JPH11120812A - Lighting system - Google Patents

Lighting system

Info

Publication number
JPH11120812A
JPH11120812A JP9321864A JP32186497A JPH11120812A JP H11120812 A JPH11120812 A JP H11120812A JP 9321864 A JP9321864 A JP 9321864A JP 32186497 A JP32186497 A JP 32186497A JP H11120812 A JPH11120812 A JP H11120812A
Authority
JP
Japan
Prior art keywords
light source
light
optical surface
electrode
controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9321864A
Other languages
Japanese (ja)
Inventor
Eiki Matsuo
栄樹 松尾
Fumio Niizawa
二三男 新沢
Jun Ogawa
潤 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissho Giken KK
Original Assignee
Nissho Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissho Giken KK filed Critical Nissho Giken KK
Priority to JP9321864A priority Critical patent/JPH11120812A/en
Publication of JPH11120812A publication Critical patent/JPH11120812A/en
Pending legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent temperature rise in the vicinity of a light source, and realize high efficiency by reducing the opening number by containing a reflecting optical plane for controlling the spatial distribution on a virtual plane of a main beam of light from the virtual center of the light source and an optical plane to control the direction of the main beam of light from this, and specifying a minimum distance between an electrode contained in a tubular bulb and the reflecting optical plane. SOLUTION: A light flux from an arc in the vicinity of an electrode of a light source 1, such as a discharge lamp, is reflected by a distribution control plane 4a being a reflecting mirror to control the distribution of a main beam of light from the virtual center of the light source 1 in a virtual plane in the vicinity of a direction control plane 4b which is a refracting optical plane. The reflected light passes through the direction control plane 4b and is controlled in its direction, and the opening number of the light flux turns into a constant distribution. An auxiliary image forming device 3 reflects the light flux from the light source 1 and returns it to the light source 1. Influence of the return light on the vicinity of a tubular bulb and radiation heat by a reflecting surface is relieved by setting an interval D between the tubular bulb of the light source 1 and an optical element such as the distribution control plane 4a to (D>2d) (d is the diameter of the tubular bulb), and cloudiness due to crystallization of the tubular bulb can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,開口数の小さくか
つ高い効率を有する照明装置に係わり,特に放電灯光源
を利用する照明装置に於いて,光源の長寿命化をはかる
技術分野に属し,プロジェクタ用の照明装置としても好
適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lighting device having a small numerical aperture and high efficiency, and particularly to a lighting device utilizing a discharge lamp light source, which belongs to a technical field for extending the life of the light source. It is also suitable as a lighting device for a projector.

【0002】[0002]

【従来の技術】本出願人は,特開平8−532381に
おいて,各種の光束の分布及び方向制御素子を組み合わ
せた照明装置を備えた投写型ディスプレー装置の基本的
構成を示した。また,特開平8−357423及び特開
平8−357424において,利用効率を向上するため
の補助結像装置の構成について提案した。それは,与え
られた光源の大きさに対し,小さな開口数を有し,しか
も高い効率の照明系を実現するためには,光源から発す
る一部の光束を光源に戻し,光束の再利用を図る補助結
像装置の有効性を述べたものである。この様な補助結像
装置は,一度光源から射出した光束を光源に戻すため,
光源付近の温度上昇を招く。
2. Description of the Related Art The applicant of the present invention has disclosed, in Japanese Patent Application Laid-Open No. 8-532381, a basic structure of a projection type display device provided with an illumination device in which various light flux distribution and direction control elements are combined. Further, in Japanese Patent Application Laid-Open Nos. 8-357423 and 8-357424, a configuration of an auxiliary imaging device for improving utilization efficiency has been proposed. It has a small numerical aperture for a given light source size, and in order to realize a highly efficient illumination system, some light beams emitted from the light source are returned to the light source to reuse the light beam. It describes the effectiveness of the auxiliary imaging device. Such an auxiliary imaging device returns the light flux once emitted from the light source to the light source.
This causes a temperature rise near the light source.

【0003】また,重力の影響により放電灯の管球内部
生じる温度勾配のため,管球上部の温度が他の部分に比
較して高くなる。特開平9−180501に記載されて
いるように,この温度勾配の影響で,電極間に生じるア
ーク自身も上部に偏る傾向をもち,同じく管球上部の温
度を高める要因となる。
Further, due to the temperature gradient generated inside the bulb of the discharge lamp due to the effect of gravity, the temperature at the upper part of the bulb becomes higher than at other parts. As described in Japanese Patent Application Laid-Open No. Hei 9-180501, the arc itself generated between the electrodes tends to be biased upward due to the effect of this temperature gradient, which also causes a rise in the temperature of the upper portion of the tube.

【0004】一方,この様な光源からの光束を取り込
み,照明装置に光束を導く光学素子として,主光線を平
行光に変換する放物鏡や光源を再結像する楕円ミラーが
良く使用される。特に放物鏡では,光源からの光束を漏
れなく平行光に変えるために,径の大きくしかも深い形
状を持つ反射鏡となる。この径を小さくし,小型化を図
るためには,放物鏡の焦点距離を短くしなければならな
い。この場合,光源の管球と放物鏡の距離が近くなるた
め,管球が放物鏡の反射光や輻射熱の影響を直接受ける
ことになる。
On the other hand, a parabolic mirror for converting a principal ray into parallel light and an elliptical mirror for re-imaging the light source are often used as an optical element which takes in a light beam from such a light source and guides the light beam to an illumination device. In particular, a parabolic mirror is a reflecting mirror having a large diameter and a deep shape in order to convert a light beam from a light source into parallel light without leakage. In order to reduce the diameter and the size, the focal length of the parabolic mirror must be reduced. In this case, the distance between the tube of the light source and the parabolic mirror is short, so that the tube is directly affected by the reflected light and radiant heat of the parabolic mirror.

