JPH11112058A - Manufacture of magnetic field sensor - Google Patents

Manufacture of magnetic field sensor

Info

Publication number
JPH11112058A
JPH11112058A JP9282606A JP28260697A JPH11112058A JP H11112058 A JPH11112058 A JP H11112058A JP 9282606 A JP9282606 A JP 9282606A JP 28260697 A JP28260697 A JP 28260697A JP H11112058 A JPH11112058 A JP H11112058A
Authority
JP
Japan
Prior art keywords
substrate
film
magnetic field
thickness
multilayer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9282606A
Other languages
Japanese (ja)
Inventor
Hideyuki Suzuki
英之 鈴木
Osamu Shinoura
治 篠浦
Yuichi Sato
雄一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP9282606A priority Critical patent/JPH11112058A/en
Priority to US09/013,638 priority patent/US6184680B1/en
Publication of JPH11112058A publication Critical patent/JPH11112058A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a magnetic field sensor having a very high magnetoresistance change ratio and great magnetoresistance effect multilayer film provided by laminating layers of 10 nm or less with suppressing the mutual, diffusion between the layers on a flexible resin substrate originally difficult for use as a substrate and then doing the device processing. SOLUTION: The method comprises setting on a substrate fixing table a flexible resin substrate having a κ/L value of 1.5×10<3> W/m<2> K or more where κ, and L are thermal conductivity and thickness of the substrate, and laminating layers of 10 nm or less with cooling the substrate from the substrate fixing table to form a great magnetoresistance effect multilayer film by the vacuum film forming method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、外部磁界の変化を
電気信号に変換する磁界センサの製造方法に関する。
The present invention relates to a method of manufacturing a magnetic field sensor for converting a change in an external magnetic field into an electric signal.

【0002】[0002]

【従来の技術】磁界センサは、外部磁界の変化を電気信
号に変換するデバイスであり、強磁性体や半導体薄膜等
の磁界検出薄膜をパターニングし、その薄膜パターンに
電流を流し、電圧変化として外部磁界の変化を電気信号
に変換するものである。
2. Description of the Related Art A magnetic field sensor is a device for converting a change in an external magnetic field into an electric signal. The magnetic field sensor is used to pattern a magnetic field detecting thin film such as a ferromagnetic material or a semiconductor thin film. It converts changes in the magnetic field into electric signals.

【0003】例えば、強磁性磁気抵抗効果センサは、強
磁性体金属の電気抵抗が外部磁界により変化する現象
(磁気抵抗効果、MR効果)を利用して磁界強度を測定
するデバイスである。
For example, a ferromagnetic magnetoresistive sensor is a device that measures a magnetic field intensity using a phenomenon (magnetic resistance effect, MR effect) in which the electric resistance of a ferromagnetic metal changes due to an external magnetic field.

【0004】単層からなる磁性膜では、古くから知られ
ている強磁性体金属膜の磁気異方性磁気抵抗効果を利用
していたが、最近では、例えば特開平5−259530
号公報や、特開平7−77531号公報に開示されてい
るように、多層構造からなる磁性膜による結合型巨大磁
気抵抗効果(GMR効果)を用いた磁界センサも開発さ
れている。
[0004] In a magnetic film consisting of a single layer, the magnetic anisotropy magnetoresistance effect of a ferromagnetic metal film which has been known for a long time has been used, but recently, for example, Japanese Patent Application Laid-Open No. 5-259530.
A magnetic field sensor using a coupled giant magnetoresistance effect (GMR effect) using a magnetic film having a multilayer structure has also been developed, as disclosed in Japanese Patent Application Laid-Open No. 7-77531.

【0005】また、ナショナルテクニカルレポート、4
2巻、4号、465ページには、(NiFeCo/C
u)多層膜を巨大磁気抵抗効果素子として用いたVTR
キャプスタンモータ回転検出センサが紹介されている。
[0005] In addition, the National Technical Report, 4
Vol. 2, No. 4, pp. 465, (NiFeCo / C
u) VTR using multilayer film as giant magnetoresistive element
A capstan motor rotation detection sensor is introduced.

【0006】これらの巨大磁気抵抗効果膜は、シリコン
やガラス等の硬質基板上に成膜されるのが一般的である
が、Appl.Phys.Lett.(69)3092
〜3094(1996)に記載されているように、有機
物フィルム上に巨大磁気抵抗効果を示すスピンバルブ構
造膜を形成することも試みられている。有機物フィルム
は、硬質基板に比べて安価であり、かつ素子形態を形成
するに際し、切断ないし分離加工が容易であり、製品の
低価格化に大きく貢献するというメリットがある。
[0006] These giant magnetoresistive films are generally formed on a hard substrate such as silicon or glass. Phys. Lett. (69) 3092
As described in U.S. Pat. No. 3,094,1996 (1996), attempts have been made to form a spin-valve structure film exhibiting a giant magnetoresistance effect on an organic film. The organic film is advantageous in that it is inexpensive as compared with a hard substrate, is easy to cut or separate when forming an element form, and greatly contributes to lowering the price of a product.

【0007】ところで、現在知られている巨大磁気抵抗
効果膜は、一般に、(強磁性体/非磁性導電体)構造
のアンチフェロ(結合)型、(高保磁力強磁性体/非
磁性導電体/低保磁力強磁性体)構造の誘導フェリ(非
結合)型、(反強磁性体/強磁性体/非磁性導電体/
強磁性体)構造のスピンバルブ型、Co/Ag系統の
非固溶系グラニュラー型に大別される。
Incidentally, the giant magnetoresistive films known at present are generally of an antiferro (coupling) type having a (ferromagnetic / non-magnetic conductor) structure, and (high coercivity ferromagnetic / non-magnetic conductor). Inductive ferri (non-coupling) type with low coercivity ferromagnetic structure, (antiferromagnetic material / ferromagnetic material / nonmagnetic conductor /
It is roughly classified into a spin valve type having a (ferromagnetic material) structure, and a non-solid solution type granular type of Co / Ag type.

