JPH1111926A - Silicon powder with copper-silicon alloy highly dispersed on surface and its production - Google Patents

Silicon powder with copper-silicon alloy highly dispersed on surface and its production

Info

Publication number
JPH1111926A
JPH1111926A JP9164273A JP16427397A JPH1111926A JP H1111926 A JPH1111926 A JP H1111926A JP 9164273 A JP9164273 A JP 9164273A JP 16427397 A JP16427397 A JP 16427397A JP H1111926 A JPH1111926 A JP H1111926A
Authority
JP
Japan
Prior art keywords
copper
silicon powder
silicon
powder
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9164273A
Other languages
Japanese (ja)
Inventor
Takeshi Yasutake
剛 安武
Tadashi Yoshino
正 芳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP9164273A priority Critical patent/JPH1111926A/en
Publication of JPH1111926A publication Critical patent/JPH1111926A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To obtain silicon powder capable of producing a high purity alkoxysilane, in particular trialkoxysilane applicable even to a semiconductor field by reaction with an alkyl alcohol without requiring a troublesome operation by heat-treating a powdery mixture of silicon powder with metal copper or a halogen-free copper compd. while mixing by mechanical stirring. SOLUTION: A powdery mixture of silicon powder with metal copper or a halogen-free copper compd. is heat-treated while mixing by mechanical stirring or it is heat-treated, mixed by mechanical stirring and heat-treated again. The metal copper or copper compd. preferably has <=20 μm particle size. The amt. of the metal copper or copper oxide is preferably 0.1-40 pts.wt. (expressed in terms of copper) based on 100 pts.wt. of the silicon powder. The ratio between the average particle diameter of the silicon powder and that of the metal copper or copper compd. is preferably 0.5:1 to 1,000:1. The heat treatment is carried out in an atmosphere of a nonoxidizing gas at >=800 deg.C for >=5 min residence time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、珪素粉末表面に銅
−珪素合金が高度に分散した珪素粉末、及びその製造方
法に関する。更に詳細には、アルキルアルコールと所定
の条件で反応せしめることにより、半導体分野を中心に
利用価値及び純度の高いアルコキシシラン、特にトリア
ルコキシシランを工業的に安価にかつ効率よく製造する
に適した、珪素粉末表面に銅−珪素合金が高度に分散し
た珪素粉末、及びその製造方法に関する。
[0001] The present invention relates to a silicon powder in which a copper-silicon alloy is highly dispersed on the surface of the silicon powder, and a method for producing the same. More specifically, by reacting with an alkyl alcohol under predetermined conditions, it is suitable for industrially inexpensively and efficiently producing alkoxysilanes of high utility value and high purity, especially trialkoxysilane, mainly in the field of semiconductors. The present invention relates to a silicon powder in which a copper-silicon alloy is highly dispersed on the surface of the silicon powder, and a method for producing the same.

【0002】[0002]

【従来の技術】アルコキシシラン、特にトリアルコキシ
シランは反応性に富むケイ素−水素結合を分子内に有し
ており、複合材、塗料などの分野で用いられるシランカ
ップリング剤や、半導体用のシリコン製造の原料となる
シランガスの製造原料として工業的に重要な化合物であ
る。特に近年、シランカップリング剤やシランガスをは
じめ種々の電子材料の原料として、塩素をはじめとする
腐食性の高いハロゲン含有量が低いアルコキシシランが
望まれ、それらを安価で効率よく製造する方法が求めら
れている。
2. Description of the Related Art Alkoxysilanes, especially trialkoxysilanes, have highly reactive silicon-hydrogen bonds in the molecule, and are used for silane coupling agents used in the fields of composite materials, paints, etc. It is an industrially important compound as a raw material for producing silane gas as a raw material for production. In particular, in recent years, as a raw material for various electronic materials such as a silane coupling agent and a silane gas, alkoxysilanes having a high corrosiveness and a low halogen content such as chlorine have been desired, and a method for producing them efficiently at a low cost has been demanded. Have been.

【0003】従来のアルコキシシランの製造方法として
は、クロロシラン類とアルキルアルコールを反応させる
方法が知られている。しかしながらこの方法では、目的
とするアルコキシシランの他に塩酸や塩素を含有する化
合物が多量に副生するため、純度の高いアルコキシシラ
ンを得るためには、精製操作が不可欠である。その操作
は容易でなく、塩酸や塩素を含有する化合物を低レベル
まで除去するためには、中和剤を用いて中和した後に蒸
留を行うなどの煩雑な操作を要する。更には、反応装置
などの機器を腐食させる等の欠点があり、高級な材質を
用いなくてはならないという問題点がある。
As a conventional method for producing an alkoxysilane, a method of reacting a chlorosilane with an alkyl alcohol is known. However, in this method, a compound containing hydrochloric acid or chlorine is produced in a large amount as a by-product in addition to the desired alkoxysilane, so that a purification operation is indispensable to obtain a highly pure alkoxysilane. The operation is not easy, and a complicated operation such as distillation after neutralization with a neutralizing agent is required to remove compounds containing hydrochloric acid and chlorine to a low level. Furthermore, there is a drawback such as corrosion of equipment such as a reaction apparatus, and there is a problem that a high-grade material must be used.

【0004】また、珪素粉末とアルキルアルコールとを
触媒の存在下に反応させてアルコキシシランを製造する
方法も知られている。例えば、塩化銅を珪素粉末に担持
した触媒とメタノールを気相で反応せしめ、トリメトキ
シシランを製造する方法(特開平3−44393号公
報)、珪素粉末および銅触媒とハロゲン化物とを接触さ
せて前処理した後、アルキルアルコールと反応せしめト
リアルコキシシランを製造する方法(特開昭64−56
685号公報)等である。
There is also known a method for producing alkoxysilane by reacting a silicon powder with an alkyl alcohol in the presence of a catalyst. For example, a method in which a catalyst in which copper chloride is supported on silicon powder is reacted with methanol in the gas phase to produce trimethoxysilane (Japanese Patent Application Laid-Open No. 3-44393), contacting silicon powder and a copper catalyst with a halide. A method for producing trialkoxysilane by pretreatment and then reacting with an alkyl alcohol (JP-A-64-56)
685).