【0005】更に,放電灯の場合,光源から発生する紫
外線は,人体に対する影響はもちろんのこと,画像素子
や筐体を構成する樹脂への影響等様々な悪影響を及ぼ
す。この様な紫外線は,照明系の早い段階でカットする
必要があるが,例えば放物鏡等の前面に平面硝子を設
け,それに紫外線反射膜を施した場合,反射された紫外
線が再度管球付近に結像することになる。これも管球付
近の温度上昇の一因となる。
Further, in the case of a discharge lamp, the ultraviolet rays generated from the light source have various adverse effects such as not only on the human body but also on the image element and the resin constituting the housing. It is necessary to cut such ultraviolet rays at an early stage of the illumination system. For example, when a flat glass is provided on the front of a parabolic mirror or the like and an ultraviolet reflective film is applied to the flat glass, the reflected ultraviolet rays are again emitted near the bulb. An image will be formed. This also contributes to the temperature rise near the bulb.

【0006】[0006]

【発明が解決しようとする課題】特開平8−53238
1に開示したような,比較的小さな開口数を有しかつ,
高効率な照明装置を実現するためには,光源ができる限
り小さな光源であることが望ましい。一方,光源付近に
於ける温度上昇は,電極を包みガスを封入するための石
英製の管球の結晶化を招き白濁を引き起こす。管球の白
濁は,光束の散乱を引き起こし,光源が大きくなったの
と等価となり,効率の低下をもたらす。この様な管球の
温度上昇の要因となるのは,電極付近のエネルギーの集
中はもちろん,対流による温度不均一,アークの偏り,
光源の回りのリフレクタの輻射熱,管球付近に戻る光束
の影響等が挙げられる。これらの総合的な熱作用により
管球の結晶化が進行する。従って,光源の点光源性と長
寿命化を保つためには,光源の温度上昇を招く要因を少
しでも取り除く必要がある。本発明の目的は,この様な
光源付近の温度上昇を防止する手段を提供し,小さな開
口数を有する高効率な照明装置を提供することを目的と
する。
Problems to be Solved by the Invention Japanese Patent Application Laid-Open No. 8-53238
1. having a relatively small numerical aperture as disclosed in
In order to realize a highly efficient lighting device, it is desirable that the light source be as small as possible. On the other hand, a rise in temperature near the light source causes crystallization of a quartz bulb for enclosing the electrodes and enclosing the gas, causing cloudiness. The white turbidity of the bulb causes scattering of the light flux, which is equivalent to an increase in the size of the light source, and lowers the efficiency. The causes of such a rise in the temperature of the tube are not only the concentration of energy near the electrodes, but also uneven temperature due to convection, unevenness of the arc,
Radiation heat of the reflector around the light source, the effect of the luminous flux returning to the vicinity of the tube, and the like can be cited. The crystallization of the tube proceeds by these comprehensive heat effects. Therefore, in order to maintain the point light source property and the long life of the light source, it is necessary to remove at least a factor that causes a rise in the temperature of the light source. An object of the present invention is to provide a means for preventing such a temperature rise near a light source, and to provide a highly efficient lighting device having a small numerical aperture.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に,本発明は下記の諸特徴を有する。本発明の照明装置
は,比較的小さな開口数と高効率な照明装置を実現する
ための基本的な構成である,光束の分布を制御する光学
面と同じく光束の方向を制御する光学面の組み合わせ
と,必要に応じ光源からの光束の一部を光源に戻すため
の補助結像装置,光源からの光束の取込角を制御する素
子を付加することを前提としている。このような光学素
子の多様な組み合わせの中で,電極と制御素子や補助結
像装置を構成する反射光学面との最小距離Dと,管球の
直径dに関し,次の条件 D>2d を満足する構成のみを利用することで,反射光学面から
の輻射熱が直接管球に及ぼす影響を逓減する。
In order to achieve the above object, the present invention has the following features. The illuminating device of the present invention is a basic configuration for realizing a relatively small numerical aperture and a highly efficient illuminating device, which is a combination of an optical surface for controlling the distribution of a light beam and an optical surface for controlling the direction of the light beam. In addition, it is assumed that an auxiliary imaging device for returning a part of the light beam from the light source to the light source as needed, and an element for controlling the take-in angle of the light beam from the light source are added. Among the various combinations of such optical elements, the following condition D> 2d is satisfied with respect to the minimum distance D between the electrode and the reflective optical surface constituting the control element and the auxiliary imaging device and the diameter d of the tube. By using only the configuration described above, the influence of the radiant heat from the reflective optical surface directly on the tube is reduced.

【0008】更に上記の照明装置を構成する反射光学面
に赤外線を透過する可視光線反射膜を施すことで,画像
形成に不必要な赤外線を早い段階で照明装置の外に導
き,照明装置内の温度上昇を逓減することができる。特
に補助結像装置を構成する反射光学面に施すことによ
り,再結像による赤外線が直接管球の温度上昇を招くこ
とを逓減する。
Further, by applying a visible light reflecting film which transmits infrared light to the reflecting optical surface constituting the above-mentioned lighting device, infrared light unnecessary for image formation is guided to the outside of the lighting device at an early stage, and the inside of the lighting device is The temperature rise can be reduced gradually. In particular, by applying it to the reflective optical surface constituting the auxiliary imaging device, it is possible to reduce the possibility that infrared rays due to re-imaging directly increase the temperature of the tube.

