JPH11114593A - Treatment of water - Google Patents

Treatment of water

Info

Publication number
JPH11114593A
JPH11114593A JP28084497A JP28084497A JPH11114593A JP H11114593 A JPH11114593 A JP H11114593A JP 28084497 A JP28084497 A JP 28084497A JP 28084497 A JP28084497 A JP 28084497A JP H11114593 A JPH11114593 A JP H11114593A
Authority
JP
Japan
Prior art keywords
water
oxygen
region
carbon source
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28084497A
Other languages
Japanese (ja)
Inventor
Makoto Hosoya
誠 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosoya Kk Off
OFFICE HOSOYA KK
Original Assignee
Hosoya Kk Off
OFFICE HOSOYA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosoya Kk Off, OFFICE HOSOYA KK filed Critical Hosoya Kk Off
Priority to JP28084497A priority Critical patent/JPH11114593A/en
Publication of JPH11114593A publication Critical patent/JPH11114593A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain the good quality of water by reducing and removing the oxide dissolved in the water in a water tank, drinking water and washing water for the domestic animal and human being, agricultural water, water for livestock industry or industrial waste water. SOLUTION: An oxygen-poor region low in oxygen concn. is formed in the water, and an org. carbon source is supplied to the heterotropic bacteria implanted in an environment low in dissolved oxygen in the oxygen-poor region. Consequently, the activation of the heterotropic bacteria is promoted, the oxide and final oxide present in the water are converted to a harmless gas by the reduction such as denitrification, the reduction of the oxide continuously formed in the water is everlastingly promoted, and the water quality is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一般家庭や業務用
として使用する観賞魚用の水槽、営業用として使用する
活魚用の水槽若しくは水族館等に設置されている大規模
な水槽、あるいは庭園やゴルフ場等に設置してあって魚
を飼育している池等において貯溜する水の水質を長期的
に良好に維持したり、家畜用や人間用の飲料水、洗浄水
等に供する一般用水や井戸水等に溶存している硝酸態窒
素等の最終酸化物、亜硝酸態窒素等の酸化物が溶存して
いる場合の脱窒素を作用させたり、農業、畜産業若しく
は工業排水等に溶存する酸化物、最終酸化物等を還元処
理するための水、若しくは海水、汚損水、工業用水、処
理水等の水処理方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to an aquarium for aquarium fish used for home and business, a large aquarium installed in an aquarium for a live fish used for business, or a garden, It is installed in golf courses, etc. and maintains the quality of water stored in ponds where fish are bred for a long period of time.It can also be used for drinking water for domestic animals and humans, general water used for washing water, etc. Final oxides such as nitrate nitrogen dissolved in well water, etc., or denitrification when oxides such as nitrite nitrogen are dissolved, or oxidation dissolved in agriculture, livestock industry, industrial wastewater, etc. The present invention relates to a water treatment method for water for reducing substances, final oxides, and the like, or seawater, fouled water, industrial water, and treated water.

【0002】[0002]

【従来の技術】小規模若しくは大規模な家庭用の水槽、
営業用の水槽、あるいは貯溜池等において、水中に存在
している餌残や水中生息体の排泄物等の有機廃物は、好
気性微生物群の代謝機能により酸化交代され、亜硝酸態
窒素、硝酸態窒素、硫酸塩やりん酸塩等の酸化物若しく
は最終酸化物として水中に蓄積する。そして、これらの
酸化物質が水中に蓄積すると、水の富栄養化を招いて藻
や苔の発生を促進し、水質汚損や水質の悪化の原因とな
るばかりでなく、PH値が低下して酸性側に移行するこ
とがある。このため、水中での生息体の飼育に著しい障
害となるばかりでなく、自然環境内において水環境維持
での大きな妨げとなる。したがって、水中に生息体の排
泄物や残餌が存在したり水質が変化しても、水中の生息
体を長期間安定して飼育できるように水質管理すること
はきわめて重要なことである。また、家畜用や人間用の
飲料水や洗浄水等に供する一般生活水や井戸水等や、農
業用、畜産業用若しくは工業排水等に溶存する酸化物、
最終酸化物を脱窒素等により還元除去して浄化すると、
その処理水は多目的に使用できて価値を著しく高めるこ
とになる。従来では、最も簡単な水の浄化方法として
は、濾過装置を介在させた循環系にポンプ等を使用して
水を通過させ、濾過装置を通過する水を濾過して浄化し
ている。しかし、この方法では水中に存在する微細な汚
染物や酸化物を濾過装置で除去しているだけであるか
ら、水質の本質的な改善ではない。また、好気性及び嫌
気性微生物の作用を利用して水を生物学的に浄化する方
法が特開平1−281198号公報に記載されている。
2. Description of the Related Art Small or large domestic aquariums,
Organic wastes such as food residues and excretions of aquatic organisms existing in water are oxidized and replaced by metabolic functions of aerobic microorganisms in commercial water tanks or reservoirs, and nitrite nitrogen and nitrate are removed. It accumulates in water as oxides or final oxides such as nitrogen, sulfate and phosphate. When these oxidants accumulate in water, they cause eutrophication of the water and promote the generation of algae and moss, which not only causes water pollution and deterioration of water quality, but also lowers the PH value and reduces acidity. May shift to the side. For this reason, not only does it significantly hinder the breeding of inhabitants underwater, but it also becomes a major hindrance to maintaining the water environment in the natural environment. Therefore, it is extremely important to control the water quality so that the inhabitants in the water can be stably bred for a long period of time, even if the excrement and residual food of the inhabitants exist in the water or the water quality changes. Also, general living water and well water for drinking water and washing water for livestock and humans, and oxides dissolved in agricultural, livestock or industrial wastewater,
Purification by reducing and removing the final oxide by denitrification, etc.
The treated water can be used for a variety of purposes and significantly increase its value. Conventionally, the simplest method of purifying water is to use a pump or the like to pass water through a circulation system having a filtration device, and to filter and purify the water passing through the filtration device. However, in this method, fine contaminants and oxides present in the water are only removed by a filtration device, and this is not an essential improvement in water quality. Also, a method for biologically purifying water by utilizing the action of aerobic and anaerobic microorganisms is described in JP-A-1-281198.