【0005】これらは何れも反応前に珪素粉末と銅化合
物とを混合し、場合によっては200〜500℃で熱処
理を行った後、アルキルアルコールと反応させる方法で
あり、珪素粉末の転化率もよく、比較的高い選択率でト
リアルコキシシランを得ることができる。しかしなが
ら、銅触媒もしくは副原料にハロゲンを含む化合物を使
用するため、必然的に生成するアルコキシシラン中に少
なくとも200ppm以上、実質的に500ppm以上
の塩素化合物が混入するという問題点があり、特に半導
体材料の原料として用いる場合には、これを除去するた
めクロロシラン類を原料とする方法と同様、煩雑な精製
操作が必要となる。更には、反応装置などの機器を腐食
させる原因ともなり、高級材質を必要とするという問題
点がある。
[0005] In any of these methods, a silicon powder and a copper compound are mixed before the reaction, and if necessary, a heat treatment is performed at 200 to 500 ° C., and then the reaction is performed with the alkyl alcohol. The trialkoxysilane can be obtained with a relatively high selectivity. However, since a compound containing halogen is used as a copper catalyst or an auxiliary material, there is a problem that at least 200 ppm or more, substantially 500 ppm or more of a chlorine compound is mixed in necessarily produced alkoxysilane. When it is used as a raw material, a complicated purification operation is required to remove the same as in the method using chlorosilanes as a raw material. Further, there is a problem that corrosion of equipment such as a reaction apparatus is caused, and a high-grade material is required.

【0006】これに対し、上記のような問題点を避ける
ため、触媒としてハロゲンを含まない銅化合物を使用す
る方法もいくつか検討がなされている。例えば、90重
量%の金属ケイ素と10重量%の金属銅とからなる混合
物を水素気流中1050℃にて2時間加熱して得られた
前駆体とメタノールを気相で反応せしめ、テトラメトキ
シシランを製造する方法(ジャーナル オブ アメリカ
ン ケミカル ソサイアティー、第70巻、第2170
〜2171頁、1948年)、銅アルコキシド触媒存在
下に、金属ケイ素とアルキルアルコールとを反応せし
め、トリアルコキシシランを製造する方法(特開平5−
170773号公報)等が挙げられる。
[0006] On the other hand, in order to avoid the above-mentioned problems, several methods using a halogen-free copper compound as a catalyst have been studied. For example, a mixture of 90% by weight of metallic silicon and 10% by weight of metallic copper is heated in a hydrogen stream at 1050 ° C. for 2 hours to cause a reaction between the obtained precursor and methanol in a gaseous phase. Manufacturing method (Journal of American Chemical Society, Vol. 70, No. 2170
Pp. 2171, 1948), a method of reacting metallic silicon with an alkyl alcohol in the presence of a copper alkoxide catalyst to produce trialkoxysilane
170773).

【0007】しかしながら、前者は文字通りテトラメト
キシシランの製造方法であって、工業的に重要なトリメ
トキシシランは殆ど得ることはできない。また、珪素粉
末の転化率が10%以下と低いという問題点がある。ま
た後者は、反応速度が低いためアルキルアルコールの転
化率が低く、未反応アルコールを分離する操作が煩雑に
なり、また装置の大型化という問題がある。更には触媒
である銅アルコキシド自体が非常に高価であるため、工
業的に実用化は困難である。
However, the former is literally a method for producing tetramethoxysilane, and almost no industrially important trimethoxysilane can be obtained. There is also a problem that the conversion of silicon powder is as low as 10% or less. The latter has a problem that the conversion rate of the alkyl alcohol is low because the reaction rate is low, the operation of separating the unreacted alcohol becomes complicated, and the apparatus becomes large. Further, since the copper alkoxide itself, which is a catalyst, is very expensive, it is difficult to commercialize it industrially.

【0008】[0008]

【発明が解決しようとする課題】本発明の第一の目的
は、触媒もしくは副原料にハロゲン化合物を使用せず、
アルキルアルコールと所定の条件で反応せしめることに
より、半導体分野にも適用できる純度の高いアルコキシ
シラン、特にトリアルコキシシランを煩雑な精製操作な
しに製造することができる原料及びその製造方法を提供
することにある。
SUMMARY OF THE INVENTION A first object of the present invention is to use no halogen compound as a catalyst or an auxiliary material,
By reacting with an alkyl alcohol under predetermined conditions, it is possible to provide a raw material capable of producing highly pure alkoxysilane applicable to the semiconductor field, particularly trialkoxysilane without complicated purification operation, and a method for producing the same. is there.

【0009】本発明の第二の目的は、アルキルアルコー
ルとの反応速度、珪素粉末自体の転化率が共に高く、工
業的に安価にかつ効率よくアルコキシシランを製造する
に適した原料及びその製造方法を提供することにある。
A second object of the present invention is to provide a raw material and a method for producing an alkoxysilane which are both industrially inexpensive and efficient in producing an alkoxysilane with a high reaction rate with an alkyl alcohol and a high conversion rate of the silicon powder itself. Is to provide.

【0010】[0010]

【課題を解決するための手段】珪素粉末とアルキルアル
コールとの反応は、珪素粉末と銅化合物との混合及び熱
処理によって形成される銅−珪素合金が活性点となり、
進行するとされている。本発明らは、この点に着目して
検討を進めたが、十分に銅−珪素合金を形成する条件で
前処理を行ったにも拘わらず、触媒として金属銅もしく
はハロゲンを含まない銅化合物を使用した場合は、塩化
銅を使用した場合もしくはハロゲン化合物を副原料とし
て使用した場合と比較して、反応速度、トリアルコキシ
シランの選択率共に低いことが判った。
In the reaction between the silicon powder and the alkyl alcohol, a copper-silicon alloy formed by mixing the silicon powder with the copper compound and heat-treating becomes an active site.
It is supposed to progress. The present inventors have focused on this point and proceeded with the study.However, despite performing pretreatment under conditions that sufficiently form a copper-silicon alloy, a metal compound or a copper compound containing no halogen is used as a catalyst. It was found that when used, both the reaction rate and the selectivity of trialkoxysilane were lower than when copper chloride was used or when a halogen compound was used as an auxiliary material.

【0011】しかしながら更に検討を進めたところ、触
媒として金属銅もしくはハロゲンを含まない銅化合物を
使用した場合、反応の活性となるのは銅−珪素合金その
ものではなく銅−珪素合金と珪素との界面であり、従っ
て粉末表面に銅−珪素合金が高度に分散した珪素粉末を
原料とすれば目標を達成できることを見出し、また珪素
粉末と金属銅またはハロゲンを含まない銅化合物の粉末
混合物に対し機械的に攪拌混合する操作を加えながら熱
処理を行えば、目標とする珪素粉末を得ることができる
ことを見出し、本発明を完成するに至った。
However, further investigations have shown that when metallic copper or a copper compound containing no halogen is used as a catalyst, the reaction is activated not by the copper-silicon alloy itself but by the interface between the copper-silicon alloy and silicon. Therefore, it has been found that the target can be achieved by using a silicon powder in which a copper-silicon alloy is highly dispersed on the surface of the powder as a raw material, and mechanically working on a powder mixture of the silicon powder and a copper compound containing no metallic copper or halogen. It has been found that a target silicon powder can be obtained by performing a heat treatment while adding a stirring and mixing operation to the present invention, thereby completing the present invention.