【0009】また,照明装置の基本構成である,制御用
の光学面が屈折光学面を含む構成に於いて,少なくとも
一つの屈折光学面に紫外線を反射する可視光線透過膜を
施すことで,有害な紫外線が照明光に射出する事を防止
すると同時に,紫外線が管球付近に直接戻る割合を減ら
し,管球の温度上昇への寄与を逓減する。以上の手段を
組み合わせ適用することで,管球の温度上昇を最小限に
抑え,結果として管球を構成する石英管の結晶化を抑制
し,光源の長寿命化と効率の確保を図る。
Further, in the basic configuration of the lighting device, in which the control optical surface includes a refractive optical surface, by providing at least one of the refractive optical surfaces with a visible light transmitting film that reflects ultraviolet light, it is harmful. At the same time, it prevents the ultraviolet rays from being emitted to the illumination light, and at the same time, reduces the rate of the ultraviolet rays returning directly to the vicinity of the bulb, thereby gradually reducing the contribution of the bulb to a rise in temperature. By applying the above means in combination, the temperature rise of the bulb is minimized, and as a result, the crystallization of the quartz tube constituting the bulb is suppressed, and the life of the light source is extended and the efficiency is secured.

【0010】[0010]

【発明の実施の形態】以下本発明の実施の形態につい
て,具体的な実施例を参照して詳細に説明する。図1は
本発明の第1の実施例の断面図を表す。1はその内部に
電極を含み,外側が石英管で覆われた光源である。この
電極付近に局在するアークより発する光束は,反射光学
面を構成する反射鏡4aで反射され,屈折光学面4bを
通過して図示されていない他の光学素子に向かう。反射
光学面3は,光源からの光束を反射し,光源に戻す作用
をする補助結像装置を構成する反射鏡で,光源の仮想中
心に中心を有する球面反射鏡である。これらの光学面
3,4a,4bは,共通の軸(光軸)を有する回転対称
面から構成されている。
Embodiments of the present invention will be described below in detail with reference to specific examples. FIG. 1 shows a sectional view of a first embodiment of the present invention. Reference numeral 1 denotes a light source including an electrode therein and an outside covered with a quartz tube. The light beam emitted from the arc localized near the electrode is reflected by the reflecting mirror 4a forming the reflecting optical surface, passes through the refracting optical surface 4b, and travels to another optical element (not shown). The reflecting optical surface 3 is a reflecting mirror that constitutes an auxiliary imaging device that reflects a light beam from the light source and returns the light beam to the light source, and is a spherical reflecting mirror having a center at a virtual center of the light source. These optical surfaces 3, 4a, 4b are constituted by rotationally symmetric surfaces having a common axis (optical axis).

【0011】反射鏡4aは,屈折光学面4b付近に置か
れた仮想平面上における光源1の仮想中心から射出する
主光線の分布を制御する(以下分布制御面または分布制
御素子と呼ぶ)反射鏡である。また,屈折光学面4b
は,分布制御面4aからの主光線を受け,その方向を制
御する(以下方向制御面または方向制御素子と呼ぶ)屈
折光学素子である。本実施例では,入射した主光線を光
軸に平行な主光線に変換する働きを有している。
The reflecting mirror 4a controls the distribution of a chief ray emitted from the virtual center of the light source 1 on a virtual plane placed near the refractive optical surface 4b (hereinafter referred to as a distribution control surface or a distribution control element). It is. Also, the refractive optical surface 4b
Is a refractive optical element that receives a chief ray from the distribution control surface 4a and controls its direction (hereinafter referred to as a direction control surface or a direction control element). The present embodiment has a function of converting an incident principal ray into a principal ray parallel to the optical axis.

【0012】この様な制御素子を例えば液晶等の画像形
成装置を照明する手段として用いるときの構成例を図2
に示す。図2は図1の基本構成に加えて,インテグレー
タレンズ5a,5b及びコンデンサーレンズ5cを利用
して,画像形成装置6bを照射する。画像形成装置6b
のすぐ前にはフィールドレンズ6aが設けられている。
この場合,インテグレータ5aより光源側に置かれた各
制御面は,インテグレータ5aに入射する主光線の角度
を揃えるとともに,インテグレータ5aの入射面に於け
る光束の開口数が,場所によらず出来る限り一定の分布
となるように制御する働きを有する。この開口数を揃え
る働きに最も重要な要素が,分布制御面4aである。ま
た,インテグレータ5aに入射する主光線の方向を揃え
る役割を果たすのが,方向制御面4bである。
FIG. 2 shows an example of a configuration in which such a control element is used as a means for illuminating an image forming apparatus such as a liquid crystal.
Shown in FIG. 2 irradiates the image forming apparatus 6b using integrator lenses 5a and 5b and a condenser lens 5c in addition to the basic configuration of FIG. Image forming apparatus 6b
A field lens 6a is provided immediately in front of.
In this case, each control surface placed on the light source side with respect to the integrator 5a makes the angle of the principal ray incident on the integrator 5a uniform, and the numerical aperture of the luminous flux on the incident surface of the integrator 5a is as far as possible regardless of the location. It has the function of controlling the distribution to be constant. The most important factor for the function of adjusting the numerical aperture is the distribution control surface 4a. The direction control surface 4b plays a role in aligning the direction of the principal ray incident on the integrator 5a.

【0013】この様な,分布及び方向制御面は上述のよ
うな反射面と屈折面の組み合わせの他,反射面だけ,あ
るいは屈折面だけで構成することも可能である。このバ
リエーションの代表的な例については,特開平8−53
2381において開示した。ここでは,全ての組み合わ
せについて議論することは避けるが,特に本発明の内容
が,反射面と屈折面の制御素子の組み合わせに限られる
訳ではない。
Such a distribution and direction control surface can be constituted by only a reflection surface or only a refraction surface in addition to the combination of the reflection surface and the refraction surface described above. A typical example of this variation is described in Japanese Patent Application Laid-Open No. 8-53.
2381. Here, it is avoided to discuss all combinations, but the content of the present invention is not particularly limited to the combination of the control elements of the reflective surface and the refractive surface.