【0003】[0003]

【発明が解決しようとする課題】そして、前記した従来
の水の浄化方法は、水槽の内部または外部に専用の濾過
スペースを設けて空間を形成するとともに、濾過スペー
スの中にウールマットやフィルタースポンジ等の物理的
濾過材を用いて浸透濾過を行うか、活性炭等の化学濾過
材を用いて吸着濾過を行うか、生物学的水浄化方法を用
いて微生物の代謝交代により毒性物質から、より毒性の
低い化学種への物質交代を促す方法がとられているが、
これら従来の生物学的水浄化方法は好気性微生物のみが
占有するに適する濾過材を用いて好気性微生物が占有す
るに適した酸素含有量の多いゾーンを形成する構成であ
る。しかし、物理濾過法や化学濾過法では、物理濾過材
の目詰まりによる濾過能力の減退や化学吸着濾過材の吸
着限界による濾過能力の減退から長期の水質維持は極め
て困難である。また、好気性微生物の代謝交代を中心と
した構成での生物学的水浄化方法では、濾過材に着床す
る好気性微生物(独立栄養細菌群)の代謝系で行われる
溶質(有機廃物)の物質交代が酸化方向のみに片寄るの
で、生成される酸化物質が水中に蓄積することにより、
良好な水質を長期的に維持することや長期的な水浄化作
用を行うことが出来ず、強いては大きな労力を要する頻
繁な水替えが必要となる。したがって、水中、海水中若
しくは汚損水中に存在する酸化物質を脱窒素等により還
元して無害なガスを放出するようにすれば、魚類等の水
中生息体の飼育用の水を頻繁に交換するという著しい労
力を要することなく、きわめて長期間魚類の飼育に最適
な状態の水質を維持することが出来ることから、養魚業
界において有効である。また、家畜用や人間用の飲料水
や洗浄水等に供する一般生活水や井戸水等に硝酸態窒
素、亜硝酸態窒素等の酸化物、最終酸化物が溶存してい
る場合の脱窒素、同じく農業、畜産、工業排水等に溶存
する酸化物、最終酸化物を還元除去するための給排水処
理等についてもきわめて有効である。
In the above-mentioned conventional water purification method, a dedicated filtration space is provided inside or outside a water tank to form a space, and a wool mat or a filter sponge is provided in the filtration space. Osmotic filtration using a physical filtration material such as, or adsorption filtration using a chemical filtration material such as activated carbon, or more toxic from toxic substances by metabolic alteration of microorganisms using a biological water purification method Although it is a method to promote substance replacement to low-species chemicals,
These conventional biological water purification methods are configured to form a zone having a high oxygen content suitable for occupation by aerobic microorganisms by using a filter medium suitable for occupation only by aerobic microorganisms. However, in the physical filtration method and the chemical filtration method, it is extremely difficult to maintain the water quality for a long period of time due to a decrease in filtration ability due to clogging of the physical filtration medium and a decrease in filtration ability due to the adsorption limit of the chemical adsorption filtration medium. In addition, in a biological water purification method mainly composed of metabolic alternation of aerobic microorganisms, a solute (organic waste) generated in a metabolic system of aerobic microorganisms (autotrophic bacteria) that is implanted on a filter medium is removed. Since the substance alteration is biased only in the oxidation direction, the generated oxidant accumulates in the water,
It is not possible to maintain good water quality for a long period of time or to perform a long-term water purification action, and frequent water changes requiring great effort are required. Therefore, if oxidizing substances present in water, seawater or foul water are reduced by denitrification or the like to release harmless gas, the water for breeding aquatic inhabitants such as fish is frequently changed. This is effective in the fish farming industry because it is possible to maintain the optimum water quality for breeding fish for a very long time without requiring significant labor. In addition, oxides such as nitrate nitrogen and nitrite nitrogen in general living water or well water provided for drinking water or washing water for livestock and humans, and denitrification when final oxides are dissolved, It is also very effective for water supply and drainage treatment for reducing and removing oxides and final oxides dissolved in agricultural, livestock, and industrial wastewater.

【0004】[0004]

【課題を解決するための手段】本発明は前記した従来の
欠点に鑑み、また上記した本発明の目的を達成させるた
めに提案されたもので、水中に酸素濃度の低い貧酸素領
域を形成し、上記貧酸素領域内における溶存酸素量の少
ない環境下において着床する従属栄養細菌群に有機炭素
源を供給することにより、上記従属栄養細菌群の活性化
を促進して水中に存在する酸化物、最終酸化物を脱窒素
等の還元作用によって無害なガスに変換させ、もって継
続的に生成される水中の酸化物を恒久的に還元作用を促
して水質を改善するようにしたことを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional drawbacks, and has been proposed in order to achieve the above-mentioned object of the present invention. An oxygen-deficient region having a low oxygen concentration is formed in water. By supplying an organic carbon source to a heterotrophic bacteria group that is implanted in an environment with a low amount of dissolved oxygen in the anoxic region, the activation of the heterotrophic bacteria group is promoted to promote the presence of oxides present in water. The feature is that the final oxide is converted into harmless gas by a reducing action such as denitrification, so that the continuously generated oxides in the water are permanently promoted in the reducing action to improve the water quality. I do.

