JPH11118824A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH11118824A
JPH11118824A JP9296348A JP29634897A JPH11118824A JP H11118824 A JPH11118824 A JP H11118824A JP 9296348 A JP9296348 A JP 9296348A JP 29634897 A JP29634897 A JP 29634897A JP H11118824 A JPH11118824 A JP H11118824A
Authority
JP
Japan
Prior art keywords
vibrating body
acceleration
acceleration sensor
beams
vibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9296348A
Other languages
Japanese (ja)
Inventor
Hiroshi Katayose
寛 片寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP9296348A priority Critical patent/JPH11118824A/en
Publication of JPH11118824A publication Critical patent/JPH11118824A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce size and increase detecting sensitiveness in an acceleration sensor for detecting an acceleration in multidimensional directions. SOLUTION: Four vibration bodies of canti-lever structure are supported on one ends of the support parts of beams 1 to 4 by a common fixed pedestal 13, and strain detecting elements 9 to 12 such as piezoelectric element and strain gauge element are installed on the surface of each beam. Additional weights 5 to 8 are installed at the other free end parts of the beams 1 and 2 and 3 and 4 on the front and rear vibrating surfaces of the beams so that they are reversed to each other in vertical direction. In addition, the beams 1 and 2 and 3 and 4 are arranged so that the longitudinal directions of them are in parallel to each other. Then, using the beams 1 and 2 and 3 and 4 as a set, respectively, two sets of vibration bodies are arranged in an X and Y rectangular coordinate system so that, using X and Y orthogonal point as a home position, the center axis of one set of the vibrating bodies in longitudinal direction is located on an X-axis at an equal distance from the home position, and the center axis of the other set of the vibrating bodies in longitudinal direction is located on a Y-axis at an equal distance from the home position.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、梁のたわみにより
複数の向きの加速度を検出する片持梁構造の加速度セン
サに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor having a cantilever structure for detecting accelerations in a plurality of directions by deflection of a beam.

【0002】[0002]

【従来の技術】従来より、梁のたわみによって加速度を
検出する片持梁構造の加速度センサは広く知られてい
る。以下、従来構成の1次元加速度センサと3次元加速
度センサの例を示し説明する。図3a,bは、従来の片
持梁構造の1次元加速度センサの一例を示す図解図であ
る。この加速度センサは、板状の振動体を含み振動体1
の一端は固定され他端自由端部には付加質量5がとりつ
けられている。さらに振動体の表面にはひずみ検出素子
9が形成されている。
2. Description of the Related Art Conventionally, a cantilever type acceleration sensor for detecting acceleration by deflection of a beam has been widely known. Hereinafter, an example of a one-dimensional acceleration sensor and a three-dimensional acceleration sensor having a conventional configuration will be shown and described. 3A and 3B are illustrative views showing an example of a conventional one-dimensional acceleration sensor having a cantilever structure. This acceleration sensor includes a vibrating body 1 including a plate-shaped vibrating body.
Has an additional mass 5 attached to its free end. Further, a strain detecting element 9 is formed on the surface of the vibrating body.

【0003】この加速度センサの振動体面に直行する方
向に加速度が加わると図3ーbに示すように振動体にた
わみを生ずる。これにより生じた圧縮応力によってひず
み検出素子より得られる電気量は変化する。この時の電
気量の変化より加速度の検出を行う。図4a,bは、従
来の片持梁構造の3次元加速度センサの一例を示す平面
図と断面図である。この加速度センサは、前記で示した
1次元加速度センサの自由端部にとりつけられた付加質
量が振動体面下側にのみ取り付けられそして同構成の4
つの振動体を一体の固定部から自由端部に互いに中心部
を向くように十字状に組み合わせ配置されている。
When acceleration is applied in a direction perpendicular to the surface of the vibrating body of the acceleration sensor, the vibrating body bends as shown in FIG. The amount of electricity obtained from the strain detecting element changes due to the compressive stress generated thereby. The acceleration is detected from the change in the amount of electricity at this time. 4A and 4B are a plan view and a cross-sectional view illustrating an example of a conventional three-dimensional acceleration sensor having a cantilever structure. In this acceleration sensor, an additional mass attached to the free end of the one-dimensional acceleration sensor described above is attached only below the surface of the vibrating body.
The two vibrators are combined and arranged in a cross shape so as to face each other from the integral fixed portion to the free end.