【0014】さて,反射鏡4aの形状決定には,ある程
度の任意性が伴うことを説明する。例えば,図1の光源
1から発せられる最初の主光線が,光軸と45度の角度
を持って射出するものと仮定する。この主光線が反射鏡
4aで反射され,屈折光学面4bの近傍にある仮想平面
上で光軸と交わるものとする。主光線と反射鏡4aの交
点は,光源1から射出する主光線の延長線上ならば何処
で交わっても良い。その交点を指定し,屈折光学素子4
bの近傍に設けられた仮想平面上の到達位置(今の場合
光軸)を指定することで反射鏡4aでの反射角が決定さ
れる。そして,結果としてその点での反射鏡4aの傾き
が決まる。後は,仮想平面上での指定された主光線の分
布を満足する様に,反射鏡4aの形状が逐次決定でき
る。また,屈折光学素子4bの形状については,この様
にして逐次決定された反射鏡4aからの主光線が,光軸
に対して平行光となるようにその形状を付与すればよ
い。以上のように,反射鏡4aの形状を決定する出発点
を変更することにより,各制御面の形状・大きさが変更
できることがわかる。これはまた,光源1すなわち管球
と反射鏡4aの距離にかなりの任意性のあることを示し
ている。
Now, it will be described that the determination of the shape of the reflecting mirror 4a involves a certain degree of arbitrariness. For example, assume that the first chief ray emitted from the light source 1 in FIG. 1 exits at an angle of 45 degrees with the optical axis. It is assumed that this principal ray is reflected by the reflecting mirror 4a and intersects the optical axis on an imaginary plane near the refractive optical surface 4b. The intersection of the principal ray and the reflecting mirror 4a may intersect anywhere on the extension of the principal ray emitted from the light source 1. By designating the intersection, the refractive optical element 4
By specifying the arrival position (optical axis in this case) on a virtual plane provided in the vicinity of b, the reflection angle at the reflecting mirror 4a is determined. As a result, the inclination of the reflecting mirror 4a at that point is determined. Thereafter, the shape of the reflecting mirror 4a can be sequentially determined so as to satisfy the designated distribution of the principal ray on the virtual plane. The shape of the refractive optical element 4b may be given so that the principal ray from the reflecting mirror 4a sequentially determined in this way becomes parallel to the optical axis. As described above, it can be understood that the shape and size of each control surface can be changed by changing the starting point for determining the shape of the reflecting mirror 4a. This also indicates that there is considerable arbitrariness in the distance between the light source 1, that is, the tube and the reflecting mirror 4a.

【0015】さて,図3は,放物鏡を利用した照明装置
の例を示している。図2と大きく異なるのは,まず光源
1からの光束は反射鏡2で反射され,射出面側に曲面形
状4aが設けられた屈折型素子(入射面側は平面),さ
らには入射面側に曲面形状4bが設けられた屈折型素子
(射出面側は平面)を通過してインテグレータレンズ5
aに入射することである。この例の場合,補助結像装置
はなく,光源1からの大きな開き角の光束を放物鏡2の
みを利用して取り込んでいる。この様な構成は,放物鏡
や楕円鏡が光源と一体となっている汎用の光源や,管球
自身が反射鏡となっている光源装置をそのまま利用する
時などに使用される構成である。この放物鏡や楕円鏡
は,一種の取込角を決定する反射鏡と考えることが出来
る。但し,この様な構成は,光源1の光点の大きさと画
像形成装置6bの大きさ及び要求される開口数のバラン
スが悪いときは,光束の利用効率が低下するため使用で
きない場合もある。
FIG. 3 shows an example of a lighting device using a parabolic mirror. The major difference from FIG. 2 is that the light beam from the light source 1 is first reflected by the reflecting mirror 2 and a refraction element having a curved surface 4a on the exit surface side (the entrance surface side is a flat surface), and further on the entrance surface side. The integrator lens 5 passes through a refractive element provided with the curved surface shape 4b (the exit surface side is a flat surface).
a. In this example, there is no auxiliary imaging device, and a light beam with a large opening angle from the light source 1 is captured using only the parabolic mirror 2. Such a configuration is used when a general-purpose light source in which a parabolic mirror or an elliptical mirror is integrated with a light source, or a light source device in which a tube itself is a reflecting mirror is used as it is. These parabolic mirrors and elliptical mirrors can be considered as a kind of reflecting mirror that determines the angle of capture. However, such a configuration may not be used when the size of the light spot of the light source 1 and the size of the image forming apparatus 6b and the required numerical aperture are not well-balanced, because the utilization efficiency of the light beam is reduced.

【0016】一般的に,放物鏡2を利用して,大きな取
込角度の光束を取り込む場合,光源1と放物鏡2との距
離が近くなる。理由は,放物鏡2の大きさに制限を設け
るためである。すなわち,小型化のためには照明部をコ
ンパクトに納めることが要求されるが,その要因の一つ
か放物鏡2の大きさである。放物鏡の大きさは,yを光
軸からの高さ,fを焦点距離(すなわち光源から放物の
頂点までの距離),θを頂点側の光軸から測った角度と
すると,一般的に次式 で与えられる。例えば,θを135度,yを50mmと
し,焦点距離fを算出すると, となる。そのため,光源1と放物鏡2の頂点との距離が
10mmそこそことなり,反射鏡と管球とが殆ど接しか
ねない状況が生まれる。以上,図2及び図3の具体的な
例に基づき,光源と照明系の配置上の特徴について説明
を行った。図2の構成では,反射鏡4aと光源1の距離
に関し比較的大きな自由度が取れるのに対し,図3の放
物鏡2を使用する場合では自由度が殆どないことが示さ
れた。
In general, when taking in a light beam with a large take-in angle using the parabolic mirror 2, the distance between the light source 1 and the parabolic mirror 2 becomes short. The reason is to limit the size of the parabolic mirror 2. That is, it is required that the illuminating unit be compactly packed for miniaturization. One of the factors is the size of the parabolic mirror 2. The size of a parabolic mirror is generally expressed as follows: y is the height from the optical axis, f is the focal length (that is, the distance from the light source to the vertex of the parabola), and θ is the angle measured from the optical axis on the vertex side. Next formula Given by For example, when θ is 135 degrees and y is 50 mm, and the focal length f is calculated, Becomes Therefore, the distance between the light source 1 and the vertex of the parabolic mirror 2 is about 10 mm, and a situation is created in which the reflecting mirror and the tube may almost come into contact with each other. The features of the arrangement of the light source and the illumination system have been described based on the specific examples of FIGS. In the configuration of FIG. 2, it is shown that a relatively large degree of freedom can be obtained with respect to the distance between the reflecting mirror 4a and the light source 1, whereas the use of the parabolic mirror 2 of FIG. 3 has little degree of freedom.