【0012】即ち、本発明は珪素粉末と金属銅またはハ
ロゲンを含まない銅化合物の粉末混合物を熱処理し、得
られる銅−珪素合金を珪素粉末表面に形成せしめる方法
に於いて、該粉末混合物を機械的に攪拌混合する操作を
加えながら熱処理を行うことを特徴とする銅−珪素合金
が珪素粉末表面に高度に分散した珪素粉末及びその製造
方法である。
That is, the present invention provides a method of heat-treating a powder mixture of silicon powder and metallic copper or a copper compound containing no halogen to form the resulting copper-silicon alloy on the surface of the silicon powder. The present invention relates to a silicon powder in which a copper-silicon alloy is highly dispersed on the surface of a silicon powder, and a method for producing the silicon powder, wherein the heat treatment is performed while adding an operation of periodically stirring and mixing.

【0013】もしくは、熱処理を行った後、該粉末混合
物を機械的に攪拌混合する操作を加え、再度熱処理を行
って得ることを特徴とする銅−珪素合金が粉末表面に高
度に分散した珪素粉末及びその製造方法である。
[0013] Alternatively, after the heat treatment, an operation of mechanically stirring and mixing the powder mixture is added, and the heat treatment is performed again to obtain a silicon powder in which the copper-silicon alloy is highly dispersed on the powder surface. And its manufacturing method.

【0014】[0014]

【発明の実施の形態】以下に、本発明をさらに詳細に説
明する。本発明に於いて原料として使用される珪素粉末
は、いわゆる単体の珪素粉末であり、その純度や粒度が
特に限定されるものではない。しかしながら、半導体分
野に応用できる製品の原料とする目的であることを考え
ると、純度は90重量%以上のものが好ましく、より好
ましくは95重量%以上のものがよい。また粒度に関し
ては1〜300μm程度のものが取扱いが容易であるた
め好適である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The silicon powder used as a raw material in the present invention is a so-called single silicon powder, and its purity and particle size are not particularly limited. However, considering that it is intended as a raw material of a product applicable to the semiconductor field, the purity is preferably 90% by weight or more, more preferably 95% by weight or more. Regarding the particle size, those having a particle size of about 1 to 300 μm are preferable because of easy handling.

【0015】また、触媒となる銅に関しては、金属銅も
しくはハロゲンを含まない銅化合物を使用する必要があ
り、ハロゲンを含まない銅化合物としては、酸化銅、水
酸化銅、炭酸銅、硝酸銅、酢酸銅が特に好ましい。ま
た、金属銅またはハロゲンを含まない銅化合物の純度は
珪素粉末と同様の理由で90重量%以上のものが好まし
く、より好ましくは95重量%以上のものが好適であ
る。粒度に関しては20μm以下の粉末を使用すること
が特に好ましい。20μmを超える粉末を使用すると、
珪素粉末表面に銅−珪素合金を高度に分散させることが
困難になる。
[0015] Further, as for copper serving as a catalyst, it is necessary to use metallic copper or a copper compound containing no halogen. Examples of the copper compound containing no halogen include copper oxide, copper hydroxide, copper carbonate, copper nitrate, and the like. Copper acetate is particularly preferred. Further, the purity of metallic copper or a copper compound containing no halogen is preferably 90% by weight or more, more preferably 95% by weight or more, for the same reason as silicon powder. It is particularly preferable to use a powder having a particle size of 20 μm or less. When using powders exceeding 20 μm,
It becomes difficult to highly disperse the copper-silicon alloy on the silicon powder surface.

【0016】ここにいう銅−珪素合金が高度に分散する
とは、珪素粉末の表面に極めて細かい銅−珪素合金が数
多く形成されていることを意味する。また、銅−珪素合
金とは、図1に示すCu−Si系平衡図に記載された金
属間の化合物であり、状況から考えるに本発明で活性点
となっているのはCuSi相であろうと推察してい
る。
The term "highly dispersed copper-silicon alloy" means that a large number of extremely fine copper-silicon alloys are formed on the surface of silicon powder. The copper-silicon alloy is an intermetallic compound described in the Cu-Si system equilibrium diagram shown in FIG. 1, and the active site in the present invention is a Cu 3 Si phase in consideration of the situation. I guess.

【0017】珪素粉末と金属銅またはハロゲンを含まな
い銅化合物との混合比率は、珪素粉末100重量部に対
し、銅換算にして0.1〜40重量部の範囲であること
が特に好ましい。金属銅またはハロゲンを含まない銅化
合物との混合比率が珪素粉末100重量部に対し、0.
1重量部未満であると、銅−珪素合金の絶対量が不足す
るため、効果が顕著に現れず、また40重量部を超えて
混合比率を増やしても効果は横這いになるため、金属銅
またはハロゲンを含まない銅化合物が無駄であり、コス
ト上不利となるため好ましくない。
The mixing ratio of the silicon powder to the metal copper or the copper compound containing no halogen is particularly preferably in the range of 0.1 to 40 parts by weight in terms of copper with respect to 100 parts by weight of the silicon powder. The mixing ratio with metallic copper or a copper compound containing no halogen is 0.1 to 100 parts by weight of the silicon powder.
When the amount is less than 1 part by weight, the effect is not remarkably exhibited because the absolute amount of the copper-silicon alloy is insufficient, and the effect becomes flat even if the mixing ratio is increased beyond 40 parts by weight. A copper compound containing no halogen is not preferable because it is wasteful and disadvantageous in cost.

【0018】また、混合する珪素粉末と金属銅またはハ
ロゲンを含まない銅化合物の平均粒子径の比は、好まし
くは0.5:1〜1000:1の範囲、より好ましく
は、2:1〜500:1の範囲である。この範囲を外れ
ると、銅−珪素合金が珪素粉末表面に高度に分散した珪
素粉末を製造することが困難となる。
The ratio of the average particle size of the silicon powder to be mixed with the copper compound containing no metallic copper or halogen is preferably in the range of 0.5: 1 to 1000: 1, more preferably 2: 1 to 500: 1. : 1 range. Outside this range, it is difficult to produce a silicon powder in which the copper-silicon alloy is highly dispersed on the surface of the silicon powder.

【0019】粒子径に関して本発明者らが採用したの
は、個数基準の平均粒子径であり、下記の式で算出され
る値及び測定機器としてはレーザー光回折法(マイクロ
トラックX−100=日機装株式会社製)を使用した。 平均粒子径(μm)=(全粒子の粒子径の総和)/(粒
子の数) 但し、本発明では珪素粉末と金属銅またはハロゲンを含
まない銅化合物粉末との平均粒子径の比が問題であるた
め、測定方法が同一であれば特に限定はない。
Regarding the particle diameter, the present inventors adopted the average particle diameter on a number basis, and the value calculated by the following equation and the measuring instrument were a laser light diffraction method (Microtrack X-100 = Nikkiso Co., Ltd.). Co., Ltd.) was used. Average particle diameter (μm) = (sum of particle diameters of all particles) / (number of particles) In the present invention, however, the ratio of the average particle diameter between silicon powder and copper compound powder containing no metallic copper or halogen is problematic. Therefore, there is no particular limitation as long as the measurement methods are the same.