【0004】この加速度センサに、加速度により付加質
量がX方向に変位した場合、図中上下に配置された振動
体の内、上側に配置された振動体1に設けられたひずみ
検出素子には圧縮応力が生じ、又、下側に配置された振
動体3に設けられたひずみ検出素子には、引張り応力が
生じる。この時の電気量の変化よりX方向の加速度を検
出する。次に加速度により付加質量がY方向に変位した
場合、図中左側に配置された振動体4に設けられたひず
み検出素子には、圧縮応力が生じ又右側に配置された振
動体2に設けられたひずみ検出素子には引張り応力が生
じる。この時の電気量の変化よりY方向の加速度を検出
する。又、加速度により付加質量がZ方向に変位した場
合、4つの振動体1〜4に設けられたひずみ検出素子い
ずれにも圧縮応力が生じ、この時の電気量の変化よりZ
方向の加速度を検出する。
When the additional mass is displaced in the X direction due to acceleration in the acceleration sensor, the strain detecting element provided on the vibrating body 1 arranged on the upper side of the vibrating bodies arranged on the upper and lower sides in FIG. A stress is generated, and a tensile stress is generated in the strain detecting element provided on the vibrating body 3 arranged on the lower side. The acceleration in the X direction is detected from the change in the amount of electricity at this time. Next, when the additional mass is displaced in the Y direction due to the acceleration, a compressive stress is generated in the strain detecting element provided in the vibrating body 4 arranged on the left side in the figure, and is provided in the vibrating body 2 arranged on the right side. A tensile stress is generated in the strain detecting element. The acceleration in the Y direction is detected from the change in the amount of electricity at this time. Further, when the additional mass is displaced in the Z direction due to acceleration, a compressive stress is generated in any of the strain detecting elements provided in the four vibrators 1 to 4, and the change in the quantity of electricity at this time causes a change in the amount of Z.
Detect the acceleration in the direction.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記1
次元加速度センサでは、振動体面に直交した方向の加速
度しか検出することはできない。このため異なった複数
の向きの加速度を検出するためには振動体面をそれぞれ
の加速度方向に対して直交する向きに複数の1次元加速
度センサを配置する必要がある。このため複数の1次元
加速度センサを精度良く加わる加速度の軸方向に取り付
けるには手間がかかるし、何よりもその形状が大きくな
るという問題点がある。又、前記3次元加速度センサで
は、上記1次元加速度センサで示した問題点は解消され
るものの、小型化を志向した場合、片持梁振動体の梁部
の長さが短くなり必然的にたわみ量が減少し検出感度が
低下するという問題点が発生する。それ故に、本発明の
主たる目的は、複数の向きの加速度を検出することがで
きる取付が容易で且つ小型で、高い検出感度を得る加速
度センサを提供することにある。
However, the above-mentioned 1
The three-dimensional acceleration sensor can only detect acceleration in a direction perpendicular to the surface of the vibrating body. Therefore, in order to detect accelerations in a plurality of different directions, it is necessary to arrange a plurality of one-dimensional acceleration sensors in a direction in which the surface of the vibrating body is orthogonal to the respective acceleration directions. For this reason, it is troublesome to attach a plurality of one-dimensional acceleration sensors in the axial direction of the acceleration applied with high accuracy, and there is a problem that the shape becomes larger than anything. Further, in the three-dimensional acceleration sensor, although the problem shown in the one-dimensional acceleration sensor is solved, in the case of miniaturization, the length of the beam portion of the cantilever vibrator is shortened and the deflection is inevitable. There is a problem that the amount is reduced and the detection sensitivity is reduced. Therefore, a main object of the present invention is to provide an acceleration sensor which can detect accelerations in a plurality of directions, is easily mounted, is small, and has high detection sensitivity.