【0017】さて,照明系が要求されるいくつかの仕様
の中,明るさや均一性についで大切なのが光源の寿命で
ある。特にプロジェクタにおいては,一般家庭で使用さ
れる際には最も重要な要素でもある。そして,本発明の
ように比較的小さな開口数を必要とする照明系の場合に
はなおさらである。放電等の場合,この鍵を握る要素が
電極を包み込む石英の管球の白濁である。管球の白濁
は,石英の一部が結晶化する事により起こると言われて
いるが,その結晶化の大きな要因となるのが管球の温度
である。管球の温度がある臨界温度を越えると,管球の
結晶化が急速に進行する。管球の温度上昇の要因として
次のようなものが考えられる。例えば,光源のアーク付
近に集中するエネルギー,アークから発せられる光束自
身の影響,管球内の対流による温度の不均一,管球付近
に戻る光束の影響,反射鏡等による輻射熱等が上げられ
る。そして,これらの相乗効果により管球の温度上昇や
温度の不均一がおこり,結晶化が生じると考えられる。
一般的に,管球の白濁化は,点灯姿勢の重力に対して上
方に生じやすい傾向があり,わずかな温度差が白濁化に
大きな影響を与えていることが理解できる。本発明は,
これらの要因の中で,特に管球付近への戻り光の影響
と,反射面による輻射熱の影響を緩和し,光源の長寿命
化を図るものである。
[0017] Among several specifications required for the illumination system, the life of the light source is important for brightness and uniformity. Particularly, in a projector, it is the most important factor when used in a general home. This is even more so in the case of an illumination system requiring a relatively small numerical aperture as in the present invention. In the case of discharge or the like, the key element is the cloudiness of the quartz bulb surrounding the electrodes. It is said that the turbidity of the tube is caused by crystallization of part of the quartz, but the temperature of the tube is a major factor in the crystallization. When the temperature of the bulb exceeds a certain critical temperature, the crystallization of the bulb proceeds rapidly. The following can be considered as factors of the temperature rise of the bulb. For example, the energy concentrated near the arc of the light source, the influence of the luminous flux emitted from the arc itself, the unevenness of the temperature due to convection in the tube, the effect of the luminous flux returning to the vicinity of the tube, and the radiant heat generated by a reflector or the like are raised. It is considered that these synergistic effects cause the temperature of the bulb to rise and the temperature to become non-uniform, thereby causing crystallization.
In general, clouding of the tube tends to occur upward with respect to the gravity of the lighting posture, and it can be understood that a slight difference in temperature has a great effect on clouding. The present invention
Among these factors, the effect of light returning to the vicinity of the tube and the effect of radiant heat due to the reflection surface are alleviated, and the life of the light source is extended.

【0018】光源から発せられる光束は,通常利用する
可視光線以外に,紫外線及び赤外線を含んでいる。これ
らは,画像素子の温度上昇による動作不良や素子自体へ
の悪影響を及ぼす。特に紫外線の場合,装置外に射出す
ることは利用者にとっても危険である。そのため,照明
部の早い段階でそれらを取り除く必要がある。通常,図
3の放物鏡2等は,赤外線を透過し,可視光線を反射す
るいわゆるコールドミラーが施されている。これによ
り,赤外線を透過させ,別途冷却手段を用いることで,
装置外に熱として放出している。一般的に,この様なコ
ールドミラーには,酸化チタンと酸化珪素の交互膜が利
用される。酸化チタンは,紫外線を吸収する作用ももつ
ため,ある程度紫外線の反射を防ぐ事が可能である。し
かしながら,紫外側と赤外側できれいな立ち上がりをも
つ透過膜とすることは非常に困難で,コールドミラーの
場合,紫外線側は反射が残る。ここで,例えば放物鏡2
の出口に平面硝子を設け,紫外線の反射膜を施した場
合,確かにそれから先に紫外線が射出されるのを防ぐこ
とは可能であるが,その戻り光が再び放物鏡2で反射さ
れ,管球付近に集中する事となる。
The luminous flux emitted from the light source includes ultraviolet rays and infrared rays in addition to commonly used visible light rays. These adversely affect the operation failure and the element itself due to the temperature rise of the image element. In particular, in the case of ultraviolet rays, it is dangerous for a user to emit the light outside the apparatus. Therefore, it is necessary to remove them early in the lighting section. Normally, the parabolic mirror 2 shown in FIG. 3 is provided with a so-called cold mirror that transmits infrared light and reflects visible light. This allows infrared rays to pass through and by using a separate cooling means,
Released as heat outside the device. Generally, an alternate film of titanium oxide and silicon oxide is used for such a cold mirror. Titanium oxide also has the function of absorbing ultraviolet light, and thus can prevent the reflection of ultraviolet light to some extent. However, it is very difficult to form a transparent film having a clear rise on the ultraviolet side and the infrared side, and in the case of a cold mirror, reflection is left on the ultraviolet side. Here, for example, parabolic mirror 2
If a flat glass is provided at the exit of the tube and an ultraviolet reflecting film is applied, it is possible to prevent the ultraviolet light from being emitted first, but the return light is reflected by the parabolic mirror 2 again, and It will be concentrated near the ball.