【0008】これらの巨大磁気抵抗効果膜はその構造、
組成により検出可能な磁界強度、すなわち磁気抵抗効果
の飽和磁界強度が大きく異なる。従って、実際の巨大磁
気抵抗効果膜の設計に際しては、検出すべき磁界強度に
より最高の磁界感度が得られるように各種の巨大磁気抵
抗効果膜から基本形を選択し、さらに組成系を変更した
り、さらに細かな構造を最適化したりする必要がある。
These giant magnetoresistive films have the following structures:
The detectable magnetic field strength, that is, the saturation magnetic field strength of the magnetoresistive effect greatly differs depending on the composition. Therefore, when designing an actual giant magnetoresistive film, select a basic form from various giant magnetoresistive films so as to obtain the highest magnetic field sensitivity depending on the magnetic field strength to be detected, and further change the composition system, It is necessary to optimize the detailed structure.

【0009】上記巨大磁気抵抗効果膜の中で、(強磁
性体/非磁性導電体)構造のアンチフェロ(結合)型、
および(高保磁力強磁性体/非磁性導電体/低保磁力
強磁性体)構造の誘導フェリ(非結合)型のものは、い
わゆる巨大磁気抵抗効果多層膜と呼ばれているように、
層厚が10nm以下の極めて薄い層を10〜100層積
層することによって初めて大きな磁気抵抗効果が得られ
る。
In the giant magnetoresistive film, an antiferro (coupling) type having a (ferromagnetic / non-magnetic conductor) structure,
And the induction ferri (non-coupling) type of (high coercivity ferromagnetic material / non-magnetic conductor / low coercivity ferromagnetic) structure is called a giant magnetoresistive multilayer film,
A large magnetoresistance effect can be obtained only by stacking 10 to 100 extremely thin layers having a thickness of 10 nm or less.

【0010】これに対して上記のスピンバルブ型で
は、2つの磁性層間のスピン方向による抵抗変化を利用
するために磁性層を構成する1層の層厚は10nmを越
える。また層数も少ないためにサンドイッチ型とも呼ば
れている。上記のAppl.Phys.Lett.(6
9)3092〜3094(1996)に開示されている
巨大磁気抵抗効果膜はスピンバルブ型である。
On the other hand, in the above-mentioned spin valve type, the thickness of one layer constituting the magnetic layer exceeds 10 nm in order to utilize the resistance change due to the spin direction between the two magnetic layers. It is also called a sandwich type because of the small number of layers. The above Appl. Phys. Lett. (6
9) The giant magnetoresistive film disclosed in 3092 to 3094 (1996) is a spin valve type.

【0011】[0011]

【発明が解決しようとする課題】上記およびで示さ
れる結合型および誘導フェリ型等の巨大磁気抵抗効果多
層膜は、検出磁界が数百Oeと適当な値のために、磁界
センサとして好適に用いられることが多い。また、上述
のごとく基板として、有機物フィルムの使用も考えられ
始めている。
The giant magnetoresistive multilayer films of the coupling type and the inductive ferrimagnetic type described above and above are suitably used as a magnetic field sensor because the detection magnetic field is an appropriate value of several hundred Oe. Is often done. As described above, use of an organic film as a substrate has begun to be considered.

【0012】しかしながら、厚さが10nm以下の極め
て薄い層が10〜100層積層された巨大磁気抵抗効果
多層膜を樹脂製の可撓性基板上に成膜し、高いMR変化
率を得ることは困難を極めていた。すなわち、樹脂製の
可撓性基板は、シリコンやガラス等の硬質基板に比較し
て熱伝導率が非常に小さいことから、樹脂製の可撓性基
板上に巨大磁気抵抗効果多層膜をスパッタ法等の真空成
膜法で成膜する場合、基板の背面からいくら基板の冷却
を行っても、実際に多層膜が成膜される基板表面の温度
は高くなりやすい傾向にある。そのため、成膜中に多層
膜の各層の間で構成元素の相互拡散がおこり、きれいな
層界面が得られない。この傾向は、上記のごとく特に、
層厚が10nm以下の極めて薄い層を10〜100層積
層してなる巨大磁気抵抗効果多層膜を成膜する場合に顕
著に発生する問題である。
However, it is not possible to obtain a high MR ratio by forming a giant magnetoresistive multilayer film in which 10 to 100 extremely thin layers having a thickness of 10 nm or less are stacked on a flexible substrate made of resin. It was extremely difficult. That is, since a resin-made flexible substrate has a very low thermal conductivity as compared with a hard substrate made of silicon or glass, a giant magnetoresistive multilayer film is formed on a resin-made flexible substrate by a sputtering method. When a film is formed by a vacuum film forming method, the temperature of the surface of the substrate on which the multilayer film is actually formed tends to increase, even if the substrate is cooled from the back of the substrate. Therefore, the constituent elements are mutually diffused between the layers of the multilayer film during the film formation, and a clean layer interface cannot be obtained. This is especially true as noted above.
This is a problem that occurs remarkably when a giant magnetoresistive multilayer film is formed by laminating 10 to 100 extremely thin layers having a thickness of 10 nm or less.

【0013】このような実状のもとに、本発明は創案さ
れたものであって、その目的は、本来、基板として用い
ることが困難であった樹脂製可撓性基板の上に、厚さが
10nm以下の層を、各層の間で相互拡散を抑制しなが
ら多層に積層して、きれいな層界面を有する巨大磁気抵
抗効果多層膜を形成し、しかる後に、デバイス加工し、
きわめて高い磁気抵抗変化率(MR比)を有する磁界セ
ンサを提供することにある。
[0013] Under such circumstances, the present invention has been devised. The purpose of the present invention is to lay a thin film on a resin-made flexible substrate which was originally difficult to use as a substrate. Are laminated in multiple layers while suppressing interdiffusion between the layers to form a giant magnetoresistive multilayer film having a clean layer interface.
An object of the present invention is to provide a magnetic field sensor having an extremely high magnetoresistance ratio (MR ratio).