【0006】[0006]

【課題を解決するための手段】この発明は2つの解決手
段からなる。第1の解決手段は、2つの板状の振動体及
び前記振動体の面上に形成された圧電素子、ひずみゲー
ジ素子等のひずみ検出素子そして前記振動体の一端自由
端部に板の表、裏面に互いに上、下逆向きとなるように
配置された付加質量を含み前記振動体の一端支持部を共
通の固定台座で支持し、且つこれらの振動体の長手方向
の中心線が互いに平行配置とされたことを特徴とする片
持梁構造の加速度センサであり、第2の解決手段は前記
構成の加速度センサを2組組み合わせ、それらの配置を
X、Y直交座標系においてX、Y直交点を原点とし1組
の前記加速度センサをX軸上に、さらにもう1組の前記
加速度センサをY軸上にそれぞれ原点より等位置に直交
配置としたことを特徴とする片持梁構造の加速度センサ
である。
The present invention comprises two solutions. A first solution is to provide two plate-shaped vibrators and a piezoelectric element formed on the surface of the vibrator, a strain detecting element such as a strain gauge element, and a table of plates at one free end of the vibrator. The back surface includes additional masses disposed so as to be opposite to each other, and one end supporting portion of the vibrating body is supported by a common fixed pedestal, and the longitudinal center lines of these vibrating bodies are parallel to each other. A second solution is to combine two sets of the acceleration sensors having the above-described configuration, and to dispose them in an X, Y orthogonal coordinate system in an X, Y orthogonal coordinate system. A set of the acceleration sensors on the X axis and another set of the acceleration sensors on the Y axis at an equal position from the origin at right angles. It is.

【0007】[0007]

【発明の実施の形態】図2dーeに本発明の実施の形態
を示す。図中、振動体面に直交するZ方向に加速度が加
わると2つの振動体に同方向のたわみによる圧縮応力の
変位は振動体面上に設けられたひずみ検出素子の電気量
に同極性の変化をもたらす。この時の電気量の変化より
Z方向の加速度の検出を行う。図2ーeは、振動体と平
行なX方向の加速度が加わった場合を示し、2つの振動
体の内、振動体1は振動体面に対し上方へたわみ、振動
体2は下方へたわみを生ずる。各振動体面上に設けられ
たひずみ検出素子には、振動体1のたわみにより圧縮応
力を、又、振動体2のたわみにより引張り応力を生じ、
この応力に対応した逆極性の電気量の変化をそれぞれも
たらす。この時の2つのひずみ検出素子より得られる相
反する電気量の変化よりX方向の加速度の検出を行う。
以上の構成により2つの方向の加速度の検出が可能とな
る。
FIG. 2de shows an embodiment of the present invention. In the figure, when acceleration is applied in the Z direction orthogonal to the vibrating body surface, the displacement of the compressive stress due to the bending in the same direction on the two vibrating bodies causes the electric quantity of the strain detecting element provided on the vibrating body surface to change in the same polarity. . The acceleration in the Z direction is detected from the change in the amount of electricity at this time. FIG. 2E shows a case where an acceleration in the X direction parallel to the vibrating body is applied, of which the vibrating body 1 flexes upward with respect to the vibrating body surface and the vibrating body 2 flexes downward with respect to the vibrating body surface. . The strain detecting element provided on each vibrating body surface generates a compressive stress due to the bending of the vibrating body 1 and a tensile stress due to the bending of the vibrating body 2,
A change in the amount of electricity of the opposite polarity corresponding to the stress is caused. At this time, the acceleration in the X direction is detected from the changes in the opposite electric quantities obtained from the two strain detecting elements.
With the above configuration, it is possible to detect accelerations in two directions.