【0020】本発明では、以上に述べたような条件を満
たす珪素粉末と金属銅またはハロゲンを含まない銅化合
物の粉末混合物を熱処理するが、その第一の手段として
該粉末混合物に機械的に攪拌混合する操作を加えながら
熱処理する。熱処理とは粉末混合物を所定の温度まで昇
温し一定時間保持する操作をいい、通常使用される電気
炉、燃焼炉、高周波加熱炉等が好適に使用可能である。
熱処理の際の雰囲気は、窒素、水素、アルゴン、ヘリウ
ム等の非酸化性ガスであり、酸素や水の混入は珪素粉末
の表面酸化を招くため、極力避けるべきである。
In the present invention, a heat treatment is performed on a powder mixture of silicon powder and metallic copper or a copper compound containing no halogen, which satisfies the conditions described above. As a first means, mechanical stirring is performed on the powder mixture. Heat treatment is performed while adding a mixing operation. The heat treatment refers to an operation of raising the temperature of the powder mixture to a predetermined temperature and holding it for a certain period of time, and a commonly used electric furnace, combustion furnace, high-frequency heating furnace, or the like can be suitably used.
The atmosphere during the heat treatment is a non-oxidizing gas such as nitrogen, hydrogen, argon, helium and the like. Mixing oxygen or water causes oxidation of the surface of the silicon powder and should be avoided as much as possible.

【0021】また、熱処理は温度800℃以上、滞留時
間5分以上、好ましくは10分以上の条件で行う。温度
は通常の熱電対や抵抗体等の温度計で測定する。また滞
留時間とは、混合物が800℃以上に保持される時間で
あり、熱処理装置内に温度分布が存在する場合は注意を
要する。この条件を外れると銅−珪素合金の形成が不十
分となり、得られる珪素粉末とアルキルアルコールを反
応させても珪素の転化率が十分ではなく、トリアルコキ
シシランの選択率も低くなるため、工業的に安価にかつ
効率よくアルコキシシランを製造することができなくな
る。
The heat treatment is performed at a temperature of 800 ° C. or more and a residence time of 5 minutes or more, preferably 10 minutes or more. The temperature is measured with a thermometer such as an ordinary thermocouple or resistor. The residence time is a time during which the mixture is maintained at 800 ° C. or higher, and care must be taken when a temperature distribution exists in the heat treatment apparatus. If this condition is not satisfied, the formation of a copper-silicon alloy becomes insufficient, and even if the obtained silicon powder is reacted with an alkyl alcohol, the conversion of silicon is not sufficient, and the selectivity of trialkoxysilane is also low. This makes it impossible to produce alkoxysilane at low cost and efficiently.

【0022】本発明でいう機械的に攪拌混合する操作と
は、珪素粉末と金属銅またはハロゲンを含まない銅化合
物との粉末混合物に対して外力を加え、強制的に混合を
行う操作であり、具体的には、ロータリーキルンのよう
に転動混合を行う方法、攪拌機で混合物を攪拌する方
法、振動コンベヤのように振動を加える方法、ボールミ
ルや振動ミルのように混合媒体を用いる方法等が挙げら
れるが、もちろんこれらに限られるものではない。
The operation of mechanically stirring and mixing as referred to in the present invention is an operation of forcibly mixing by applying an external force to a powder mixture of silicon powder and copper metal or a copper compound containing no halogen. Specifically, a method of tumbling and mixing like a rotary kiln, a method of stirring the mixture with a stirrer, a method of applying vibration like a vibrating conveyor, a method using a mixed medium like a ball mill or a vibrating mill, and the like are mentioned. However, of course, it is not limited to these.

【0023】但し、前述のようにこの熱処理操作は80
0℃以上という高温で行うものであり、材質的あるいは
構造的な制約も生じるため、非酸化性ガス雰囲気で処理
を行うことも考えるとロータリーキルンを使用すること
がより好ましい。
However, as described above, this heat treatment is performed for 80 hours.
Since the treatment is performed at a high temperature of 0 ° C. or more and there are restrictions on the material or structure, it is more preferable to use a rotary kiln in consideration of performing the treatment in a non-oxidizing gas atmosphere.

【0024】あるいは、本発明の第二の手段として、混
合物の熱処理を行った後、温度を下げてから粉末混合物
を機械的に攪拌混合する操作を加え、再度熱処理を行う
方法を採用することもできる。この方法であれば単なる
箱形の電気炉や移動層反応器等も採用することもでき、
装置的には幅を広げることができる。但し、若干エネル
ギー的に効率が劣るため、前者の方が好ましい手段では
ある。
Alternatively, as a second means of the present invention, a method in which after the heat treatment of the mixture is performed, the temperature is lowered, and then an operation of mechanically stirring and mixing the powder mixture and then the heat treatment is performed again may be adopted. it can. With this method, a simple box-type electric furnace or a moving bed reactor can be adopted,
The width can be widened as a device. However, the former is the preferred means because the energy efficiency is slightly lower.

【0025】以上述べてきたような操作を行えば、粉末
表面に銅−珪素合金が高度に分散した珪素粉末を製造す
ることができる。該珪素粉末はアルキルアルコールと2
00〜300℃位の温度で反応させることにより、反応
速度、珪素の転化率、トリアルコキシシランの選択率何
れも高く、結果として安価にかつ効率的に半導体分野に
も利用できる純度の高いアルコキシシランを、煩雑な精
製工程を経ることなしに製造することができる。
By performing the operations described above, a silicon powder in which a copper-silicon alloy is highly dispersed on the surface of the powder can be produced. The silicon powder is composed of an alkyl alcohol and 2
By reacting at a temperature of about 00 to 300 ° C., the reaction rate, the conversion of silicon, and the selectivity of trialkoxysilane are all high, and as a result, highly pure alkoxysilane that can be used inexpensively and efficiently in the semiconductor field. Can be produced without going through a complicated purification step.