【0019】図3の場合では,分布制御面4aや方向制
御面4bの表面にこの様な紫外線反射膜を施すことによ
り,紫外線の戻り光が直接管球付近に集中する事を防止
できる。図3の分布制御面4aは,放物鏡2にその制御
面4aを向けることも可能であるが,これにより反射す
る不要光を発散光とする事が出来,効果を確実なものと
することが出来る。図2の場合には,方向制御面4aの
表面の他に,補助結像装置を構成する球面鏡3の方向制
御素子側の反射鏡4aからの光束が射出する部分に平面
硝子を設け,その上に紫外線反射膜を施しても良い。図
2及び図3の方向制御素子4aとインテグレータレンズ
5a及び,インテグレータレンズ5bとコンデンサーレ
ンズ5cはそれぞれの対向する面を平面とし,張り合わ
せる事が可能であるが,その場合,紫外線により接着剤
が劣化するのを防ぐ意味でも,その前段階で有害光を取
り除くのが効果的である。
In the case of FIG. 3, by providing such an ultraviolet reflecting film on the surfaces of the distribution control surface 4a and the direction control surface 4b, it is possible to prevent the return light of the ultraviolet light from directly concentrating near the bulb. Although the distribution control surface 4a in FIG. 3 can be directed to the parabolic mirror 2, the unnecessary light reflected from the distribution control surface 4a can be made divergent light, and the effect can be secured. I can do it. In the case of FIG. 2, in addition to the surface of the direction control surface 4a, a flat glass is provided at a portion of the spherical mirror 3 constituting the auxiliary imaging device where the light beam from the reflecting mirror 4a on the side of the direction control element exits. May be provided with an ultraviolet reflecting film. The direction control element 4a and the integrator lens 5a, and the integrator lens 5b and the condenser lens 5c in FIGS. 2 and 3 can be bonded to each other with their opposing surfaces being planes. In order to prevent deterioration, it is effective to remove the harmful light before that stage.

【0020】赤外光についても,例えば図2の分布制御
反射鏡4aや,補助結像装置の球面鏡3に赤外線透過膜
を施すことにより照明部内から効果的に熱線を取り出す
ことが可能である。特に,球面鏡3の場合には,光束が
直接管球に戻るため特に重要な要素となる。
For infrared light, for example, by applying an infrared transmitting film to the distribution control reflecting mirror 4a of FIG. 2 or the spherical mirror 3 of the auxiliary imaging device, it is possible to effectively extract heat rays from the illumination section. In particular, in the case of the spherical mirror 3, the light flux returns directly to the bulb, which is a particularly important factor.

【0021】一方,赤外線透過膜は,比較的硝子に吸収
されやすい紫外線や赤外線が硝子を通過する事を許すた
め,吸収による硝子自体の温度上昇を引き起こす。ま
た,図2の反射鏡4aや図3の反射鏡2,図4に示され
る補助結像装置としての反射鏡3等は,その保持のため
光源1と直接接触するため,熱伝導によってもその温度
が上昇する。この様ないくつかの要因による光学素子の
温度上昇は,光源1の管球にも影響を与える。特に管球
と光学素子の距離が近い場合には無視できない要因とな
る。図2の構成の場合,前述のように管球と反射鏡の距
離を確保する上での自由度が取れるため,一定の間隔を
設けることが可能である。間隔は出来る限り広くとる方
が望ましいが,全体の大きさの制約もあるため,管球の
直径をd,電極から反射鏡までの最小距離をDとすると
き,最低限次の式 D>2d の関係を満たすことにより,その影響を少なくすること
が可能となる。図2の実施例の場合,d=10mm,D
=26mmで,上記の条件を十分満足している。
On the other hand, the infrared transmitting film allows ultraviolet rays and infrared rays which are relatively easily absorbed by the glass to pass through the glass, so that the temperature of the glass itself increases due to the absorption. The reflecting mirror 4a in FIG. 2, the reflecting mirror 2 in FIG. 3, and the reflecting mirror 3 as an auxiliary imaging device shown in FIG. The temperature rises. Such a rise in the temperature of the optical element due to several factors also affects the bulb of the light source 1. In particular, when the distance between the bulb and the optical element is short, this is a factor that cannot be ignored. In the case of the configuration shown in FIG. 2, since a degree of freedom can be secured in securing the distance between the tube and the reflecting mirror as described above, it is possible to provide a constant interval. It is desirable to make the interval as wide as possible. However, there is a restriction on the overall size. Therefore, when the diameter of the tube is d and the minimum distance from the electrode to the reflecting mirror is D, at least the following equation D> 2d By satisfying the relationship, the effect can be reduced. In the case of the embodiment of FIG. 2, d = 10 mm, D
= 26 mm sufficiently satisfies the above conditions.

【0022】一方,図3の場合,d=10mm,D=1
0mmであり, D>2d となっており,要求される条件を満たしていない。この
ため,図2の構成に比べ,図3の放物鏡を用いた構成で
は早い段階で白濁化が生じる事が確認されている。放物
鏡2で大きな取込角度をカバーすることは明らかに不利
であり,同じ2次曲面でも楕円鏡を採用する方が有利で
ある。なお,同じ放物鏡でも,取込角を狭めθを90度
迄とすれば,高さを40mm(放物鏡の直径が80m
m)まで抑えても,焦点距離fを20mmと長く設定す
ることが出来る。この場合,利用効率を高めるために
は,補助結像装置の併用が必要となる。補助結像装置の
使用は,光束を光源に戻すため,管球付近の温度上昇を
引き起こすが,その効果としては,管球と反射鏡との距
離を広く取る方が抑制効果が大きい。
On the other hand, in the case of FIG. 3, d = 10 mm, D = 1
0 mm, and D> 2d, which does not satisfy the required conditions. For this reason, it has been confirmed that clouding occurs earlier in the configuration using the parabolic mirror in FIG. 3 than in the configuration in FIG. It is clearly disadvantageous to cover a large acquisition angle with the parabolic mirror 2, and it is advantageous to employ an elliptical mirror even for the same quadric surface. Even if the parabolic mirror is the same, if the capture angle is narrowed and θ is up to 90 degrees, the height is 40 mm (the diameter of the parabolic mirror is 80 m).
m), the focal length f can be set as long as 20 mm. In this case, it is necessary to use an auxiliary imaging device together in order to increase the utilization efficiency. The use of the auxiliary imaging device causes a rise in temperature near the bulb because the light flux is returned to the light source, but the effect is more effective if the distance between the bulb and the reflector is increased.