【0008】図1a〜dは、第2の解決手段で示した実
施の形態で、図1ーcは、振動体面に直交するZ方向に
加速度が加わると4つの振動体は全て同方向のたわみを
生ずる。そして各々振動体に設けられたひずみ検出素子
により生ずる電気量の変化は全て同極性となる。これに
よりZ方向の加速度の検出を行う。図1ーdは、振動体
1、2に平行なX方向の加速度が加わった場合で、その
動作は前記図2−eで示した内容と同じである。この場
合、振動体3、4には変位を生じない。これによりX方
向の加速度の検出を行う。図1ーdは、振動体3、4に
平行なY方向の加速度が加わった場合で、振動体3は振
動体面に対し上方へたわみ、振動体4は下方へたわみを
生ずる。振動体3、4のたわみによる応力変位は各々の
振動体面上に設けられたひずみ検出素子に相反する向き
の電気量の変化をもたらす。これにより、Y方向の加速
度の検出を行う。この場合、振動体1、2には変位は生
じない。以上の構成により、2次元もしくは3次元方向
の加速度の検出が可能となる。
FIGS. 1A to 1D show an embodiment of the second solving means. FIG. 1C shows that when acceleration is applied in a Z direction perpendicular to the plane of the vibrating body, all four vibrating bodies are bent in the same direction. Is generated. The changes in the amount of electricity generated by the strain detecting elements provided on the respective vibrators all have the same polarity. Thereby, the acceleration in the Z direction is detected. FIG. 1D shows a case where an acceleration in the X direction parallel to the vibrators 1 and 2 is applied, and the operation is the same as that shown in FIG. In this case, no displacement occurs in the vibrators 3 and 4. Thereby, the acceleration in the X direction is detected. FIG. 1D shows a case in which acceleration in the Y direction parallel to the vibrators 3 and 4 is applied. The vibrator 3 bends upward with respect to the vibrator surface, and the vibrator 4 bends downward. The stress displacement due to the deflection of the vibrators 3 and 4 causes a change in the amount of electricity in a direction opposite to the strain detecting elements provided on the respective vibrator surfaces. Thus, the acceleration in the Y direction is detected. In this case, no displacement occurs in the vibrators 1 and 2. With the above configuration, it is possible to detect acceleration in two-dimensional or three-dimensional directions.

【表1】は、上記で示した各方向の加速度に対応しそれ
ぞれの振動体に設けられたひずみ検出素子より得られる
電気量の極性を示し、
Table 1 shows the polarities of the quantities of electricity obtained from the strain detecting elements provided on the respective vibrators corresponding to the accelerations in the respective directions shown above.

【表2】は、それぞれのひずみ検出素子から得られる電
気量の変化を加減算処理を行うことで加わる加速度を各
軸成分毎に検出でき得ることを示したものである。
Table 2 shows that the acceleration applied can be detected for each axis component by performing addition and subtraction processing on the change in the amount of electricity obtained from each strain detection element.

【0009】[0009]