【0014】[0014]

【課題を解決するための手段】このような課題を解決す
るために、本発明は、基板の上に磁気抵抗効果膜を有す
る磁界センサの製造方法において、基板として、その熱
伝導率をκ,その板厚をLとしたときκ/Lの値が、
1.5×103 (W・m-2・K-1)以上である樹脂製可
撓性基板を用い、この樹脂製可撓性基板を基板固定台に
設置し、基板固定台側から樹脂製可撓性基板を冷却しな
がら、磁気抵抗効果膜として、厚さ10nm以下の層が
多層に積層された巨大磁気抵抗効果多層膜を真空成膜法
で成膜するように構成する。
According to the present invention, there is provided a method for manufacturing a magnetic field sensor having a magnetoresistive film on a substrate, wherein the substrate has a thermal conductivity of κ, When the plate thickness is L, the value of κ / L is
A resin flexible substrate having a size of 1.5 × 10 3 (W · m −2 · K −1 ) or more is used. While cooling the flexible substrate, a giant magnetoresistive multilayer film in which layers each having a thickness of 10 nm or less are laminated as a magnetoresistive film is formed by a vacuum deposition method.

【0015】また、より好ましい本発明の態様として、
前記樹脂製可撓性基板は、厚さ200μm以下のポリイ
ミドフィルムであるように構成される。
Further, as a more preferred embodiment of the present invention,
The resin flexible substrate is configured to be a polyimide film having a thickness of 200 μm or less.

【0016】また、より好ましい本発明の態様として、
前記真空成膜法は、スパッタ法であるように構成され
る。
In a more preferred embodiment of the present invention,
The vacuum film forming method is configured to be a sputtering method.

【0017】また、より好ましい本発明の態様として、
前記巨大磁気抵抗効果多層膜は、成膜速度0.005〜
0.2nm/secで成膜されるよう構成される。
Further, as a more preferred embodiment of the present invention,
The giant magnetoresistance effect multilayer film has a deposition rate of 0.005 to 0.005.
It is configured to form a film at 0.2 nm / sec.

【0018】[0018]

【発明の実施の形態】以下、本発明の好適な実施の形態
を図面を参照しつつ説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0019】図1には、本発明の磁界センサの製造方
法、特に、樹脂製可撓性基板10を基板固定台30に設
置し、樹脂製可撓性基板10の上に、スパッタ法で巨大
磁気抵抗効果多層膜20を成膜している状態が示され
る。符号20aは模式的に描かれた成膜分子である。樹
脂製可撓性基板10は、通常、基板固定治具5にて固定
されている。基板固定台30の内部には、図示されてな
いが冷却用の水等の冷媒が通過するためのパスが形成さ
れており、基板固定台30の下部には上記パスへの冷媒
の入口51および上記パスからの冷媒の出口55が形成
されている。そして、冷媒を入口51から流すことによ
って、基板固定台30側から樹脂製可撓性基板10を冷
却しながら、基板10の上に巨大磁気抵抗効果多層膜2
0を成膜することができるようになっている。基板固定
台30は、熱伝導率の大きな材料、例えば、アルミニウ
ムや銅から形成されている。
FIG. 1 shows a method of manufacturing a magnetic field sensor according to the present invention. In particular, a resin-made flexible substrate 10 is placed on a substrate fixing base 30, and a huge substrate is formed on the resin-made flexible substrate 10 by sputtering. A state where the magnetoresistive multilayer film 20 is formed is shown. Reference numeral 20a is a film-forming molecule schematically drawn. The resin-made flexible substrate 10 is usually fixed by a substrate fixing jig 5. Although not shown, a path for a coolant such as cooling water to pass therethrough is formed inside the substrate fixing base 30, and an inlet 51 for the refrigerant to the above-described path and a lower part of the substrate fixing base 30 are provided. An outlet 55 for the refrigerant from the path is formed. Then, by flowing a coolant from the inlet 51, the giant magnetoresistive multilayer film 2 is formed on the substrate 10 while cooling the resinous flexible substrate 10 from the substrate fixing base 30 side.
0 can be formed. The substrate fixing base 30 is formed of a material having high thermal conductivity, for example, aluminum or copper.

【0020】巨大磁気抵抗効果多層膜20は、図面のス
ペースの関係上、多層の状態に描かれてないが、実際
は、厚さが10nm以下の層を多層に積層した巨大磁気
抵抗効果多層膜である。なお、図1における装置は、図
示しない真空チャンバ内に設置されている。
Although the giant magnetoresistive multilayer film 20 is not drawn in a multilayer state due to space in the drawing, it is actually a giant magnetoresistive multilayer film in which layers each having a thickness of 10 nm or less are laminated. is there. The apparatus in FIG. 1 is installed in a vacuum chamber (not shown).

【0021】このような好適な装置の一例を用いて、本
発明の磁界センサの製造方法が次のように実施される。
すなわち、樹脂製可撓性基板10として、その熱伝導率
をκ,その板厚をL(図1に示される)としたとき、κ
/Lの値が、1.5×103(W・m-2・K-1)以上と
なるように設定された樹脂製可撓性基板10を準備す
る。そして、この樹脂製可撓性基板10を基板固定台3
0に設置し、基板固定台30側から樹脂製可撓性基板1
0を冷却しながら、磁気抵抗効果膜20として、厚さが
10nm以下の層を多層に積層した巨大磁気抵抗効果多
層膜20を真空成膜法で成膜するのである。
Using one example of such a suitable apparatus, the method of manufacturing a magnetic field sensor of the present invention is carried out as follows.
That is, assuming that the thermal conductivity of the resin-made flexible substrate 10 is κ and the thickness thereof is L (shown in FIG. 1), κ
A resin flexible substrate 10 set so that the value of / L is equal to or more than 1.5 × 10 3 (W · m −2 · K −1 ) is prepared. Then, the resin-made flexible substrate 10 is placed on the substrate fixing table 3.
0, and the resin-made flexible substrate 1
While cooling 0, the giant magnetoresistive effect multilayer film 20 in which layers each having a thickness of 10 nm or less are laminated as a magnetoresistive effect film 20 is formed by a vacuum film forming method.