【0005】[0005]

【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。本発明の水処理方法は、第1処理過程とし
て、処理の対象となる生息体が飼育されている淡水や海
水、または一般生活水や井戸水、農業用、畜産用、工業
用等に使用する汚損水、貯溜水等の水中に酸素濃度の低
い貧酸素領域を形成する。一般に、酸素は気体であるか
ら水に溶解しにくい性質を持ち、溶存酸素量には限界が
ある。水に酸素が溶存する最大量を溶存酸素飽和点とい
い、この飽和点は淡水、海水により異なるし、また水の
PH値、硬度、水温等のファクターによっても相違す
る。例えば、水温が25℃の場合、水道水のような淡水
での飽和点は8.1ppm、海水の飽和点は7ppmで
ある。また、淡水の場合、5℃での飽和点は12.4p
pm、10℃では10.6ppm、15℃では9.8p
pm、20℃では8.8ppm、30℃では7.5pp
mであり、水温によって上記のとおりある程度相違す
る。本発明における前記貧酸素領域は、上記溶存酸素飽
和点において30%以下に達している水中の一部を指す
のが最も望ましく、例えば25℃の淡水においては溶存
酸素量が概略2.4ppm以下の水中の部分をいう。ま
た、一般的には水中での溶存酸素量が0の場合、水の酸
化、還元状態を追跡することが困難になるため、貧酸素
領域内に酸素の与えている影響を酸化還元電位(OXY
GEN REDUCTION POTENTIAL 略
称ORP)により判断することができる。通常の河川、
池、海等の自然界に存在している水のORPは360〜
430mVで、本発明ではORPが200mV以下であ
れば貧酸素領域に該当すると認められる。本発明におい
て、処理をする水が一般家庭若しくは業務用の観賞魚用
あるいは活魚用の水槽、又は水族館に設置されている大
規模な水槽等のように、魚類等の水中生息体の飼育用の
水槽の内部に貯溜している水であれば、貧酸素領域を形
成する第1の例として、水槽の底部に水の特性に変化を
与えない砂を5〜20cm程度の厚さに敷き、この砂層
の下方部分に水流の停滞域を形成する。水槽の水は、常
に水が循環流して水流が生じているので、上記した停滞
域には水がほとんど通らないか、若しくはごく微量の水
流が発生している状態であるから、貧酸素領域が構成さ
れる。
Embodiments of the present invention will be described below in detail. In the water treatment method of the present invention, as a first treatment step, the contamination used for freshwater or seawater in which a living body to be treated is bred, or general living water or well water, agriculture, livestock, industrial use, or the like An oxygen-deficient region having a low oxygen concentration is formed in water such as water or stored water. Generally, since oxygen is a gas, it has a property of being hardly dissolved in water, and the amount of dissolved oxygen is limited. The maximum amount of dissolved oxygen in water is called the dissolved oxygen saturation point. This saturation point differs depending on freshwater and seawater, and also depends on factors such as the pH value, hardness, and temperature of water. For example, when the water temperature is 25 ° C., the saturation point in fresh water such as tap water is 8.1 ppm, and the saturation point in seawater is 7 ppm. In the case of fresh water, the saturation point at 5 ° C. is 12.4 p.
pm, 10.6 ppm at 10 ° C, 9.8 p at 15 ° C
pm, 8.8 ppm at 20 ° C., 7.5 pp at 30 ° C.
m, which differs to some extent depending on the water temperature as described above. The poor oxygen region in the present invention most preferably refers to a part of the water reaching 30% or less at the dissolved oxygen saturation point. For example, in 25 ° C. fresh water, the dissolved oxygen content is approximately 2.4 ppm or less. Underwater part. In general, when the amount of dissolved oxygen in water is 0, it becomes difficult to track the oxidation and reduction states of water. Therefore, the influence of oxygen in the oxygen-deficient region is reduced by the oxidation-reduction potential (OXY).
GEN REDUCTION POTENTIAL (abbreviated as ORP). Normal river,
ORP of water existing in the natural world such as ponds and the sea is 360-
At 430 mV, in the present invention, it is recognized that if the ORP is 200 mV or less, it corresponds to the anoxic region. In the present invention, the water to be treated is used for breeding underwater inhabitants such as fish, such as aquariums for ornamental fish or live fish for general household or business use, or large aquariums installed in aquariums. In the case of water stored in the water tank, as a first example of forming a hypoxic region, sand that does not change the characteristics of water is spread on the bottom of the water tank to a thickness of about 5 to 20 cm. A stagnant area of water flow is formed in the lower part of the sand layer. Since the water in the aquarium always circulates and generates a water flow, almost no water flows through the above-mentioned stagnant area, or a very small amount of water flow is generated. Be composed.

【0006】前記水槽の内部に貧酸素領域を形成する第
2の例としては、水槽の底部に微量な水と気体が通過可
能な程度の小孔を適度に開設したハウジングを設け、上
記ハウジングの内部に貧酸素領域を構成する。
[0006] As a second example of forming an oxygen-deficient region inside the water tank, a housing is provided with a small hole at the bottom of the water tank so that a small amount of water and gas can pass therethrough. Creates an anoxic region inside.

【0007】水槽の内部に貧酸素領域を形成する第3の
例としては、水槽の底部に、上側に好気性領域、下側に
嫌気性領域を形成することができる二重特性の濾過材を
設置し、上記濾過材の表面の好気性領域に着床する好気
性微生物群により、好気性領域を通過する水が酸素消費
されるので、下側の嫌気性領域が貧酸素領域を構成する
ことになる。
[0007] As a third example of forming an anoxic region inside a water tank, a double characteristic filter medium capable of forming an aerobic area on the upper side and an anaerobic area on the lower side is provided at the bottom of the water tank. Since the water passing through the aerobic region is consumed by the aerobic microorganisms that are installed and land on the aerobic region on the surface of the filter medium, the lower anaerobic region constitutes the anoxic region. become.

【0008】水槽の内部に貧酸素領域を形成する第4の
例としては、水槽の内部にごく微量の水が循環流するこ
とができるフィルターハウジングを設け、フィルター内
をごく緩やかに水を循環させることによって、ハウジン
グの内部に貧酸素領域を構成することができる。
As a fourth example of forming an oxygen-deficient region inside a water tank, a filter housing through which a very small amount of water can circulate is provided inside the water tank, and water is circulated very slowly in the filter. Thus, an oxygen-deficient region can be formed inside the housing.

【0009】水槽の内部に貧酸素領域を形成する第5の
例としては、水槽の内部底面に敷く底面フィルターの内
部若しくは水通過口の外側に水の停滞域を設け、その停
滞域にごく微量の水を循環させることにより貧酸素領域
を構成することができる。
As a fifth example of forming an anoxic region inside a water tank, a water stagnation area is provided inside a bottom filter laid on the inner bottom surface of the water tank or outside a water passage opening, and a very small amount of water is provided in the stagnation area. By circulating the water, an oxygen-deficient region can be formed.

