free from deterioration of optical characteristics and reduces damage such as cracking of an optical element (polar core).

【図面の簡単な説明】[Brief description of the drawings]

【図1】光学用アイソレータの説明図。FIG. 1 is an explanatory diagram of an optical isolator.

【符号の説明】[Explanation of symbols]

1 偏光子(ポーラコア) 1a 検光子(ポーラコア) 2 金属製ホルダ 3 ファラデー回転素子 4 永久磁石 5 外部ホルダ DESCRIPTION OF SYMBOLS 1 Polarizer (polar core) 1a Analyzer (polar core) 2 Metal holder 3 Faraday rotation element 4 Permanent magnet 5 External holder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 永久磁石より発生する磁界を印加したフ
ァラデー回転素子の前後に配置されるセラミック製の偏
光子及び検光子を、金属製ホルダに半田接着して保持し
た光学用アイソレータにおいて、前記金属製ホルダは、
オーステナイト・フェライト系ステンレス鋼であること
を特徴とする光学用アイソレータ。
An optical isolator in which a ceramic polarizer and an analyzer disposed before and after a Faraday rotator to which a magnetic field generated by a permanent magnet is applied is held by soldering to a metal holder. Made holder,
An optical isolator characterized by being an austenitic ferritic stainless steel.
JP30937397A 1997-10-22 1997-10-22 Optical isolator Withdrawn JPH11125797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30937397A JPH11125797A (en) 1997-10-22 1997-10-22 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30937397A JPH11125797A (en) 1997-10-22 1997-10-22 Optical isolator

Publications (1)

Publication Number Publication Date
JPH11125797A true JPH11125797A (en) 1999-05-11

Family

ID=17992228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30937397A Withdrawn JPH11125797A (en) 1997-10-22 1997-10-22 Optical isolator

Country Status (1)

Country Link
JP (1) JPH11125797A (en)

Similar Documents

Publication Publication Date Title
US6480636B1 (en) Optical isolator comprising a faraday rotator
JPH09325299A (en) Optical fiber terminal with optical isolator and semiconductor laser module using the same
JPH11125797A (en) Optical isolator
EP0707230A1 (en) Optical isolator
JPH11183843A (en) Optical isolator
JPH11153773A (en) Optical isolator
JPH11119156A (en) Optical isolator
JPH11119157A (en) Optical isolator
JPH11101955A (en) Isolator for optical use
JP3267711B2 (en) Optical isolator
JPH11183844A (en) Optical isolator
JP2003257737A (en) Method for magnetization
JP2002341290A (en) Optical isolator, optical connector equipped with the same, and laser light source unit
JP4325839B2 (en) Optical isolator
JP4491530B2 (en) Optical isolator
JP2008268847A (en) Optical isolator and optical module using the same
JPH06230314A (en) Production of optical isolator
JP2005017861A (en) Optical isolator
JP2001021841A (en) Optical isolator
JPH0949988A (en) Optical isolator
JPH11125798A (en) Optical isolator
JPH06186503A (en) Production of optical isolator
JPH07244254A (en) Polarization-independent type optical isolator
JPH0667119A (en) Formation of optical isolator
JP2001083457A (en) Optical isolator parts

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050711