【0022】本発明に用いられる樹脂製可撓性基板10
は、可撓性に優れ、薄くても軽いものを用いることが好
ましく、例えば、印刷配線板等として広く使用されてい
るプラスチックフィルムと同様の基板が使用可能であ
る。より具体的には、プラスチックフィルム材質として
公知の各種材料、例えば、ポリイミド、ポリエチレンテ
レフタレート(PET)、ポリフェニレンスルファイ
ド、ポリプロピレン(PP)、テフロン等が利用可能で
ある。なかでも特に、ハンダ、ワイヤーボンディング等
による接合を考慮して、耐熱性の高いポリイミドフィル
ムを用いることが好ましい。
The flexible resin substrate 10 used in the present invention
It is preferable to use a thin film that is excellent in flexibility and light even when thin. For example, a substrate similar to a plastic film widely used as a printed wiring board or the like can be used. More specifically, various materials known as plastic film materials, for example, polyimide, polyethylene terephthalate (PET), polyphenylene sulfide, polypropylene (PP), Teflon and the like can be used. In particular, it is preferable to use a polyimide film having high heat resistance in consideration of bonding by soldering, wire bonding, or the like.

【0023】このような基板10は上述したように熱伝
導率κと板厚Lとの比であるκ/Lの値が、1.5×1
3 (W・m-2・K-1)以上とする必要がある。κ/L
の値は、単位面積当たりの熱コンダクタンスを意味し、
放熱の度合いを判断する指標として使用される。この値
が、1.5×103 (W・m-2・K-1)未満となると、
基板表面(膜20が形成される側)の温度が上昇し、こ
の基板上に積層成膜される多層膜20の層間での拡散が
起こり、良好な巨大磁気抵抗効果多層膜20が得られ
ず、その結果、高い磁気抵抗変化率(MR比)が得られ
ないという不都合が生じる。
As described above, the value of κ / L, which is the ratio of the thermal conductivity κ to the plate thickness L, is 1.5 × 1
0 3 (W · m −2 · K −1 ) or more. κ / L
The value of means the thermal conductance per unit area,
It is used as an index for determining the degree of heat radiation. When this value is less than 1.5 × 10 3 (W · m −2 · K −1 ),
The temperature of the surface of the substrate (the side on which the film 20 is formed) rises, and diffusion between the layers of the multilayer film 20 formed on the substrate occurs, and a good giant magnetoresistance effect multilayer film 20 cannot be obtained. As a result, a disadvantage arises in that a high magnetoresistance change rate (MR ratio) cannot be obtained.

【0024】本発明で好適に用いられる樹脂製可撓性基
板10の熱伝導率を下記表1に示す。また、参考のため
に、アルミナ、アルミニウム、黄銅、紙、銅、シリコ
ン、石英ガラスの熱伝導率の値も表1に併記した。
The thermal conductivity of the resin-made flexible substrate 10 suitably used in the present invention is shown in Table 1 below. Table 1 also shows the values of the thermal conductivity of alumina, aluminum, brass, paper, copper, silicon, and quartz glass for reference.

【0025】[0025]

【表1】 表1に示されるように、例えば、最適な基板材料である
ポリイミドでは、κが0.29(W・m-1・K-1)であ
る。そのため、κ/Lの値を1.5×103 (W・m-2
・K-1)以上とするためには板厚Lを200μm以下に
する必要がある。また、同様に、例えばポリプロピレン
では板厚Lを80μm以下にする必要がある。なお、熱
伝導率は測定温度により異なるが、本発明においては室
温付近での値を用いている。
[Table 1] As shown in Table 1, for example, polyimide is the optimal substrate material, and κ is 0.29 (W · m −1 · K −1 ). Therefore, the value of κ / L is set to 1.5 × 10 3 (W · m −2
-In order to attain K -1 ) or more, the plate thickness L needs to be 200 μm or less. Similarly, for example, for polypropylene, the plate thickness L needs to be 80 μm or less. Although the thermal conductivity varies depending on the measurement temperature, a value near room temperature is used in the present invention.

【0026】上記κ/Lの値の上限値は、特に制限はな
いが、この値を余り大きくすると基板10の厚さが薄く
なり、取扱いが不便になってくる。そのため、基板の取
扱いの便宜を考慮しながら板厚Lを設定しつつ使用する
必要がある。通常、κ/Lの値の上限値は、80×10
3 (W・m-2・K-1)程度とされる。
The upper limit of the value of κ / L is not particularly limited. However, if the value is too large, the thickness of the substrate 10 becomes thin, and handling becomes inconvenient. Therefore, it is necessary to use the substrate while setting the plate thickness L in consideration of the convenience of handling the substrate. Usually, the upper limit of the value of κ / L is 80 × 10
3 (Wm- 2K - 1 ).