【0010】上記した5つの例は、水槽の水中内に貧酸
素領域を構成する場合を示した。しかし、水槽の外部に
貧酸素領域を構成して、水槽内の水を微量に循環させる
こともできる。そのような構成の第1の例としては、水
槽の外部に設置するフィルターハウジングの内部に仕切
りを設けて水がごく微量しか通らない水の停滞域を形成
し、上記停滞域の上面を大気と遮断することにより、貧
酸素領域を構成することができる。
The above five examples show the case where the oxygen-deficient region is formed in the water of the water tank. However, it is also possible to configure a poor oxygen region outside the water tank to circulate a small amount of water in the water tank. As a first example of such a configuration, a partition is provided inside a filter housing installed outside a water tank to form a stagnant area of water through which only a very small amount of water passes, and the upper surface of the stagnant area is connected to the atmosphere. By blocking, an oxygen-deficient region can be formed.

【0011】水槽の外部に貧酸素領域を構成する第2の
例としては、水槽の外部に設置するフィルターハウジン
グから水槽の内部に水を戻す戻りパイプに、フィルター
を有するバイパスを設けて水槽に戻る水の一部をバイパ
スのフィルターにごく微量だけ通過させ、このバイパス
のフィルターに貧酸素領域を構成するのである。
As a second example of forming an oxygen-deficient region outside a water tank, a return pipe for returning water from a filter housing provided outside the water tank to the inside of the water tank is provided with a bypass having a filter and returning to the water tank. Only a very small amount of water passes through the bypass filter, forming an anoxic region in the bypass filter.

【0012】水槽の外部に貧酸素領域を構成する第3の
例としては、水槽の外部に設置するフィルターハウジン
グの内部に、上側に好気性領域、下側に嫌気性領域を形
成することができる二重特性の濾過材を設置し、上記濾
過材の表面の好気性領域に着床する好気性微生物群によ
り、好気性領域を通過する水が酸素消費されるので、下
側の嫌気性領域が貧酸素領域を構成するのである。
As a third example of forming an anoxic region outside the water tank, an aerobic area can be formed on the upper side and an anaerobic area can be formed on the lower side inside the filter housing installed outside the water tank. A filter material having dual characteristics is installed, and water passing through the aerobic region is consumed by oxygen by the aerobic microorganisms that land on the aerobic region on the surface of the filter material. It constitutes an anoxic region.

【0013】上記した各例は、水槽の内部若しくは外部
に貧酸素領域を構成する場合を説明した。しかし、処理
する水が浄化処理場等の貯溜水、河川、池、海の水のよ
うに自然界に存在する水中の場合には、水中の底面の土
壌下において、水が微量しか通過しない位置に貧酸素領
域を設定することができる。また、水が存在する部分の
外側に、あるいは水中に定量の水を循環流させることが
できるフィルターハウジングを設置し、ハウジング内の
フィルターをごく緩やかに水を循環流させることによ
り、貧酸素領域を構成することができる。また、処理の
対象となる水が、生活用水、生活排水、農業や畜産業若
しくは工業での排水の場合であっても、上記と同様にフ
ィルターハウジングを設置することにより、貧酸素領域
を構成することができる。
In each of the above examples, the case where the oxygen-deficient region is formed inside or outside the water tank has been described. However, if the water to be treated is water that exists in nature, such as stored water from a purification plant, rivers, ponds, or sea water, a small amount of water will pass under the soil at the bottom of the water. Anoxic regions can be set. In addition, by installing a filter housing that can circulate a fixed amount of water outside the water or in the water, and by circulating the water in the filter inside the housing very slowly, the anoxic region can be reduced. Can be configured. Further, even if the water to be treated is domestic water, domestic wastewater, wastewater from agriculture, livestock industry or industry, by installing a filter housing in the same manner as described above, the oxygen-deficient region is formed. be able to.

【0014】本発明によれば、上記の通り水槽の内部や
外部であっても、若しくは自然界に存在する水の内部や
外部においても、溶存酸素量が少ない環境下の貧酸素領
域を構成することができる。そして、本発明においては
前記貧酸素領域に有機炭素源を供給し、硝酸塩還元細
菌、脱窒素細菌等の従属栄養細菌群を着床させながら生
育させて増殖させるとともに、それら従属栄養細菌群の
活性化を促進するのである。
According to the present invention, the oxygen-deficient region in which the amount of dissolved oxygen is small is constituted even inside or outside the water tank as described above, or inside or outside water existing in nature. Can be. In the present invention, an organic carbon source is supplied to the anoxic region, and nitrate-reducing bacteria, heterotrophic bacteria such as denitrifying bacteria are grown and implanted while being implanted, and the activity of the heterotrophic bacteria is increased. It promotes the transformation.

【0015】本発明においては、前記有機炭素源とし
て、固形と液体との2種類を例示として提案することが
できる。有機炭素源の第1例としては固形状のもので、
高分子生分解樹脂であるヒドロキシブチレートとヒドロ
キシバリエートとからなる共重合ポリエステルを圧縮成
形加工してなる。上記有機炭素源を圧縮成形加工する場
合は、ただ単に球状若しくは塊状に成形するのではな
く、従属栄養細菌群が着床しやすいように水との接触面
積をきわめて広くするのが望ましい。その具体的一例と
しては、複数枚の薄板材を並列させて構成した2つの半
球体を、薄板材が直交するように径部分で接合してなる
球体、あるいは多数枚のフィンを並列させてなる角柱体
等の形状のものを前記貧酸素領域に埋設状に設置する
と、前記従属栄養細菌群が着床しやすいし、また従属栄
養細菌群がエネルギー源として消費しやすくなる。高分
子生分解樹脂としては、主成分が上記共重合ポリエステ
ルのものに限定されず、例えばポリカプロラクトン、ポ
リブチレンサクシネート/アジペート、ポリエチレンサ
クシネート、ポリ乳酸、ポリ乳酸ポリエステル、4−ヒ
ドロキシ酪酸、γ−ブチロラクトン、1,4−ブタンジ
オール、1,6ヘキサンジオール、4−クロロ酪酸等を
主成分とする樹脂も使用することができる。
In the present invention, two types of organic carbon sources, solid and liquid, can be proposed as examples. The first example of the organic carbon source is a solid one,
It is obtained by compression molding a copolyester composed of hydroxybutyrate and hydroxyvariate, which are high molecular biodegradable resins. When the above-mentioned organic carbon source is subjected to compression molding, it is preferable that the contact area with water be extremely wide so that the heterotrophic bacteria can be easily implanted, instead of simply forming the organic carbon source into a spherical or massive form. As a specific example, two hemispheres formed by arranging a plurality of thin plate members in parallel, a sphere formed by joining the thin plate members at a diameter portion so that the thin plate members are orthogonal to each other, or a plurality of fins are arranged in parallel. When a prismatic body or the like is buried in the anoxic region, the heterotrophic bacteria are easily implanted, and the heterotrophic bacteria are easily consumed as an energy source. The polymer biodegradable resin is not limited to those whose main components are the above-mentioned copolymerized polyesters. For example, polycaprolactone, polybutylene succinate / adipate, polyethylene succinate, polylactic acid, polylactic acid polyester, 4-hydroxybutyric acid, γ Resins containing butyrolactone, 1,4-butanediol, 1,6 hexanediol, 4-chlorobutyric acid and the like as main components can also be used.