【0023】最後に図4は,特開平8−357424に
おいて,補助結像装置を使用する場合の小型化を図るた
めに行った提案の構成図である。図4の3は球面鏡であ
り,補助結像装置を構成する。光源1はこの球面鏡3に
固着され一体の構造となっている。この場合,球面鏡3
の大きさが自由に設定可能なことは図より明らかで,管
球1と球面鏡3との距離に関する上記の条件を満足する
照明装置を構成することができる。
Finally, FIG. 4 is a configuration diagram of a proposal made in Japanese Patent Application Laid-Open No. 8-357424 in order to reduce the size when an auxiliary imaging device is used. Reference numeral 3 in FIG. 4 denotes a spherical mirror, which constitutes an auxiliary imaging device. The light source 1 is fixed to the spherical mirror 3 and has an integral structure. In this case, the spherical mirror 3
It is clear from the figure that the size of the lens can be freely set, and it is possible to configure an illuminating device that satisfies the above-mentioned condition regarding the distance between the tube 1 and the spherical mirror 3.

【0024】[0024]

【発明の効果】光源よりの光束を最初に受ける光学素子
としては,大きな立体角をカバーしかつコンパクトにま
とめることが可能な反射鏡が最適である。光源に最も近
く配置される反射鏡を各機能ごとに分類すると,放物鏡
や楕円鏡の様な取込角を制御する反射鏡,主光線の分布
を制御する反射鏡,補助結像装置としての反射鏡があげ
られる。これらの機能を有する反射鏡に関し,管球の直
径dと電極から反射鏡までの最小距離Dが,下記の条件 D>2d を満足することで,反射鏡の輻射により管球の温度が上
昇し,管球の白濁化が進行するのを抑制することが出来
る。結果として,光源としてのの寿命を長くすることが
可能となる。更に,上記の反射鏡に赤外線透過膜を施す
ことにより,照明装置内の熱を効果的に外に逃がし,管
球付近に熱線が戻る事を防ぐことが可能となる。また,
分布制御素子あるいは方向制御素子が屈折光学素子で構
成される照明装置の場合,その制御面に紫外線反射膜を
構成することで,紫外線が管球付近に戻ることを防ぐこ
とができる。以上を複合して利用することで,管球付近
の温度上昇の要因を減らし,光源の寿命を長くすること
が可能となる。
As the optical element which receives the light beam from the light source first, a reflecting mirror which covers a large solid angle and can be compactly assembled is optimal. When the reflectors closest to the light source are classified by function, they can be used as parabolic mirrors or elliptical mirrors to control the angle of incidence, reflectors to control the distribution of chief rays, and as auxiliary imaging devices. There is a reflecting mirror. With respect to the reflector having these functions, when the diameter d of the bulb and the minimum distance D from the electrode to the reflector satisfy the following condition D> 2d, the temperature of the bulb increases due to the radiation of the reflector. Thus, the progress of clouding of the tube can be suppressed. As a result, the life of the light source can be extended. Further, by applying an infrared transmitting film to the above-mentioned reflecting mirror, it is possible to effectively release the heat inside the illuminating device to the outside and prevent the heat rays from returning to the vicinity of the tube. Also,
In the case of an illuminating device in which the distribution control element or the direction control element is constituted by a refractive optical element, it is possible to prevent ultraviolet rays from returning to the vicinity of the bulb by forming an ultraviolet reflection film on the control surface. By combining and using the above, it is possible to reduce the cause of temperature rise near the bulb and prolong the life of the light source.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例を説明するための模式図
である。
FIG. 1 is a schematic diagram for explaining an embodiment of the present invention.

【図2】 本発明の実施例を照明装置としての構成
する実施例を示す構成図である。
FIG. 2 is a configuration diagram showing an embodiment in which the embodiment of the present invention is configured as a lighting device.

【図3】 光源からの光束の取込に放物鏡を使用し
た照明装置の構成図である。
FIG. 3 is a configuration diagram of a lighting device using a parabolic mirror for taking in a light beam from a light source.

【図4】 本発明の第2の実施例を説明するための
模式図である。
FIG. 4 is a schematic diagram for explaining a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光源 2 取込角制御光学素子 3 補助結像装置 4a 分布制御面 4b 方向制御面 5a,5b,5c インテグレータを構成する光学素子 6a フィールドレンズ 6b 画像形成装置 Reference Signs List 1 light source 2 capture angle control optical element 3 auxiliary imaging device 4a distribution control surface 4b direction control surface 5a, 5b, 5c optical element constituting integrator 6a field lens 6b image forming device