【0027】本発明の製造方法で成膜の対象となる巨大
磁気抵抗効果膜は、金属人工格子(藤森啓安編、アグネ
技術センター、1995年発行)347ページに紹介さ
れているように層厚が10nm以下の強磁性体と非磁性
体を積層した多層膜である。具体的な膜構造としては、
(Co/Cu)、(NiFe/Cu)、(NiFeCo
/Cu)、(CoFe/Cu)、(NiFeCo/Cu
/Co/Cu)、(NiFe/Cu/Co/Cu)、
(CoFe/Cu/NiFe/Cu)等の構造を5回以
上、特に、5〜100回程度繰り返して成膜した多層膜
構造が挙げられる。これらのなかでも、特に、(Co/
Cu)、(NiFe/Cu)、(NiFeCo/Cu)
の多層膜構造が好適に用いられる。
The giant magnetoresistive film to be formed by the production method of the present invention has a layer thickness as introduced on page 347 of a metal artificial lattice (edited by Hiroyasu Fujimori, Agne Technical Center, published in 1995). This is a multilayer film in which a ferromagnetic material and a non-magnetic material of 10 nm or less are laminated. As a specific film structure,
(Co / Cu), (NiFe / Cu), (NiFeCo
/ Cu), (CoFe / Cu), (NiFeCo / Cu)
/ Co / Cu), (NiFe / Cu / Co / Cu),
(CoFe / Cu / NiFe / Cu) or the like may be mentioned as a multilayer film structure formed by repeatedly forming a film five times or more, particularly about 5 to 100 times. Among these, (Co /
Cu), (NiFe / Cu), (NiFeCo / Cu)
Is preferably used.

【0028】これらの多層膜構造を有する巨大磁気抵抗
効果多層膜20においては、各層の層厚が10nm以下
であり、特に好ましくは3nm以下とする。高いMR比
を得るためである。層厚の下限値に特に制限はないが、
層厚が薄ければ薄い程、成膜時の層間拡散が起こりやす
くなるのであるから、この点を考慮に入れつつ各層の層
厚の下限値を適宜設定する必要がある。通常、各層の層
厚の下限値は、0.7nm程度とされる。
In the giant magnetoresistive multilayer film 20 having such a multilayer structure, the thickness of each layer is 10 nm or less, particularly preferably 3 nm or less. This is for obtaining a high MR ratio. There is no particular limitation on the lower limit of the layer thickness,
The smaller the layer thickness, the more likely the interlayer diffusion during film formation occurs. Therefore, it is necessary to appropriately set the lower limit of the layer thickness of each layer while taking this point into consideration. Usually, the lower limit of the thickness of each layer is about 0.7 nm.

【0029】巨大磁気抵抗効果多層膜20は、スパッタ
法、蒸着法、分子線エピタキシ法(MBE法)等の真空
成膜法で成膜される。中でも、スパッタ法で成膜するの
が好適である。スパッタ法は、成膜速度を広い範囲に亘
って設定できるメリットがあるとともに、比較的成膜コ
ストが安価なため、特に多層膜の成膜に適している。各
層の厚さが10nm以下の多層膜を成膜する際には、オ
ングストロームオーダーの膜厚制御が必要なため、通
常、成膜速度は小さい値に設定する方が有利ではある
が、生産性も考慮しなければならない。しかしながら、
スパッタ法は、スパッタされた原子の平均エネルギ−が
約10eVと高いために、成膜速度が極端に速くなると
基板表面の温度が高くなり、多層膜の層間拡散が起こっ
て、良質な積層膜が形成できなくなる傾向がある。そこ
で、本発明においては、スパッタされる原子の成膜速度
を、0.005〜0.2nm/sec、より好ましくは
0.01〜0.1nm/secに設定するのがよい。こ
の範囲で生産性が良く、しかも良好な積層膜が形成でき
る。なお、蒸着法では原子の平均エネルギーが約1eV
以下と低いために成膜時における基板表面の温度上昇
は、同じ成膜速度で比べた場合、スパッタ法ほど顕著で
はない。
The giant magnetoresistive multilayer film 20 is formed by a vacuum film forming method such as a sputtering method, an evaporation method, a molecular beam epitaxy method (MBE method) or the like. Among them, it is preferable to form a film by a sputtering method. The sputtering method has an advantage that the film forming speed can be set over a wide range and has a relatively low film forming cost. Therefore, the sputtering method is particularly suitable for forming a multilayer film. When a multilayer film having a thickness of each layer of 10 nm or less is formed, it is necessary to control the film thickness on the order of angstroms. Therefore, it is usually advantageous to set the film formation speed to a small value, but the productivity is also low. Must be taken into account. However,
In the sputtering method, since the average energy of sputtered atoms is as high as about 10 eV, when the deposition rate is extremely high, the temperature of the substrate surface increases, and interlayer diffusion of the multilayer film occurs, and a high-quality laminated film is formed. There is a tendency that it cannot be formed. Therefore, in the present invention, the deposition rate of the sputtered atoms is preferably set to 0.005 to 0.2 nm / sec, more preferably 0.01 to 0.1 nm / sec. Within this range, the productivity is good and a good laminated film can be formed. In the evaporation method, the average energy of atoms is about 1 eV.
Because of the lower temperature, the temperature rise on the substrate surface during film formation is not as remarkable as the sputtering method when compared at the same film formation rate.

【0030】なお、蒸着法は、島状もしくは柱状が存在
する膜が成長しやすく界面が平坦な層状構造となりにく
い。また、分子線エピタキシ法は、超高真空度を必要と
するために成膜に時間がかかる傾向にある。装置コスト
も高い。
In the vapor deposition method, a film having an island shape or a column shape is easily grown, and it is difficult to form a layered structure having a flat interface. In addition, the molecular beam epitaxy method tends to take a long time for film formation because an ultra-high vacuum is required. Equipment costs are also high.

【0031】本発明における基板固定台30側からの樹
脂製可撓性基板10を冷却は、図1に示され、すでに前
述したように基板固定台30の中に、水等の冷媒を連続
的に流すことに行われる。この際、基板10の冷却操作
は、基板10の表面と裏面の温度差ΔTができるだけ大
きくなるように行うことが望ましい。
The cooling of the resin-made flexible substrate 10 from the substrate fixing base 30 side in the present invention is shown in FIG. 1 and a coolant such as water is continuously supplied into the substrate fixing base 30 as described above. It is done by flowing. At this time, the cooling operation of the substrate 10 is desirably performed such that the temperature difference ΔT between the front surface and the back surface of the substrate 10 is as large as possible.