【実施例】本発明の第1の実施例を図を用いて説明す
る。図2a〜cは、2次元片持梁構造の加速度センサの
一実施例を示す。2つの板上の振動体1、2は、例えば
鉄ーニッケル合金,真鍮,セラミック,ガラス等々熱膨
張係数が小さく機械的な振動を生ずる材料で形成しその
形状は長方形でも台形状であってもかまわない。又、2
つの振動体の支持部を連結としコ字状に一体形状として
もよい。振動体の一端自由端部には振動体に大きな変位
と加速度の向きに対応した変位を生じさせるための付加
質量5、6を設け、これらは振動体1と2では振動体面
に対し、上、下逆向きに配置される。各々の付加質量の
振動体支持部からの位置を重力の影響を補正し、2つの
振動体のたわみ変位を等しくするために好ましくは若干
異ならせ配置するかもしくは付加質量の重量を若干異な
らせた方がよい。又、これらの材質は適度な重量を有し
上記機能が果たせればどの様なものでもかまわないしそ
の形状は円柱でも角柱でもよい。振動体の面上には、各
梁に発生する応力を電気量の変化に変えるための圧電素
子、ひずみゲージ素子等のひずみ検出素子が形成され
る。ひずみ検出素子を圧電素子で形成した場合を例にと
り説明する。圧電セラミックで形成される圧電板9、1
0の両面に電極を形成する。そして電極16を振動体
1、2の主面に接着する。尚、それぞれの圧電板は電極
15から振動体側に向かって分極を行う。もちろん優れ
た温度特性と高精度を得るために振動体の対向する主面
に互いに逆極性で分極された圧電板を接着し一般にパラ
レルバイモルフ構造といわれる振動体を形成してもよ
い。2つの振動体の一端支持部を共通の固定台座13で
支持し、合わせてこれは本加速度センサを設置する時の
取付用台座を兼ねている。この様に構成された2つの振
動体の梁の長手方向の中心線が互いに平行に配置された
ことを特徴とする加速度センサでその動作はすでに
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to the drawings. 2a to 2c show an embodiment of an acceleration sensor having a two-dimensional cantilever structure. The vibrators 1 and 2 on the two plates are made of a material having a small thermal expansion coefficient and causing mechanical vibration, such as iron-nickel alloy, brass, ceramic, glass, etc., and may have a rectangular or trapezoidal shape. Absent. 2
The support portions of the two vibrators may be connected to each other to form a U-shape as an integral shape. At the one free end of the vibrating body, additional masses 5 and 6 are provided for causing the vibrating body to generate a large displacement and a displacement corresponding to the direction of the acceleration. It is arranged upside down. The positions of the respective additional masses from the vibrating body support portion are preferably arranged to be slightly different from each other in order to compensate for the influence of gravity and equalize the bending displacement of the two vibrating bodies, or the weights of the additional masses are slightly different. Better. These materials may be of any shape as long as they have an appropriate weight and can perform the above-mentioned functions, and may be cylindrical or prismatic. On the surface of the vibrating body, a strain detecting element such as a piezoelectric element or a strain gauge element for changing a stress generated in each beam into a change in electric quantity is formed. The case where the strain detecting element is formed of a piezoelectric element will be described as an example. Piezoelectric plates 9, 1 made of piezoelectric ceramic
The electrodes are formed on both sides of the “0”. Then, the electrode 16 is bonded to the main surfaces of the vibrators 1 and 2. Each piezoelectric plate polarizes from the electrode 15 toward the vibrator. Of course, in order to obtain excellent temperature characteristics and high precision, a vibrating body generally called a parallel bimorph structure may be formed by bonding piezoelectric plates polarized with opposite polarities to opposing main surfaces of the vibrating body. One end supporting portions of the two vibrators are supported by a common fixed pedestal 13, which also serves as a mounting pedestal when the present acceleration sensor is installed. The operation of the acceleration sensor is characterized in that the longitudinal center lines of the beams of the two vibrating bodies configured as described above are arranged parallel to each other.

【0007】実施の形態で示した通りである。[0007] This is as described in the embodiment.

【0010】次に本発明の第2の実施例を図を用いて説
明する。図1a、bは、3次元片持梁構造の加速度セン
サの一実施例を示す。本実施例は、前記第1の実施例の
2次元加速度センサをX,Y直交座標系においてX,Y
直交点を原点とし互いに直交するように配置したもので
あり、細部構成は第1の実施例で示した内容と同じであ
るので説明は省く。2つの加速度センサを直交配置とす
ることで先に従来例で示した1次元加速度センサ4つを
一体の固定部から自由端部が互いに中心部を向くように
十字状に組み合わせ配置された3次元加速度センサ構成
よりも同じ外形寸法とした場合、振動体の梁部の長さを
格段に長くでき、よって検出感度は大幅に向上する。動
作に関しては、すでに
Next, a second embodiment of the present invention will be described with reference to the drawings. 1a and 1b show an embodiment of an acceleration sensor having a three-dimensional cantilever structure. This embodiment is different from the first embodiment in that the two-dimensional acceleration sensor of the first embodiment is an X, Y orthogonal coordinate system.
They are arranged so as to be orthogonal to each other with the orthogonal point as the origin, and the detailed configuration is the same as that shown in the first embodiment, so description thereof will be omitted. By arranging the two acceleration sensors at right angles, a three-dimensional arrangement in which the four one-dimensional acceleration sensors previously described in the related art are combined in a cross shape such that the free ends face the center from the integral fixed part. When the external dimensions are the same as those of the acceleration sensor configuration, the length of the beam portion of the vibrating body can be significantly increased, and thus the detection sensitivity is greatly improved. As for the operation,

【0008】実施の形態で示した通りであり各々の振動
体変位に対応し発生する電気量の変化よりX、Y、Z3
方向成分の加速度が検出される。
As shown in the embodiment, X, Y, and Z3 are obtained from changes in the amount of electricity generated corresponding to the displacement of each vibrating body.
The acceleration of the direction component is detected.