【0026】[0026]

【実施例】以下の実施例により本発明をさらに具体的に
説明するが、その要旨を越えない限り、実施例によって
本発明の範囲が制限されるものではない。以下、特記し
ないかぎり%は重量%基準で表す。平均粒子径は、本文
中に記載した装置により測定したもの。トリアルコキシ
シランの選択率は下記の式で算出した。 トリアルコキシシラン選択率(%)=[(トリアルコキ
シシランの重量)/(トリアルコキシシランの重量+テ
トラアルコキシシランの重量)]×100 実施例1 平均粒子径67μmの珪素粉末(和光純薬製、純度98
%を63〜75μmに篩分したもの)92.4gに、平
均粒子径10.7μmの酸化第一銅粉末(純度99.5
%)11.0gを加えて磁製乳鉢で混合した後、内径6
0mm、長さ1,000mmのアルミナ管を炉芯管とす
るバッチ式ロータリーキルン型電気炉(均熱部200m
m)に仕込み、水素ガス雰囲気下、回転速度10rp
m、温度850℃で30分間熱処理を行った。得られた
珪素粉末の走査型電子顕微鏡写真を図2に示す。図中の
大粒子が珪素粉であるが、その上に細かい銅−珪素合金
が数多く分散していることがわかる。
The present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited by the examples unless it exceeds the gist thereof. Hereinafter,% is expressed on a weight% basis unless otherwise specified. The average particle size is measured by the device described in the text. The selectivity of trialkoxysilane was calculated by the following equation. Trialkoxysilane selectivity (%) = [(weight of trialkoxysilane) / (weight of trialkoxysilane + weight of tetraalkoxysilane)] × 100 Example 1 Silicon powder having an average particle diameter of 67 μm (manufactured by Wako Pure Chemical Industries, Ltd.) Purity 98
% Sieved to 63 to 75 μm) and 92.4 g of cuprous oxide powder having an average particle diameter of 10.7 μm (purity: 99.5).
%), And mixed with a porcelain mortar.
Batch-type rotary kiln-type electric furnace (a soaking section of 200 m
m), rotating speed 10 rpm under hydrogen gas atmosphere
m and a heat treatment at a temperature of 850 ° C. for 30 minutes. FIG. 2 shows a scanning electron micrograph of the obtained silicon powder. It can be seen that the large particles in the figure are silicon powder, on which a number of fine copper-silicon alloys are dispersed.

【0027】比較例1 実施例1で使用した珪素粉末9.2gと酸化第一銅粉末
1.1gを磁製乳鉢で混合した後、アルミナボートにの
せて実施例1で使用した電気炉に仕込んだ。転動混合を
行わず、固定式とした以外は実施例1と同様の条件で熱
処理を行った。得られた珪素粉末の走査型電子顕微鏡写
真を図3に示すが、図2と比較すると珪素粉末上の銅−
珪素合金の分散度合いは明らかに劣っていることがわか
る。
Comparative Example 1 9.2 g of the silicon powder used in Example 1 and 1.1 g of cuprous oxide powder were mixed in a porcelain mortar, and then placed on an alumina boat and charged in the electric furnace used in Example 1. It is. The heat treatment was performed under the same conditions as in Example 1 except that tumbling and mixing were not performed and the fixed type was used. FIG. 3 shows a scanning electron microscope photograph of the obtained silicon powder.
It can be seen that the degree of dispersion of the silicon alloy is clearly inferior.

【0028】実施例2 顕微鏡写真のみでは定量が困難なため、効果の確認の意
味で種々の条件で得られた珪素粉末を原料とし、メチル
アルコールと反応させてアルコキシシランの生成状況を
比較した。実施例1で得られた珪素粉末3.2gを内径
22mmのステンレス製竪型固定層反応器に充填して上
下をシリカウールで固定した。珪素粉末層を250℃に
昇温、保持した後、常圧のメタノール蒸気(メタノール
分圧60kPa)を窒素で同伴させ2.54g/hの速
度で反応器に供給した。反応生成物(ガス)は冷却し、
液化させて捕集し、ガスクロマトグラフィー(島津製G
C−8A)で分析を行った。メタノール蒸気の供給を開
始してから、2時間の時点で10分間液を回収し分析し
たところ、メタノールの転化率は88%、トリメトキシ
シランの選択率は71%であった。また、このまま反応
を継続するとメタノールの転化率は次第に落ちていく
が、反応開始後6.5時間を経過した時点でメタノール
の転化率は0%となり、反応器から珪素粉末を取出し
て、その総転化率(以下珪素積算転化率と記す)を調べ
たところ96%であった。
Example 2 Since quantification is difficult only with a microphotograph, silicon powder obtained under various conditions was used as a raw material for the purpose of confirming the effect and reacted with methyl alcohol to compare the production status of alkoxysilane. 3.2 g of the silicon powder obtained in Example 1 was charged into a stainless steel vertical fixed-bed reactor having an inner diameter of 22 mm, and the upper and lower portions were fixed with silica wool. After the temperature of the silicon powder layer was raised to and maintained at 250 ° C., normal pressure methanol vapor (methanol partial pressure: 60 kPa) was supplied to the reactor at a rate of 2.54 g / h accompanied by nitrogen. The reaction product (gas) cools,
Liquefied and collected, gas chromatography (Shimadzu G
C-8A) was analyzed. Two hours after the start of the supply of methanol vapor, the liquid was recovered for 10 minutes and analyzed. As a result, the conversion of methanol was 88% and the selectivity of trimethoxysilane was 71%. Further, if the reaction is continued as it is, the conversion rate of methanol gradually decreases, but the conversion rate of methanol becomes 0% after 6.5 hours from the start of the reaction. The conversion rate (hereinafter referred to as silicon integrated conversion rate) was 96%.

【0029】比較例2 比較例1で得た珪素粉末を使用した以外は実施例2と同
じ条件でメチルアルコールとの反応を行った。反応開始
後、2時間の時点でのメタノール転化率は56%であ
り、またトリメトキシシランの選択率は43%であっ
た。メタノール転化率が0%となったのは、反応開始後
4.5時間の時点であり、珪素積算転化率は58%であ
った。
Comparative Example 2 A reaction with methyl alcohol was carried out under the same conditions as in Example 2 except that the silicon powder obtained in Comparative Example 1 was used. Two hours after the start of the reaction, the conversion of methanol was 56%, and the selectivity for trimethoxysilane was 43%. The methanol conversion was 0% at 4.5 hours after the start of the reaction, and the silicon conversion was 58%.

【0030】実施例3 平均粒子径55μmの珪素粉末(和光純薬製、純度98
%)6.3gに、平均粒子径2.7μmの酸化第一銅
(純度99.5%)0.6gを加えて磁製乳鉢で混合し
た後、アルミナボートにのせ、実施例1で使用した電気
炉に仕込んだ。転動混合を行わなかった以外は、実施例
1と同じ条件で熱処理を行い、冷却後珪素粉末を乳鉢で
混合した。その後、再度同じ条件で熱処理行って珪素粉
末を得た。得られた珪素粉末を用いた以外は、実施例2
と同様の操作を行ったところ、反応開始後2時間の時点
でのメタノール転化率は84%であり、またトリメトキ
シシランの選択率は66%であった。メタノール転化率
が0%となったのは、反応開始後6.0時間の時点であ
り、珪素積算転化率は84%であった。
Example 3 Silicon powder having an average particle diameter of 55 μm (purity 98, manufactured by Wako Pure Chemical Industries, Ltd.)
%) To 6.3 g, 0.6 g of cuprous oxide (purity: 99.5%) having an average particle diameter of 2.7 μm was added, mixed in a porcelain mortar, placed on an alumina boat, and used in Example 1. Charged in an electric furnace. Heat treatment was performed under the same conditions as in Example 1 except that tumbling and mixing were not performed. After cooling, the silicon powder was mixed in a mortar. Thereafter, heat treatment was performed again under the same conditions to obtain silicon powder. Example 2 except that the obtained silicon powder was used.
As a result, the methanol conversion at 2 hours after the start of the reaction was 84%, and the selectivity for trimethoxysilane was 66%. The conversion of methanol was 0% at 6.0 hours after the start of the reaction, and the integrated conversion of silicon was 84%.