【0032】このようにして基板10の上に形成された
巨大磁気抵抗効果多層膜20は、通常、所定パターンの
形状に加工され、さらに公知の配線等の後加工が施さ
れ、磁界センサとしての形態をなす。
The giant magnetoresistive multilayer film 20 formed on the substrate 10 in this manner is usually processed into a predetermined pattern shape, and further subjected to post-processing such as known wiring, to provide a magnetic field sensor. Take the form.

【0033】[0033]

【実施例】以下、本発明の具体的実施例を示し、本発明
をさらに詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail by showing specific examples of the present invention.

【0034】(実験例1)樹脂製可撓性基板として、3
インチ径、板厚50μmのポリイミドフィルムを準備
し、この基板をアルミニウム製の基板固定台に取り付け
た。その後、基板上にデュアルイオンビームスパッタ装
置にて200Å−Ti(15Å−NiFeCo/20Å
−Cu)×30構造の多層膜を成膜した。基板固定台
は、温度25℃に制御された循環冷却水(流量5リット
ル/分)により冷却した。多層膜の構造は、最初に20
0ÅのTi、次に15ÅのNiFeCo合金と20Åの
Cuを順に各々30層づつ積層した全厚1250Åの多
層膜とした。(NiFeCo/Cu)の30層積層体構
造が、磁気抵抗効果膜の機能を有し、200ÅのTi
は、下地層でありこの上に積層される磁性層の結晶化促
進、さらには密着性向上の機能を果たしている。なお、
密着性を向上させるため、上記多層膜を成膜する前に、
アルゴンイオンにより基板表面のイオンミリングを行っ
た。用いたターゲットの組成は、いずれも純度99.9
%以上であり、到達圧力は4×10-7Torrまで真空
引きした後にアルゴンガスを導入した。成膜中の真空度
は1.4×10-4Torrであった。成膜時のアルゴン
イオンの加速電圧は300V、ビーム電流(アルゴンイ
オン量に比例)は、30mA、NiFeCo膜とCu膜
の平均成膜速度は0.03nm/secとした。
(Experimental Example 1) As a resin-made flexible substrate, 3
A polyimide film having an inch diameter and a plate thickness of 50 μm was prepared, and this substrate was mounted on an aluminum substrate fixing base. After that, 200Å-Ti (15Å-NiFeCo / 20Å) was deposited on the substrate by a dual ion beam sputtering apparatus.
-Cu) A multilayer film having a 30 structure was formed. The substrate fixing table was cooled by circulating cooling water (flow rate: 5 liter / min) controlled at a temperature of 25 ° C. The structure of the multilayer film is initially 20
A multilayer film having a total thickness of 1250 ° was formed by sequentially stacking 30 layers each of 0 ° Ti, then 15 ° NiFeCo alloy and 20 ° Cu. A (NiFeCo / Cu) 30-layer laminate structure has the function of a magnetoresistive film,
Is a base layer, which functions to promote crystallization of the magnetic layer laminated thereon and to improve the adhesion. In addition,
To improve the adhesion, before forming the multilayer film,
Ion milling of the substrate surface was performed with argon ions. The composition of each of the targets used was 99.9 in purity.
%, And the ultimate pressure was reduced to 4 × 10 −7 Torr, and then argon gas was introduced. The degree of vacuum during the film formation was 1.4 × 10 −4 Torr. The accelerating voltage of argon ions during film formation was 300 V, the beam current (proportional to the amount of argon ions) was 30 mA, and the average film forming speed of the NiFeCo film and the Cu film was 0.03 nm / sec.

【0035】このようにして多層膜(磁性膜)を成膜し
た後、フォトレジスト操作により露光、現像し、磁性膜
のパターンを形成した。パターンは15μm幅、900
0μm長で、パターンの端部に500μm角の電極部を
形成した。その後イオンミリング法により、フォトレジ
ストでマスクされていない不要部分の磁性膜を除去し、
感磁パターン(磁気抵抗効果膜)を形成した。電極部に
ハンダ付けにて錫めっき銅線を接合し、さらに、使用時
における素子の自己発熱を防止するために、磁性膜の上
にシリコン樹脂等の熱伝導性のよい絶縁性接着層を介し
て放熱補助のための5000μm角のCu部材を接着し
た。このようにして磁界センサを完成させ、実施例1サ
ンプルとした。
After the formation of the multilayer film (magnetic film) in this manner, exposure and development were performed by a photoresist operation to form a pattern of the magnetic film. The pattern is 15 μm wide, 900
A 500 μm square electrode portion having a length of 0 μm was formed at the end of the pattern. Then, the unnecessary portion of the magnetic film not masked with the photoresist is removed by ion milling,
A magneto-sensitive pattern (magnetoresistive film) was formed. A tin-plated copper wire is joined to the electrode by soldering, and an insulating adhesive layer with good heat conductivity such as silicon resin is placed on the magnetic film to prevent self-heating of the element during use. Then, a 5000 μm square Cu member was bonded to assist heat radiation. Thus, a magnetic field sensor was completed, and a sample of Example 1 was obtained.

【0036】次いで、樹脂製可撓性基板の板厚のみを下
記表2に示されるように種々変え、それ以外は上記実施
例1サンプルの製造方法と同様にして、実施例2サンプ
ル、実施例3サンプル、比較例1サンプル、および比較
例2サンプルをそれぞれ作製した。これらの各サンプル
について、下記の要領でMR比(%)の測定を行った。
Next, only the plate thickness of the resin-made flexible substrate was changed variously as shown in Table 2 below, and the other conditions were the same as in the method of manufacturing the sample of Example 1, except for the samples of Example 2. Three samples, one comparative example, and two comparative examples were produced. The MR ratio (%) of each of these samples was measured in the following manner.