【0011】[0011]

【発明の効果】以上述べたとおり、本発明によれば複数
の向きの加速度を検出する加速度センサを容易に設置す
ることができ、特に従来構成の3次元加速度センサの形
状に比較してその形状を大きくすることなしに4つの片
持梁振動体の梁部の長さを2倍とすることも可能であ
り、よって振動体の機械量変位が拡大し加速度の検出感
度は大幅に向上する。又、換言すれば検出感度を従来構
成の加速度センサの感度と同レベルとするならばその形
状を超小型とすることも可能となる。
As described above, according to the present invention, an acceleration sensor for detecting accelerations in a plurality of directions can be easily installed. It is also possible to double the length of the beam portion of the four cantilever vibrating members without increasing the length of the vibrating member, thereby increasing the mechanical displacement of the vibrating member and greatly improving the acceleration detection sensitivity. In other words, if the detection sensitivity is set to the same level as that of the acceleration sensor having the conventional configuration, it is possible to make the shape ultra-small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】a:本発明請求項2の実施例を示す斜視図 b:本発明請求項2の実施例を示す上面配置図 c,d:図1a、bに示す加速度センサの梁の動作説明
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1a is a perspective view showing an embodiment of claim 2 of the present invention b: top view showing an embodiment of claim 2 of the present invention c, d: description of the operation of the beam of the acceleration sensor shown in FIGS. Figure

【図2】a:本発明請求項1の実施例を示す斜視図 b:本発明請求項1の実施例を示す側面図 c:本発明請求項1の実施例を示す上面配置図 d,e:図2a〜cに示す加速度センサの梁の動作説明
2a: a perspective view showing an embodiment of the first aspect of the present invention; b: a side view showing an embodiment of the first aspect of the present invention; c: a top plan view showing an embodiment of the first aspect of the present invention; : Operation explanatory view of beam of acceleration sensor shown in FIGS.

【図3】a:従来構成の1次元加速度センサの図解図 b:図3ーaに示す加速度センサの梁の動作説明図3a is an illustrative view of a one-dimensional acceleration sensor having a conventional configuration. B: operation explanatory view of a beam of the acceleration sensor shown in FIG.

【図4】a:従来構成の3次元加速度センサの上面配置
図 b:従来構成の3次元加速度センサの断面図 c,d:図4a、bに示す加速度センサの梁の動作説明
4A is a top view of a three-dimensional acceleration sensor having a conventional configuration. B is a cross-sectional view of a three-dimensional acceleration sensor having a conventional configuration. C and d are operation explanatory diagrams of beams of the acceleration sensor shown in FIGS. 4A and 4B.

【符号の説明】[Explanation of symbols]

1 第1の片持梁振動体 2 第2の片持梁振動体 3 第3の片持梁振動体 4 第4の片持梁振動体 5 第1の片持梁振動体に形成された付加質量 6 第2の片持梁振動体に形成された付加質量 7 第3の片持梁振動体に形成された付加質量 8 第4の片持梁振動体に形成された付加質量 9 第1の片持梁振動体に形成されたひずみ検出素子 10 第2の片持梁振動体に形成されたひずみ検出素
子 11 第3の片持梁振動体に形成されたひずみ検出素
子 12 第4の片持梁振動体に形成されたひずみ検出素
子 13 固定台座 14 設置用取付孔 15 電極 16 電極
DESCRIPTION OF SYMBOLS 1 1 cantilever vibrating body 2 2nd cantilever vibrating body 3 3rd cantilever vibrating body 4 4th cantilever vibrating body 5 Addition formed in 1st cantilever vibrating body Mass 6 Additional mass formed on second cantilever vibrating body 7 Additional mass formed on third cantilever vibrating body 8 Additional mass formed on fourth cantilever vibrating body 9 First Strain detecting element formed on cantilever vibrating body 10 Strain detecting element formed on second cantilever vibrating body 11 Strain detecting element formed on third cantilever vibrating body 12 Fourth cantilever Strain detecting element formed on beam vibrator 13 Fixed pedestal 14 Mounting hole for installation 15 Electrode 16 Electrode