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】電極と電極を包む管球とから構成される光
源と,光源の仮想中心から発する主光線を受けて別途設
けられる仮想面上での主光線の空間的分布を制御する反
射光学面とこの反射光学面からの主光線を受けて主光線
の方向を制御する光学面の少なくとも2つの光学面とを
含む照明装置に於いて,電極を包む管球の直径をd,電
極と主光線の空間的分布を制御する反射光学面との最小
距離をDとするとき D>2d を満足することを特徴とする照明装置。
1. A light source comprising an electrode and a bulb surrounding the electrode, and a reflection optics for controlling a spatial distribution of the chief ray on a virtual plane separately provided by receiving a chief ray emitted from a virtual center of the light source. In an illuminating device including a surface and at least two optical surfaces for controlling the direction of the principal ray by receiving the principal ray from the reflecting optical surface, the diameter of a bulb surrounding the electrode is d, and the electrode and the principal An illumination device characterized by satisfying D> 2d, where D is a minimum distance from a reflecting optical surface for controlling a spatial distribution of light rays.
【請求項2】電極と電極を包む管球とから構成される光
源と,光源の仮想中心から発する主光線の照明装置への
取り込み立体角を制御する少なくとも1つの反射光学面
より構成される取り込み角制御部分群と,取り込み角制
御部分群からの主光線を受けて別途設けられる仮想面上
での主光線の空間的分布を制御する光学面とこの光学面
からの主光線を受けて主光線の方向を制御する光学面の
少なくとも2つの光学面とを含む照明装置に於いて,電
極を包む管球の直径をd,電極と主光線の取り込み立体
角を制御する反射光学面との最小距離をDとするとき D>2d を満足することを特徴とする照明装置。
2. A light source comprising an electrode and a bulb surrounding the electrode, and a light source comprising at least one reflecting optical surface for controlling a solid angle of a chief ray emitted from a virtual center of the light source into a lighting device. An angle control sub-group, an optical surface for controlling the spatial distribution of the chief ray on a virtual surface separately provided in response to the chief ray from the capture angle control sub-group, and a chief ray in response to the chief ray from this optical surface In an illuminating device including at least two optical surfaces for controlling the direction of light, the diameter of the bulb surrounding the electrode is d, and the minimum distance between the electrode and the reflecting optical surface for controlling the solid angle for taking in the principal ray. A lighting device characterized by satisfying D> 2d.
【請求項3】前記反射光学面で照明装置に取り込まれな
い光束を受け反射し,電極の近傍に再度集光させる少な
くとも1つの反射光学面より構成される補助結像装置を
有するとともに,電極を包む管球の直径をd,電極と補
助結像装置を構成する反射光学面との最小距離をDとす
るとき D>2d を特徴とする請求項1または2に記載の照明装置。
3. An auxiliary imaging device comprising at least one reflection optical surface for receiving and reflecting a light beam not taken into the illumination device on the reflection optical surface and condensing the light again near the electrode. 3. The lighting device according to claim 1, wherein D> 2d, where d is the diameter of the envelope to be wrapped, and D is the minimum distance between the electrode and the reflecting optical surface forming the auxiliary imaging device.
【請求項4】前記反射光学面の少なくとも1つの面の反
射膜が,赤外線透過特性を有する可視光線反射膜より構
成されていることを特徴とする請求項1,2または3に
記載の照明装置。
4. The illuminating device according to claim 1, wherein the reflection film on at least one of the reflection optical surfaces is formed of a visible light reflection film having infrared transmission characteristics. .
【請求項5】前記主光線の空間的分布を制御する光学面
または,主光線の方向を制御する光学面の少なくともい
ずれか一方が,少なくとも1つの屈折光学面より構成さ
れる照明装置に於いて,この少なくとも1つの屈折光学
面が紫外線反射特性を有する可視光線透過膜より構成さ
れていることを特徴とする請求項1,2,または3に記
載の照明装置。
5. An illumination device according to claim 1, wherein at least one of the optical surface for controlling the spatial distribution of the chief ray and the optical surface for controlling the direction of the chief ray comprises at least one refractive optical surface. 4. The illuminating device according to claim 1, wherein said at least one refractive optical surface is formed of a visible light transmitting film having an ultraviolet reflection characteristic.
JP9321864A 1997-10-20 1997-10-20 Lighting system Pending JPH11120812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9321864A JPH11120812A (en) 1997-10-20 1997-10-20 Lighting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9321864A JPH11120812A (en) 1997-10-20 1997-10-20 Lighting system

Publications (1)

Publication Number Publication Date
JPH11120812A true JPH11120812A (en) 1999-04-30

Family

ID=18137272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9321864A Pending JPH11120812A (en) 1997-10-20 1997-10-20 Lighting system

Country Status (1)

Country Link
JP (1) JPH11120812A (en)

Similar Documents

Publication Publication Date Title
US5967653A (en) Light projector with parabolic transition format coupler
JP4808893B2 (en) Image projection apparatus and light collection system
JP2008515216A (en) Brightness enhancement of LEDs using selective ray angular reuse
JPH08234109A (en) Uniform irradiation device of light valve
JPH10513579A (en) Light collection system for projectors
TWI285247B (en) Light source device and projector
US10309601B2 (en) Light source device, lighting apparatus, and vehicle lamp device
JP3448223B2 (en) Light source device
US5544029A (en) Lighting fixture for theater, television and architectural applications
US8414132B2 (en) Multiple-lights-combining illumination device and projection-type display apparatus using the same
US6437909B1 (en) UV-absorbing filter and optical apparatus incorporating the same
JP2002072310A (en) Illuminator and image pickup device
JPH11120812A (en) Lighting system
JP2007335196A (en) Light source device and projector
JP4801269B2 (en) Illumination apparatus, illumination system, and illumination method using spherical mirror
Parkyn et al. Converging TIR lens for nonimaging concentration of light from compact incoherent sources
JP2009003108A (en) Light source device and display device equipped therewith
JP3140164B2 (en) Focusing reflector
JP2004177801A (en) Electronic device projector
RU202946U1 (en) White light source
JP5573141B2 (en) Strobe device
CN220913491U (en) Monolithic liquid crystal projector optical machine and liquid crystal projector
JP5569293B2 (en) Light source device
KR0118688Y1 (en) Projector lighting system
KR100188957B1 (en) Lighting device for lcd projector

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040721

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071217