【0037】MR比(%)の測定 表2に示される各サンプルに1mAの電流を流し、かつ
−300〜300Oeの外部磁界を面内にかけながら、抵
抗の変化を測定した。抵抗の最小値ρsat および最大値
ρmax を測定し、これらの値よりMR比ΔR/Rを求め
た。すなわち、MR比ΔR/Rは、最大抵抗をρmax 、
最小抵抗をρsat とし、次式により計算した:ΔR/R
=(ρmax −ρsat )×100/ρsat (%)。
Measurement of MR Ratio (%) The resistance change was measured while applying a current of 1 mA to each sample shown in Table 2 and applying an external magnetic field of −300 to 300 Oe in the plane. The minimum value ρsat and the maximum value ρmax of the resistance were measured, and the MR ratio ΔR / R was determined from these values. That is, the MR ratio ΔR / R indicates that the maximum resistance is ρmax,
The minimum resistance was ρsat and was calculated by the following equation: ΔR / R
= (Ρmax−ρsat) × 100 / ρsat (%).

【0038】測定結果を下記表2に示した。The measurement results are shown in Table 2 below.

【0039】[0039]

【表2】 (実験例2)樹脂製可撓性基板として、3インチ径のポ
リイミドフィルム(厚さは50μm、200μm、30
0μmの3種類)を準備し、上記実験例1と同様にし
て、全厚1250Åの多層膜をデュアルイオンビームス
パッタ装置にて成膜した。ただし、本実験例2では、ア
ルゴンイオンの加速電圧およびビーム電流を変えること
により、成膜速度を種々変えて実験を行った。成膜後、
上記実験例1と同様な操作で磁界センサのサンプルを作
製し、作製したサンプルに1mAの電流を流してMR比
を測定した。結果を図2に示す。図2に示されるグラフ
から明らかなように、NiFeCo膜とCu膜の平均成
膜速度が0.005〜0.2nm/secであれば、2
00μmの厚さのポリイミドフィルムを基板として用い
て高いMR比を得ることができる。50μmの厚さのポ
リイミドフィルムを基板として用いた場合も同様であ
る。しかしながら、300μmの厚さのポリイミドフィ
ルムを基板として用いた場合には、NiFeCo膜とC
u膜の平均成膜速度を0.03nm/sec程度に低く
しても高いMR比の膜を得ることはできなかった。
[Table 2] (Experimental Example 2) A 3-inch diameter polyimide film (thickness: 50 μm, 200 μm, 30 μm) was used as a resin flexible substrate.
0 μm), and a multilayer film having a total thickness of 1250 ° was formed by a dual ion beam sputtering apparatus in the same manner as in Experimental Example 1. However, in Experimental Example 2, an experiment was performed by changing the deposition rate in various ways by changing the acceleration voltage and beam current of argon ions. After film formation,
A sample of the magnetic field sensor was manufactured in the same manner as in Experimental Example 1, and an MR ratio was measured by applying a current of 1 mA to the manufactured sample. The results are shown in FIG. As is clear from the graph shown in FIG. 2, if the average deposition rate of the NiFeCo film and the Cu film is 0.005 to 0.2 nm / sec,
A high MR ratio can be obtained by using a polyimide film having a thickness of 00 μm as a substrate. The same applies when a polyimide film having a thickness of 50 μm is used as a substrate. However, when a polyimide film having a thickness of 300 μm is used as a substrate, the NiFeCo film and C
Even if the average film formation rate of the u film was reduced to about 0.03 nm / sec, a film having a high MR ratio could not be obtained.

【0040】[0040]

【発明の効果】上記の結果より本発明の効果は明らかで
ある。すなわち、本発明の磁界センサの製造方法は、基
板として、その熱伝導率をκ,その板厚をLとしたとき
κ/Lの値が、1.5×103 (W・m-2・K-1)以上
である樹脂製可撓性基板を用い、この樹脂製可撓性基板
を基板固定台に設置し、基板固定台側から樹脂製可撓性
基板を冷却しながら、磁気抵抗効果膜として、厚さ10
nm以下の層が多層に積層された巨大磁気抵抗効果多層
膜を真空成膜法で成膜するように構成される。それゆ
え、本来、基板として用いることが困難であった樹脂製
可撓性基板を用いても、この上にきれいな層界面を有す
る巨大磁気抵抗効果多層膜を形成することができ、きわ
めて高い磁気抵抗変化率(MR比)を有する磁界センサ
が得られる。
The effects of the present invention are clear from the above results. That is, in the method of manufacturing the magnetic field sensor according to the present invention, when the thermal conductivity of the substrate is κ and the plate thickness is L, the value of κ / L is 1.5 × 10 3 (W · m −2. K -1 ) A flexible resin substrate made of resin is used. The resin flexible substrate is set on a substrate fixing base, and the magnetoresistive effect is cooled while cooling the resin flexible substrate from the substrate fixing base side. As a film, thickness 10
A giant magnetoresistive multilayer film in which layers of nm or less are stacked in multiple layers is formed by a vacuum film forming method. Therefore, even if a flexible substrate made of resin, which was originally difficult to use as a substrate, is used, a giant magnetoresistive multilayer film having a clean layer interface can be formed thereon, and an extremely high magnetoresistance A magnetic field sensor having a rate of change (MR ratio) is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁界センサの製造方法、特に、樹脂製
可撓性基板の上に、スパッタ法で巨大磁気抵抗効果多層
膜を成膜している状態を模式的に示した図面である。
FIG. 1 is a drawing schematically showing a method for manufacturing a magnetic field sensor according to the present invention, in particular, a state in which a giant magnetoresistive multilayer film is formed on a flexible resin substrate by sputtering. .

【図2】成膜速度とMR比との関係を、樹脂製可撓性基
板の厚さをパラメータとして表示したグラフである。
FIG. 2 is a graph showing a relationship between a film forming rate and an MR ratio, using the thickness of a resin-made flexible substrate as a parameter.