【0016】また、有機炭素源の第2例としては液状の
ものであって、天然多糖類の高分子炭素源を、脱酸素処
理した純水中に溶解させるとともに、セルロース等を凝
集除去処理した液である。ここで、天然多糖類の高分子
炭素源を脱酸素処理した純水中に溶解させるのは、主と
して酸素と炭素源及び他の化学種の各々との純化学的な
反応を防ぐためであり、また、セルロース等を凝集除去
するのは、セルロース等が従属栄養細菌群の代謝機能で
ある脱窒素等の還元作用の活性を阻害する可能性がある
からである。本発明において、天然多糖類としては、シ
ョ糖、果糖、ブドウ糖、マンナン等のデンプン系の高分
子炭素源、その他あらゆる種類の天然多糖類を使用する
ことができる。そして、前記貧酸素領域には、上記した
液状の有機炭素源を定量的に供給するのであるが、液状
の有機炭素源を貧酸素領域に供給するには、有機炭素源
を水中に滴下して貧酸素領域にまで沈降させたり、貧酸
素領域に直接注入することができる。また、液状の有機
炭素源をアンプル状のボトルに収納し、このボトルを水
中の貧酸素領域に近い位置にセットして、ボトルに形成
した微細な穴(例えば径が1mm以下)から、定量的
(例えば1日に1ミリリットル以下)に貧酸素領域に供
給して浸透させる方法が本発明においてはきわめて有効
である。
A second example of the organic carbon source is a liquid one, in which a high molecular carbon source of a natural polysaccharide is dissolved in deoxygenated pure water, and cellulose and the like are coagulated and removed. Liquid. Here, the reason for dissolving the high molecular carbon source of the natural polysaccharide in pure water subjected to deoxygenation is mainly to prevent pure chemical reaction between oxygen and each of the carbon source and other chemical species, The reason why cellulose and the like are coagulated and removed is that cellulose and the like may inhibit the activity of a reducing action such as denitrification, which is a metabolic function of heterotrophic bacteria. In the present invention, as the natural polysaccharide, starch-based high molecular carbon sources such as sucrose, fructose, glucose, and mannan, and any other types of natural polysaccharides can be used. Then, the above-mentioned liquid organic carbon source is quantitatively supplied to the anoxic region.To supply the liquid organic carbon source to the anoxic region, the organic carbon source is dropped into water. It can be sedimented to the hypoxic region or injected directly into the hypoxic region. Further, the liquid organic carbon source is stored in an ampoule-shaped bottle, and this bottle is set at a position close to the anoxic region in the water, and quantitatively determined through a fine hole (for example, having a diameter of 1 mm or less) formed in the bottle. In the present invention, a method of supplying a solution to an oxygen-deficient region (for example, 1 ml or less per day) and permeating it is very effective.

【0017】本発明によれば、前記のとおり水中に前記
の貧酸素領域を構成して固形状の、若しくは液状の有機
炭素源を供給することにより、貧酸素領域に着床する従
属栄養細菌群がエネルギー源として上記有機炭素源を消
費することにより増殖する。しかも、従属栄養細菌群が
生存するためには酸素が必要であるが、酸素濃度の低い
貧酸素領域に生息するため、酸素が欠乏状態である貧酸
素領域で呼吸に要する酸素を硝酸塩若しくは亜硝酸塩等
の酸化物、最終酸化物から吸収して脱窒素等の還元作用
を活性化させることができる。したがって、水槽であれ
ば水中に存在する生息体の排泄物や残餌、その他の有機
廃物が、また、自然界に存在する池、処理水、工業用水
等であれば水中に存在する無数種類の有機廃物が、好気
性微生物群の代謝機能により酸化交代されて亜硝酸態窒
素、硝酸態窒素若しくは硫酸塩やりん酸塩等の酸化物、
あるいは最終酸化物として溶存して水質悪化の要因とな
るが、本発明では、水中の前記貧酸素領域に有機炭素源
を供給することにより、着床する従属栄養細菌群を活性
化させて脱炭素等の還元作用を著しく高め、前記酸化
物、最終酸化物を無害なガスに恒久的に変換して、長期
的に水質を改善するのである。そして、水槽内の水、自
然界に存在する水は流れが発生しているので、貧酸素領
域に微量しか流れたり循環しないが、少しでも水が通過
したり循環流することにより、その水に含まれる酸化物
あるいは最終酸化物が従属栄養細菌群の還元機能により
無害なガスに変換するので、ある程度の期間の経過によ
り水槽や貯溜水の水質を確実に改善することができる。
According to the present invention, a heterotrophic bacterium group which is implanted in the anoxic region by supplying the solid or liquid organic carbon source by constituting the anoxic region in water as described above. Grow by consuming the organic carbon source as an energy source. Furthermore, although heterotrophic bacteria require oxygen to survive, they inhabit oxygen-deficient oxygen-deficient regions, and therefore need oxygen for respiration in oxygen-deficient oxygen-deficient regions, such as nitrate or nitrite. Or the like, or from the final oxide to activate a reducing action such as denitrification. Therefore, in the case of an aquarium, excreta and residual food of living organisms and other organic wastes existing in the water, and in the case of natural ponds, treated water, industrial water, etc., countless kinds of organic substances existing in the water. Waste is oxidized and replaced by the metabolic function of aerobic microorganisms, and nitrite nitrogen, nitrate nitrogen or oxides such as sulfates and phosphates,
Alternatively, it dissolves as a final oxide and causes water quality deterioration, but in the present invention, by supplying an organic carbon source to the anoxic region in water, the heterotrophic bacteria group to be implanted is activated and decarbonized. , Etc., to significantly improve the water quality over the long term by permanently converting the oxides and final oxides into harmless gases. The water in the water tank and the water in the natural world are flowing, so only a small amount flows or circulates in the oxygen-deficient region, but even if a little water passes or circulates, it is included in the water. Oxide or final oxide is converted into harmless gas by the reducing function of the heterotrophic bacteria, so that the water quality of the water tank or the storage water can be surely improved after a certain period of time.