【0031】実施例4〜9 珪素粉末及び銅もしくは銅化合物を変更し、実施例1と
同様の電気炉で熱処理を行った後、得られた珪素粉末を
実施例2と同じ条件でメチルアルコールと反応を行っ
た。反応後2時間に於けるメタノール転化率とトリメト
キシシランの選択率、及びメタノールの転化率が0%と
なった後の珪素の積算転化率を表1に示す。
Examples 4 to 9 After the heat treatment was carried out in the same electric furnace as in Example 1 except that the silicon powder and copper or copper compound were changed, the obtained silicon powder was mixed with methyl alcohol under the same conditions as in Example 2. The reaction was performed. Table 1 shows the conversion of methanol and the selectivity of trimethoxysilane two hours after the reaction, and the integrated conversion of silicon after the conversion of methanol became 0%.

【0032】比較例3 珪素粉末及び銅もしくは銅化合物を変更し、転動混合を
行わず固定式で熱処理行った以外は、実施例1及び2と
同じ条件でメチルアルコールと反応を行った。結果を表
1に示す。
Comparative Example 3 The reaction with methyl alcohol was carried out under the same conditions as in Examples 1 and 2, except that the silicon powder and copper or copper compound were changed, and heat treatment was performed in a fixed manner without tumbling and mixing. Table 1 shows the results.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明によれば銅−珪素合金が粉末表面
に高度に分散した珪素粉末を得ることができる。該珪素
粉末はアルキルアルコールと所定の条件下で反応させる
ことにより、反応速度、珪素の転化率、トリアルコキシ
シランの選択率何れも高く、純度の高いアルコキシシラ
ンを容易に得ることができる。即ち、本発明の珪素粉末
は工業的に価値が高く、半導体分野にも応用可能なアル
コキシシランを安価にかつ効率的に製造する原料となる
ものであり、その効果は大きいものと考える。
According to the present invention, a silicon powder in which a copper-silicon alloy is highly dispersed on the powder surface can be obtained. By reacting the silicon powder with the alkyl alcohol under predetermined conditions, the reaction rate, the conversion rate of silicon, and the selectivity of trialkoxysilane are all high, and high-purity alkoxysilane can be easily obtained. That is, the silicon powder of the present invention has high industrial value and is a raw material for inexpensively and efficiently producing alkoxysilane applicable to the semiconductor field, and its effect is considered to be great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 Cu−Si系の平衡図FIG. 1 Cu—Si system equilibrium diagram

【図2】 実施例1で得られた珪素粉末の走査型電子顕
微鏡写真
FIG. 2 is a scanning electron micrograph of the silicon powder obtained in Example 1.

【図3】 比較例1で得られた珪素粉末の走査型電子顕
微鏡写真
FIG. 3 is a scanning electron micrograph of the silicon powder obtained in Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07F 7/04 C07F 7/04 H // C07B 61/00 300 C07B 61/00 300 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI C07F 7/04 C07F 7/04 H // C07B 61/00 300 C07B 61/00 300