【符号の説明】[Explanation of symbols]

10…樹脂製可撓性基板 20…巨大磁気抵抗効果多層膜 10: flexible substrate made of resin 20: giant magnetoresistive multilayer film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板の上に磁気抵抗効果膜を有する磁界
センサの製造方法において、 基板として、その熱伝導率をκ,その板厚をLとしたと
きκ/Lの値が、1.5×103 (W・m-2・K-1)以
上である樹脂製可撓性基板を用い、 この樹脂製可撓性基板を基板固定台に設置し、基板固定
台側から樹脂製可撓性基板を冷却しながら、 磁気抵抗効果膜として、厚さ10nm以下の層が多層に
積層された巨大磁気抵抗効果多層膜を真空成膜法で成膜
することを特徴とする磁界センサの製造方法。
1. A method of manufacturing a magnetic field sensor having a magnetoresistive film on a substrate, wherein the substrate has a thermal conductivity of κ and a thickness of L of κ / L of 1.5. A resin flexible substrate having a size of × 10 3 (W · m −2 · K −1 ) or more is used. The resin flexible substrate is set on a substrate fixing base, and the resin flexible substrate is mounted from the substrate fixing base side. A method for manufacturing a magnetic field sensor, comprising: forming a giant magnetoresistive multilayer film in which layers having a thickness of 10 nm or less are laminated as a magnetoresistive film by vacuum deposition while cooling a conductive substrate. .
【請求項2】 前記樹脂製可撓性基板は、厚さ200μ
m以下のポリイミドフィルムである請求項1記載の磁界
センサの製造方法。
2. The resin-made flexible substrate has a thickness of 200 μm.
The method for manufacturing a magnetic field sensor according to claim 1, wherein the polyimide film has a thickness of not more than m.
【請求項3】 前記真空成膜法は、スパッタ法である請
求項1または請求項2に記載の磁界センサの製造方法。
3. The method according to claim 1, wherein the vacuum film forming method is a sputtering method.
【請求項4】 前記巨大磁気抵抗効果多層膜は、成膜速
度0.005〜0.2nm/secで成膜される請求項
1ないし請求項3のいずれかに記載の磁界センサの製造
方法。
4. The method according to claim 1, wherein the giant magnetoresistive multilayer film is formed at a film forming rate of 0.005 to 0.2 nm / sec.
JP9282606A 1997-03-28 1997-09-30 Manufacture of magnetic field sensor Withdrawn JPH11112058A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9282606A JPH11112058A (en) 1997-09-30 1997-09-30 Manufacture of magnetic field sensor
US09/013,638 US6184680B1 (en) 1997-03-28 1998-01-26 Magnetic field sensor with components formed on a flexible substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9282606A JPH11112058A (en) 1997-09-30 1997-09-30 Manufacture of magnetic field sensor

Publications (1)

Publication Number Publication Date
JPH11112058A true JPH11112058A (en) 1999-04-23

Family

ID=17654704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9282606A Withdrawn JPH11112058A (en) 1997-03-28 1997-09-30 Manufacture of magnetic field sensor

Country Status (1)

Country Link
JP (1) JPH11112058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220889A (en) * 2011-11-29 2014-12-17 德累斯顿协会莱布尼茨固体材料研究所 Use of flexible magnetic thin layer sensor elements

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220889A (en) * 2011-11-29 2014-12-17 德累斯顿协会莱布尼茨固体材料研究所 Use of flexible magnetic thin layer sensor elements

Similar Documents

Publication Publication Date Title
KR100833923B1 (en) Magneto resistance effect device
US6114056A (en) Magnetic element, and magnetic head and magnetic memory device using thereof
WO2007126071A1 (en) Magnetic thin film, magnetoresistive element using the same, and magnetic device
US20090015969A1 (en) Magnetic thin film, magnetoresistance effect device and magnetic device using the same
KR19990037273A (en) Thin film magnetic head using an exchange coupling film and a magnetoresistance effect element using the exchange coupling film and a magnetoresistance effect element
JP3694440B2 (en) Method for manufacturing exchange coupling film, method for manufacturing magnetoresistive effect element using exchange coupling film, and method for manufacturing thin film magnetic head using magnetoresistance effect element
JP3670928B2 (en) Exchange coupling film, magnetoresistive element using the exchange coupling film, and thin film magnetic head using the magnetoresistive element
Masuda et al. Interlayer exchange coupling and spin Hall effect through an Ir-doped Cu nonmagnetic layer
JP3686572B2 (en) Method of manufacturing exchange coupling film, method of manufacturing magnetoresistive effect element using exchange coupling film, and method of manufacturing thin film magnetic head using magnetoresistive effect element
JPH07221363A (en) Magnetoresistive element
US8091209B1 (en) Magnetic sensing device including a sense enhancing layer
JPH11112058A (en) Manufacture of magnetic field sensor
JP2000040209A (en) Spin valve type thin-film element and thin film magnetic head using this spin valve type thin-film element
JPH1197762A (en) Magnetoresistive element
US11156678B2 (en) Magnetic field sensor using in situ solid source graphene and graphene induced anti-ferromagnetic coupling and spin filtering
JP2002232039A (en) Spin valve type huge magnetoresistance effect element, magnetoresistance effect type magnetic head and their manufacturing methods
JPH11144956A (en) Magneto-resistance effect film and manufacture thereof
JP3831573B2 (en) Method for manufacturing spin valve thin film element and method for manufacturing thin film magnetic head using spin valve thin film element
Jiang et al. Perpendicular giant magnetoresistance and magnetic switching properties of a single spin valve with a synthetic antiferromagnet as a free layer
CN112305470A (en) Annealing method of giant magnetoresistance sensor constructed by giant magnetoresistance structures with different magnetization directions
JP3212568B2 (en) Spin-valve thin-film element and thin-film magnetic head equipped with the spin-valve thin-film element
JP3040751B2 (en) Spin-valve thin-film element and thin-film magnetic head using the spin-valve thin-film element
US20050047025A1 (en) CPP read head for high density and shield noise suppression
KR19990006709A (en) Magnetic tunnel elements
JP2004178659A (en) Spin valve head and magnetic recorder

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207