【0018】上記水質の改善に基づく従属栄養細菌群の
還元作用による基本的プロセスは以下のとおりと認めら
れる。 水中に溶存する硝酸塩(2NO3 )−(従属栄養細菌
群)→窒素ガス(N2 )+酸素(3O2 )
It is recognized that the basic process by the reducing action of heterotrophic bacteria based on the improvement of water quality is as follows. Nitrate dissolved in water (2NO3)-(heterotrophic bacteria) → nitrogen gas (N2) + oxygen (3O2)

【0019】上記還元作用にはさまざまな経緯がある
が、実際には異化型還元作用が行われている場合が多
い。この異化型還元作用の代表的なプロセスは以下のと
おりの2種類と認められる。 1)硝酸塩(NO3 )→亜硝酸塩(NO2 )→酸化窒素
(NO)→酸化第二窒素(N2 O)→窒素ガス(N2 )
Although the above-mentioned reducing action has various backgrounds, in many cases, a catabolic reducing action is actually performed. The following two types of typical processes of this catabolic reduction are recognized. 1) Nitrate (NO3) → nitrite (NO2) → nitric oxide (NO) → nitrous oxide (N2 O) → nitrogen gas (N2)

【0020】以下に本発明を実施例により詳細に説明す
る。しかし、本発明は下記の実施例に限定されるもので
はなく、特許請求の範囲に記載した構成を変更しない限
りどのようにでも実施することができる。
Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following embodiments, and can be implemented in any manner as long as the configuration described in the claims is not changed.

【0021】[実施例1]比重1.020の人工海水を
水槽の内部に50リットル供給し、水槽の上部に設置し
たフィルターハウジングの内部に好気性及び嫌気性の環
境を作り上げることができる二重特性を有する濾過材を
収納し、上記濾過材の表面に着床した好気性微生物群に
より酸素が消費された水を濾過材の内部に浸透させて貧
酸素領域を形成した。水槽の水中に10匹の蟹(全長4
〜5センチの磯蟹)を生息させた状態で、貧酸素領域に
有機炭素源を供給しないで水中の窒素系化学種の移行状
態を測定したら、下記の表1のとおりであった。
Example 1 An artificial seawater having a specific gravity of 1.020 was supplied into a water tank at a rate of 50 liters, and an aerobic and anaerobic environment could be created inside a filter housing installed above the water tank. A filter medium having characteristics was stored, and water in which oxygen was consumed by the aerobic microorganisms that had settled on the surface of the filter medium was permeated into the filter medium to form a hypoxic region. 10 crabs (length 4)
Table 1 below shows the state of migration of nitrogenous chemical species in water measured with no organic carbon source supplied to the anoxic region in a state where 磯 5 cm of rocky crab) had been inhabited.

【0022】[0022]

【表1】 [Table 1]

【0023】上記の表1から明らかなように、水中での
酸化物である硝酸態窒素が、貧酸素領域に着床した従属
栄養細菌群により減退し、日数の経過により従属栄養細
菌群が増殖して減退していくことが明らかになった。
As is clear from Table 1 above, nitrate nitrogen, which is an oxide in water, is reduced by the heterotrophic bacteria that have settled in the anoxic region, and the heterotrophic bacteria grow over time. It has become clear that it will decline.

【0024】[実施例2]比重1.020の人工海水を
水槽の内部に50リットル供給し、水槽の上部に設置し
たフィルターハウジングの内部に仕切りを設けて水の停
滞域を形成し、その部分に8個の固型の有機炭素源を置
き、上記停滞域の上部を5〜8メッシュの人工砂で覆っ
て大気と遮断することにより、貧酸素領域を形成した。
この貧酸素領域は0.8リットルの容積である。上記水
槽の水中に10匹の蟹類(全長4〜5センチの磯蟹)を
生息させた状態で、水中の窒素系化学種の移行状態を測
定したら、下記の表2のとおりであった。なお、上記固
型の有機炭素源としては、ヒドロキシブチレートとヒド
ロキシバリエートとからなる共重合ポリエステルを、複
数枚の薄板が縦方向に並列するように圧縮成形加工した
球体で、直径が30mmである。
Example 2 50 liters of artificial seawater having a specific gravity of 1.020 was supplied into a water tank, and a partition was provided inside a filter housing installed above the water tank to form a stagnant area of water. Then, eight solid organic carbon sources were placed, and the upper portion of the stagnant area was covered with artificial sand of 5 to 8 mesh to shut off the air, thereby forming an anoxic region.
This hypoxic region has a volume of 0.8 liters. In a state where 10 crabs (4 to 5 cm long shore crabs) inhabited in the water of the aquarium, the state of migration of nitrogenous chemical species in the water was measured, and the results are as shown in Table 2 below. The solid organic carbon source is a sphere obtained by compression-molding a copolyester composed of hydroxybutyrate and hydroxyvariate such that a plurality of thin plates are vertically arranged in parallel, and has a diameter of 30 mm. is there.