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 珪素粉末と金属銅またはハロゲンを含
まない銅化合物の粉末混合物を熱処理し、得られる銅−
珪素合金を珪素粉末表面に形成せしめる方法に於いて、
該粉末混合物を機械的に攪拌混合する操作を加えながら
熱処理を行うことを特徴とする銅−珪素合金が珪素粉末
表面に高度に分散した珪素粉末。
A copper powder obtained by heat-treating a powder mixture of silicon powder and metallic copper or a copper compound containing no halogen.
In a method of forming a silicon alloy on a silicon powder surface,
A silicon powder in which a copper-silicon alloy is highly dispersed on the surface of the silicon powder, wherein the heat treatment is performed while adding an operation of mechanically stirring and mixing the powder mixture.
【請求項2】 珪素粉末と金属銅またはハロゲンを含
まない銅化合物の粉末混合物を熱処理し、得られる銅−
珪素合金を珪素粉末表面に形成せしめる方法に於いて、
熱処理を行った後、該粉末混合物を機械的に攪拌混合す
る操作を加え、再度熱処理を行うことを特徴とする銅−
珪素合金が珪素粉末表面に高度に分散した珪素粉末。
2. A copper powder obtained by heat-treating a powder mixture of silicon powder and metallic copper or a copper compound containing no halogen.
In a method of forming a silicon alloy on a silicon powder surface,
After the heat treatment, an operation of mechanically stirring and mixing the powder mixture is added, and the heat treatment is performed again.
Silicon powder in which a silicon alloy is highly dispersed on the surface of the silicon powder.
【請求項3】 珪素粉末と金属銅またはハロゲンを含
まない銅化合物の混合比率が、珪素粉末100重量部に
対し、金属銅または銅化合物が銅換算にして0.1〜4
0重量部の範囲である請求項1または2に記載の銅−珪
素合金が珪素粉末表面に高度に分散した珪素粉末。
3. The mixing ratio of silicon powder to copper metal or copper compound containing no halogen is 0.1 to 4 parts by weight of copper metal or copper compound per 100 parts by weight of silicon powder.
Silicon powder in which the copper-silicon alloy according to claim 1 or 2 is highly dispersed on the surface of the silicon powder in an amount of 0 part by weight.
【請求項4】 珪素粉末と金属銅またはハロゲンを含
まない銅化合物の平均粒子径の比が0.5:1〜100
0:1の範囲である請求項1〜3のいずれか1項に記載
の銅−珪素合金が珪素粉末表面に高度に分散した珪素粉
末。
4. The ratio of the average particle size of the silicon powder to the copper compound containing no metallic copper or halogen is 0.5: 1 to 100.
The silicon powder in which the copper-silicon alloy according to any one of claims 1 to 3 is highly dispersed on the surface of the silicon powder.
【請求項5】 珪素粉末と金属銅またはハロゲンを含
まない銅化合物の平均粒子径の比が2:1〜500:1
の範囲である請求項1〜3のいずれか1項に記載の銅−
珪素合金が珪素粉末表面に高度に分散した珪素粉末。
5. The ratio of the average particle diameter of silicon powder to copper metal or copper compound containing no halogen is 2: 1 to 500: 1.
The copper according to any one of claims 1 to 3, wherein
Silicon powder in which a silicon alloy is highly dispersed on the surface of the silicon powder.
【請求項6】 平均粒子径が20μm以下である金属
銅粉末またはハロゲンを含まない銅化合物粉末を用いる
請求項1〜5のいずれか1項に記載の銅−珪素合金が珪
素粉末表面に高度に分散した珪素粉末。
6. The copper-silicon alloy according to claim 1, wherein a metal copper powder having an average particle diameter of 20 μm or less or a copper compound powder containing no halogen is used. Dispersed silicon powder.
【請求項7】 ハロゲンを含まない銅化合物が酸化
銅、水酸化銅、炭酸銅、硝酸銅又は酢酸銅から選ばれる
少なくとも1種以上の化合物を用いる請求項1〜6のい
ずれか1項に記載の銅−珪素合金が珪素粉末表面に高度
に分散した珪素粉末。
7. The method according to claim 1, wherein the halogen-free copper compound is at least one compound selected from copper oxide, copper hydroxide, copper carbonate, copper nitrate and copper acetate. Silicon powder in which the copper-silicon alloy is highly dispersed on the surface of the silicon powder.
【請求項8】 珪素粉末と金属銅またはハロゲンを含
まない銅化合物の混合物の熱処理が非酸化性ガス雰囲気
下、温度800℃以上、滞留時間5分以上の条件である
請求項1〜7のいずれか1項に記載の銅−珪素合金が珪
素粉末表面に高度に分散した珪素粉末。
8. The method according to claim 1, wherein the heat treatment of the mixture of silicon powder and metallic copper or a copper compound containing no halogen is carried out in a non-oxidizing gas atmosphere at a temperature of 800 ° C. or more and a residence time of 5 minutes or more. A silicon powder in which the copper-silicon alloy according to claim 1 is highly dispersed on the surface of the silicon powder.
【請求項9】 珪素粉末と金属銅またはハロゲンを含
まない銅化合物の粉末混合物を熱処理し、得られる銅−
珪素合金を珪素粉末表面に形成せしめる方法に於いて、
該粉末混合物を機械的に攪拌混合する操作を加えながら
熱処理を行うことを特徴とする銅−珪素合金が珪素粉末
表面に高度に分散した珪素粉末の製造方法。
9. A copper powder obtained by heat-treating a powder mixture of silicon powder and metallic copper or a copper compound containing no halogen.
In a method of forming a silicon alloy on a silicon powder surface,
A method for producing silicon powder in which a heat treatment is performed while adding an operation of mechanically stirring and mixing the powder mixture, wherein the copper-silicon alloy is highly dispersed on the surface of the silicon powder.
【請求項10】 珪素粉末と金属銅またはハロゲンを含
まない銅化合物の混合物を熱処理し、得られる銅−珪素
合金を珪素粉末表面に形成せしめる方法に於いて、熱処
理を行った後、該粉末混合物を機械的に攪拌混合する操
作を加え、再度熱処理を行うことを特徴とする銅−珪素
合金が珪素粉末表面に高度に分散した珪素粉末の製造方
法。
10. A method for heat-treating a mixture of silicon powder and metallic copper or a copper compound containing no halogen to form a copper-silicon alloy on the surface of the silicon powder. A method for producing silicon powder in which a copper-silicon alloy is highly dispersed on the surface of a silicon powder, wherein the heat treatment is performed again by adding an operation of mechanically stirring and mixing the silicon powder.
【請求項11】 珪素粉末と金属銅またはハロゲンを含
まない銅化合物の混合比率が、珪素粉末100重量部に
対し、金属銅またはハロゲンを含まない銅化合物が銅換
算にして0.1〜40重量部の範囲である請求項9また
は10に記載の銅−珪素合金が珪素粉末表面に高度に分
散した珪素粉末の製造方法。
11. The mixing ratio of the silicon powder and the copper compound containing no metallic copper or halogen is 0.1 to 40% by weight of the copper compound containing no metallic copper or halogen per 100 parts by weight of the silicon powder. 11. The method for producing silicon powder in which the copper-silicon alloy according to claim 9 or 10 is highly dispersed on the surface of the silicon powder.
【請求項12】 珪素粉末と金属銅またはハロゲンを含
まない銅化合物の平均粒子径の比が0.5:1〜100
0:1の範囲である請求項9〜11のいずれか1項に記
載の銅−珪素合金が珪素粉末表面に高度に分散した珪素
粉末の製造方法。
12. The ratio of the average particle size of silicon powder to metallic copper or a copper compound containing no halogen is 0.5: 1 to 100.
A method for producing silicon powder in which the copper-silicon alloy according to any one of claims 9 to 11 is highly dispersed on the surface of the silicon powder.
【請求項13】 珪素粉末と金属銅またはハロゲンを含
まない銅化合物の平均粒子径の比が2:1〜500:1
の範囲である請求項9〜11のいずれか1項に記載の銅
−珪素合金が珪素粉末表面に高度に分散した珪素粉末の
製造方法。
13. The ratio of the average particle diameter of silicon powder to metallic copper or a copper compound containing no halogen is 2: 1 to 500: 1.
A method for producing a silicon powder in which the copper-silicon alloy according to any one of claims 9 to 11 is highly dispersed on the surface of the silicon powder.
【請求項14】 平均粒子径が20μm以下である金属
銅粉末またはハロゲンを含まない銅化合物粉末を用いる
請求項9〜13のいずれか1項に記載の銅−珪素合金が
珪素粉末表面に高度に分散した珪素粉末の製造方法。
14. The copper-silicon alloy according to any one of claims 9 to 13, wherein a metal copper powder having an average particle diameter of 20 μm or less or a copper compound powder containing no halogen is used. A method for producing dispersed silicon powder.
【請求項15】 ハロゲンを含まない銅化合物が酸化
銅、水酸化銅、炭酸銅、硝酸銅又は酢酸銅から選ばれる
少なくとも1種以上の化合物を用いる請求項9〜14の
いずれか1項に記載の銅−珪素合金が珪素粉末表面に高
度に分散した珪素粉末の製造方法。
15. The method according to claim 9, wherein the halogen-free copper compound is at least one compound selected from copper oxide, copper hydroxide, copper carbonate, copper nitrate and copper acetate. A method for producing a silicon powder in which the copper-silicon alloy is highly dispersed on the surface of the silicon powder.
【請求項16】 珪素粉末と金属銅またはハロゲンを含
まない銅化合物の混合物の熱処理が非酸化性ガス雰囲気
下、温度800℃以上、滞留時間5分以上の条件である
請求項9〜15のいずれか1項に記載の銅−珪素合金が
珪素粉末表面に高度に分散した珪素粉末の製造方法。
16. The method according to claim 9, wherein the heat treatment of the mixture of the silicon powder and the copper compound containing no metallic copper or halogen is performed in a non-oxidizing gas atmosphere at a temperature of 800 ° C. or more and a residence time of 5 minutes or more. A method for producing silicon powder in which the copper-silicon alloy according to claim 1 is highly dispersed on the surface of the silicon powder.
JP9164273A 1997-06-20 1997-06-20 Silicon powder with copper-silicon alloy highly dispersed on surface and its production Pending JPH1111926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9164273A JPH1111926A (en) 1997-06-20 1997-06-20 Silicon powder with copper-silicon alloy highly dispersed on surface and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9164273A JPH1111926A (en) 1997-06-20 1997-06-20 Silicon powder with copper-silicon alloy highly dispersed on surface and its production