【表1】 [Table 1]

【表2】 [Table 2]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2つの板上の振動体及び前記振動体の面
上に形成された圧電素子、ひずみゲージ素子等のひずみ
検出素子そして前記振動体の一端自由端部に板の表,裏
面に互いに上下逆向きに配置された付加質量を含み前記
振動体の一端支持部を共通の固定台座で支持し且つこれ
らの振動体の長手方向の中心線が互いに平行配置とされ
たことを特徴とする片持梁構造の加速度センサ。
1. A vibrating body on two plates, a strain detecting element such as a piezoelectric element or a strain gauge element formed on a surface of the vibrating body, and a free end of one end of the vibrating body on a front surface and a back surface of the plate. An end of the vibrator is supported by a common fixed pedestal and includes additional masses arranged upside down with respect to each other, and the longitudinal center lines of these vibrators are arranged parallel to each other. Acceleration sensor with cantilever structure.
【請求項2】 請求項1に記載する加速度センサ2組を
X、Y直交座標系においてX、Y直交点を原点とし1組
の前記加速度センサをX軸上にそれぞれ原点より等位置
に直交配置としたことを特徴とする片持梁構造の加速度
センサ。
2. The two sets of acceleration sensors according to claim 1 are arranged orthogonally at the X and Y orthogonal coordinate systems, with the X and Y orthogonal points as the origin, and one set of the acceleration sensors on the X axis at the same position from the origin. An acceleration sensor having a cantilever structure.
JP9296348A 1997-10-13 1997-10-13 Acceleration sensor Pending JPH11118824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9296348A JPH11118824A (en) 1997-10-13 1997-10-13 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9296348A JPH11118824A (en) 1997-10-13 1997-10-13 Acceleration sensor

Publications (1)

Publication Number Publication Date
JPH11118824A true JPH11118824A (en) 1999-04-30

Family

ID=17832398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9296348A Pending JPH11118824A (en) 1997-10-13 1997-10-13 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPH11118824A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111504443A (en) * 2020-06-11 2020-08-07 吉林大学 Three-dimensional vibration test sensor based on additive manufacturing technology and preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111504443A (en) * 2020-06-11 2020-08-07 吉林大学 Three-dimensional vibration test sensor based on additive manufacturing technology and preparation method

Similar Documents

Publication Publication Date Title
US8082790B2 (en) Solid-state inertial sensor on chip
EP1292832B1 (en) Piezoelectric rotational accelerometer
JP3311633B2 (en) Sensor unit
US8117912B2 (en) Multiaxial acceleration sensor and angular velocity sensor
US8074517B2 (en) Inertia force sensor
JP2021067701A (en) Angular velocity sensor and sensor element
US6895819B1 (en) Acceleration sensor
JPH11118824A (en) Acceleration sensor
TW200422623A (en) Z-axis solid state gyroscope and three-axis inertial measurement apparatus
CN110501521B (en) Piezoelectric accelerometer
US11692826B2 (en) Angular velocity sensor
JPH0526754A (en) Sensor utilizing change in electrostatic capacitance
JP6065017B2 (en) Angular acceleration sensor and acceleration sensor
JP2008309731A (en) Acceleration detection unit and acceleration sensor
JP2008304409A (en) Acceleration detecting unit and acceleration sensor
JP3017442U (en) Piezoelectric acceleration sensor
JP3139212B2 (en) Acceleration sensor
JPH0627133A (en) Three dimensional acceleration sensor
JP2000283765A (en) Tripod tuning fork oscillator and angular speed sensor
JPS62108161A (en) Acceleration sensor
JP3015278U (en) Piezoelectric acceleration sensor
JP2581901B2 (en) Piezoelectric acceleration pickup
JP3139211B2 (en) Acceleration sensor
JPH0954113A (en) Acceleration sensor
JP5003161B2 (en) Acceleration detection unit