【0025】[0025]

【表2】 [Table 2]

【0026】上記の表2から明らかなように、ヒドロキ
シブチレートとヒドロキシバリエートとからなる共重合
ポリエステルを薄板状にして並列するように圧縮成形加
工した球体を貧酸素領域に埋設状に供給すると、従属栄
養細菌群の代謝機能が高まって還元作用が活性化し、水
中の酸化物の値が実施例1と比較して著しく低い値で推
移すること、及び水中に溶存する総窒素の値がゼロにな
るのが、実施例1では35日以上を要していたが、実施
例2では35日以下であったこと、等により、実施例1
より水中の酸化物、最終酸化物等の還元作用が著しく活
性化されたものである。
As is apparent from Table 2 above, when a sphere obtained by compression-forming a copolyester composed of hydroxybutyrate and hydroxyvariate into a thin plate and arranging them in parallel is supplied in a state of being buried in an oxygen-deficient region. The metabolic function of the heterotrophic bacteria is enhanced, the reducing action is activated, the value of oxides in water changes at a significantly lower value compared to Example 1, and the value of total nitrogen dissolved in water is zero. In Example 1, it took 35 days or more, but in Example 2, it took 35 days or less.
In this case, the reducing action of oxides and final oxides in water is significantly activated.

【0027】[実施例3]底部に厚さ10cmの砂を敷
いた水槽に比重1.020の人工海水を50リットルだ
け供給し、敷砂の下部に水が微量しか流れない停滞域を
形成して貧酸素領域を構成した。水槽の水中に10匹の
蟹類(全長4〜5センチの磯蟹)を生息させた状態で、
水の表面から液状の有機炭素源を供給して貧酸素領域に
沈降させ、水中の窒素系化学種の移行状態を測定した
ら、下記の表3のとおりであった。なお、上記液状の有
機炭素源は、天然多糖類の高分子炭素源(椰子の樹液の
濃縮液で、ショ糖、果糖等を豊富に含有するもの)を、
脱酸素処理した純水中に溶解させるとともに、セルロー
ス等を凝集除去処理した液体であり、1週間に1回宛5
ミリリットルの量を水中に供給した。
[Example 3] An artificial seawater having a specific gravity of 1.020 was supplied by 50 liters to a water tank in which sand having a thickness of 10 cm was spread on the bottom, and a stagnant area where only a small amount of water flowed was formed below the sand. To form a hypoxic region. With 10 crabs (4 to 5 cm long crabs) inhabiting the water in the aquarium,
A liquid organic carbon source was supplied from the surface of water to settle in an oxygen-deficient region, and the state of migration of nitrogen-based chemical species in the water was measured. The liquid organic carbon source is a high molecular carbon source of a natural polysaccharide (a concentrated solution of sap of a coconut tree, which is rich in sucrose, fructose, etc.),
A liquid that is dissolved in pure water that has been deoxygenated and that has undergone coagulation and removal of cellulose, etc., once a week.
Milliliter volumes were fed into water.

【0028】[0028]

【表3】 [Table 3]

【0029】貧酸素領域に液状の有機炭素源を供給する
と、前記実施例2と同様に、水中の酸化物、最終酸化物
等の還元作用が著しく活性化されたものである。
When a liquid organic carbon source is supplied to the oxygen-deficient region, the reduction of oxides and final oxides in water is remarkably activated, as in the second embodiment.

【0030】[0030]

【発明の効果】以上で明らかなように、本発明によれ
ば、水中に酸素濃度の低い貧酸素領域を形成し、上記貧
酸素領域内における溶存酸素量の少ない環境下において
着床する従属栄養細菌群に有機炭素源を供給することに
より、上記従属栄養細菌群の活性化を促進して水中に存
在する酸化物、最終酸化物を脱窒素等の還元作用によっ
て無害なガスに変換させ、もって継続的に生成される水
中の酸化物を恒久的に還元作用を促して水質を改善する
ようにしたことを特徴とする。
As is apparent from the above, according to the present invention, a heterotrophic substance which forms an oxygen-deficient region with low oxygen concentration in water and implants in an environment with a low dissolved oxygen content in the oxygen-deficient region. By supplying the organic carbon source to the bacterial group, the activation of the heterotrophic bacterial group is promoted, and the oxides and final oxides present in the water are converted into harmless gases by a reducing action such as denitrification. The present invention is characterized in that it continuously promotes a reducing action of continuously generated oxides in water to improve water quality.