Publications (1)

Publication Number Publication Date
JPH1111926A true JPH1111926A (en) 1999-01-19

Family

ID=15789961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9164273A Pending JPH1111926A (en) 1997-06-20 1997-06-20 Silicon powder with copper-silicon alloy highly dispersed on surface and its production

Country Status (1)

Country Link
JP (1) JPH1111926A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069078A (en) * 2000-08-29 2002-03-08 Jgc Corp Method for producing silane from trialkoxysilane and method for producing trialkoxysilane from tetraalkoxysilane
JP2018178153A (en) * 2017-04-04 2018-11-15 東京印刷機材トレーディング株式会社 METHOD FOR MANUFACTURING Cu-Si ALLOY PARTICLE, Cu-Si ALLOY PARTICLE, MANUFACTURING METHOD OF Ni-Si ALLOY PARTICLE, Ni-Si ALLOY PARTICLE, METHOD FOR MANUFACTURING Ti-Si ALLOY PARTICLE, Ti-Si ALLOY PARTICLE, METHOD FOR MANUFACTURING Fe-Si ALLOY PARTICLE, AND Fe-Si ALLOY PARTICLE
CN109607542A (en) * 2018-12-11 2019-04-12 中科廊坊过程工程研究院 A kind of nano silicon particles and its preparation method and application

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673544A (en) * 1979-10-24 1981-06-18 Union Carbide Corp Raw material for manufacturing methylchlorosilane and its manufacture
JPS6456685A (en) * 1987-05-21 1989-03-03 Tama Kagaku Kogyo Kk Production of trialkoxysilane
JPH01135788A (en) * 1987-11-20 1989-05-29 Shin Etsu Chem Co Ltd Production of tetraalkoxysilane
JPH05170773A (en) * 1991-12-19 1993-07-09 Tonen Corp Production of trialkoxysilane
JPH09235114A (en) * 1995-12-25 1997-09-09 Tokuyama Corp Production of metallic silicon particle having copper silicide
JPH1029813A (en) * 1995-12-25 1998-02-03 Tokuyama Corp Production of trichlorosilane
JP2000176296A (en) * 1998-10-05 2000-06-27 Shin Etsu Chem Co Ltd Production of organohalosilane synthesis catalyst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673544A (en) * 1979-10-24 1981-06-18 Union Carbide Corp Raw material for manufacturing methylchlorosilane and its manufacture
JPS6456685A (en) * 1987-05-21 1989-03-03 Tama Kagaku Kogyo Kk Production of trialkoxysilane
JPH01135788A (en) * 1987-11-20 1989-05-29 Shin Etsu Chem Co Ltd Production of tetraalkoxysilane
JPH05170773A (en) * 1991-12-19 1993-07-09 Tonen Corp Production of trialkoxysilane
JPH09235114A (en) * 1995-12-25 1997-09-09 Tokuyama Corp Production of metallic silicon particle having copper silicide
JPH1029813A (en) * 1995-12-25 1998-02-03 Tokuyama Corp Production of trichlorosilane
JP2000176296A (en) * 1998-10-05 2000-06-27 Shin Etsu Chem Co Ltd Production of organohalosilane synthesis catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069078A (en) * 2000-08-29 2002-03-08 Jgc Corp Method for producing silane from trialkoxysilane and method for producing trialkoxysilane from tetraalkoxysilane
JP2018178153A (en) * 2017-04-04 2018-11-15 東京印刷機材トレーディング株式会社 METHOD FOR MANUFACTURING Cu-Si ALLOY PARTICLE, Cu-Si ALLOY PARTICLE, MANUFACTURING METHOD OF Ni-Si ALLOY PARTICLE, Ni-Si ALLOY PARTICLE, METHOD FOR MANUFACTURING Ti-Si ALLOY PARTICLE, Ti-Si ALLOY PARTICLE, METHOD FOR MANUFACTURING Fe-Si ALLOY PARTICLE, AND Fe-Si ALLOY PARTICLE
CN109607542A (en) * 2018-12-11 2019-04-12 中科廊坊过程工程研究院 A kind of nano silicon particles and its preparation method and application
CN109607542B (en) * 2018-12-11 2022-06-17 廊坊绿色工业技术服务中心 Silicon nano-particle and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP6178434B2 (en) Method for producing trichlorosilane
US20070248525A1 (en) Method for producing silicon oxide powder
JP5311930B2 (en) Method for producing silicon
JP4030616B2 (en) Copper-based catalyst, method for producing and using the same, and method for producing alkylhalosilane
JPS63159300A (en) Production of silicon carbide whisker
US20100015028A1 (en) Purification method
EP0015422B1 (en) Method for producing powder of alpha-silicon nitride
JP2005514312A (en) Method for producing amorphous silicon and / or organohalogensilane obtained therefrom
JPH06234776A (en) Production of methylchlorosilane
WO1998044164A1 (en) Method of forming metallic and ceramic thin film structures using metal halides and alkali metals
WO1998044164A9 (en) Method of forming metallic and ceramic thin film structures using metal halides and alkali metals
JP2017525647A (en) Production method of silane trichloride
KR20030077594A (en) Nanosized copper catalyst precursors for the direct synthesis of trialkoxysilanes
JPH1111926A (en) Silicon powder with copper-silicon alloy highly dispersed on surface and its production
JP3818357B2 (en) Method for producing organohalosilane
JP2000254506A (en) Metal copper catalyst for synthesizing organohalosilane and production of organohalosilane
JP3760984B2 (en) Co-catalyst for organohalosilane synthesis and method for producing organohalosilane
JP3658901B2 (en) Method for producing alkoxysilane
JP2563305B2 (en) Method for producing trialkoxysilane
JPH09124662A (en) Production of dimethyldichlorosilane
JP4663079B2 (en) Method for producing silane from trialkoxysilane and method for producing trialkoxysilane from tetraalkoxysilane
KR102539671B1 (en) Method for preparing silicon powder and silicon powder prepared thereby
JP2006104030A (en) Method of purifying silicon
Sprung et al. Hydrogen terminated silicon nanopowders: gas phase synthesis, oxidation behaviour, and Si-H reactivity
JP2914089B2 (en) Method for producing trialkoxysilane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070123