【0031】したがって、貧酸素領域に固形状の、若し
くは液状の有機炭素源を供給するだけで、貧酸素領域に
着床する従属栄養細菌群がエネルギー源として消費する
ことにより増殖するばかりでなく、脱窒素等をすること
により、還元作用を活性化させることができる。そのた
め、水中に存在する生息物の排泄物や残餌、その他の有
機廃物が、また自然界に存在する池、処理水や工業用水
等の水中であればあらゆる種類の有機廃物が、従属栄養
細菌群により活性化するので還元作用を著しく増長する
ことにより、前記酸化物や最終酸化物を、無害な窒素ガ
スに恒久的に変換するため、長期的に水質を改善して、
藻や苔の繁茂を防止するばかりでなく、水質を悪化させ
ることがなく、水質管理に著しく貢献することができ、
養魚用の水ばかりでなく、農業用、畜産業若しくは工業
廃水等の浄化にも著しく実用的価値を高めるものであ
る。
Therefore, merely supplying a solid or liquid organic carbon source to the anoxic region causes the heterotrophic bacteria that are implanted in the anoxic region not only to grow by consuming as an energy source, but also to grow. By performing denitrification or the like, the reducing action can be activated. Therefore, excretions and residual foods of inhabitants existing in water, and other organic wastes, and all kinds of organic wastes in nature such as ponds, treated water and industrial water, are caused by heterotrophic bacteria. Since the activation is activated by significantly increasing the reducing action, the oxides and final oxides are permanently converted to harmless nitrogen gas, so that the water quality is improved in the long term,
Not only prevents the growth of algae and moss, but also does not deteriorate the water quality, can significantly contribute to water quality management,
It significantly enhances practical value not only for water for fish farming but also for purification of agricultural, livestock or industrial wastewater.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水中に酸素濃度の低い貧酸素領域を形成
し、上記貧酸素領域内における溶存酸素量の少ない環境
下において着床する従属栄養細菌群に有機炭素源を供給
することにより、上記従属栄養細菌群の活性化を促進し
て水中に存在する酸化物、最終酸化物を脱窒素等の還元
作用によって無害なガスに変換させ、もって継続的に生
成される水中の酸化物を恒久的に還元作用を促して水質
を改善するようにしたことを特徴とする水処理方法。
1. The method according to claim 1, wherein an oxygen-deficient region having a low oxygen concentration is formed in water, and an organic carbon source is supplied to a heterotrophic bacteria group that is implanted in an environment with a low amount of dissolved oxygen in the oxygen-deficient region. Promotes the activation of heterotrophic bacteria and converts oxides and final oxides present in water into harmless gases by reduction such as denitrification. A water treatment method characterized by promoting a reducing action to improve water quality.
【請求項2】 従属栄養細菌群に供給する有機炭素源
は、型加工された固形高分子生分解樹脂、天然多糖類の
高分子炭素から生成される液状の高分子炭素源である請
求項1に記載の水処理方法。
2. The organic carbon source to be supplied to the heterotrophic bacteria group is a solid polymer biodegradable resin which has been processed, and a liquid high molecular carbon source generated from the high molecular carbon of a natural polysaccharide. The water treatment method according to 1.
JP28084497A 1997-10-14 1997-10-14 Treatment of water Pending JPH11114593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28084497A JPH11114593A (en) 1997-10-14 1997-10-14 Treatment of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28084497A JPH11114593A (en) 1997-10-14 1997-10-14 Treatment of water

Publications (1)

Publication Number Publication Date
JPH11114593A true JPH11114593A (en) 1999-04-27

Family

ID=17630777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28084497A Pending JPH11114593A (en) 1997-10-14 1997-10-14 Treatment of water

Country Status (1)

Country Link
JP (1) JPH11114593A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075364A1 (en) * 2004-02-06 2005-08-18 Takachiho Corp. Water purification solid material produced from natural raw material whose main component is polysaccharide and method of water purification therewith
KR100783688B1 (en) * 2004-02-06 2007-12-07 가부시키가이샤 다카치호 Water purification solid material produced from natural raw material whose main component is polysaccharide and method of water purification therewith
CN104445635A (en) * 2014-10-31 2015-03-25 安徽华亿农牧科技发展有限公司 Efficient biological water purifying agent as well as preparation method and use method thereof
CN104478097A (en) * 2014-12-13 2015-04-01 山东永泰化工有限公司 Water purifying agent for sewage resulting from recovery of waste/used tires and sewage treatment method
CN104529103A (en) * 2014-12-30 2015-04-22 成都科衡环保技术有限公司 Oil-base mud detergent and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075364A1 (en) * 2004-02-06 2005-08-18 Takachiho Corp. Water purification solid material produced from natural raw material whose main component is polysaccharide and method of water purification therewith
KR100783688B1 (en) * 2004-02-06 2007-12-07 가부시키가이샤 다카치호 Water purification solid material produced from natural raw material whose main component is polysaccharide and method of water purification therewith
US7604745B2 (en) 2004-02-06 2009-10-20 Takachiho Corp. Water-purifying solid material made of a natural raw material containing polysaccharides as principal components, and water-purifying method using the same
CN104445635A (en) * 2014-10-31 2015-03-25 安徽华亿农牧科技发展有限公司 Efficient biological water purifying agent as well as preparation method and use method thereof
CN104478097A (en) * 2014-12-13 2015-04-01 山东永泰化工有限公司 Water purifying agent for sewage resulting from recovery of waste/used tires and sewage treatment method
CN104529103A (en) * 2014-12-30 2015-04-22 成都科衡环保技术有限公司 Oil-base mud detergent and preparation method thereof

Similar Documents

Publication Publication Date Title
Gearheart Use of constructed wetlands to treat domestic wastewater, City of Arcata, California
Gopal Natural and constructed wetlands for wastewater treatement: potentials and problems
CA2145031C (en) Method and apparatus for in situ water purification including sludge reduction within water bodies by biofiltration and for hypolimnetic aeration of lakes
Rogers et al. Ammonia removal in selected aquaculture water reuse biofilters
JP3056361B2 (en) Wastewater treatment device and wastewater treatment method
JP3545401B2 (en) Water management of fish ponds
Lin et al. Removal of solids and oxygen demand from aquaculture wastewater with a constructed wetland system in the start‐up phase
Hochheimer et al. Biological filters: trickling and RBC design
Dey Chowdhury et al. Vermifiltration: Strategies and techniques to enhance the organic and nutrient removal performance from wastewater
JPH11114593A (en) Treatment of water
KR102143415B1 (en) Aquaponics device using high-purity recirculating aquaculture system
CN108793646B (en) Landscape type domestic sewage ecological treatment system
KR200394153Y1 (en) The Device to Treat Lakes using the Power-driven Floating Island of Contacting Oxidation with the Coconut Activated Carbon
Odum et al. Water quality
Mulay et al. Study of biofilter planted with basil for removal of ammonia in aquaponic water
JP3299806B2 (en) Wastewater treatment method
Voicea et al. The quality of the aquatic environment in fish ponds
KR100783688B1 (en) Water purification solid material produced from natural raw material whose main component is polysaccharide and method of water purification therewith
Awad et al. Improvement of wastewater treatment using lagoons technology
CN208362134U (en) New Type of Sewage Treatment System
JP2022146025A (en) water circulation system
JPH0440842A (en) Filtration device
JPH07222540A (en) Culture of fishes and shellfishes by utilization of purified stock raising waste water
Fahim et al. Inactivation Of Faecal Coli Form Indicator Microorganisms In A Constructed Wetland Under Diverse Environmental Conditions
Al-Busaidi et al. A Sustainable Method of Production Towards Food Security Using Aquaponics: A Case Study from Oman