JPH11111720A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH11111720A
JPH11111720A JP27084597A JP27084597A JPH11111720A JP H11111720 A JPH11111720 A JP H11111720A JP 27084597 A JP27084597 A JP 27084597A JP 27084597 A JP27084597 A JP 27084597A JP H11111720 A JPH11111720 A JP H11111720A
Authority
JP
Japan
Prior art keywords
groove
magnetic field
silicon substrate
wiring
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27084597A
Other languages
Japanese (ja)
Inventor
Norihide Saho
典英 佐保
Shigeki Hirasawa
茂樹 平澤
Hisashi Isokami
尚志 磯上
Minoru Morita
穣 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27084597A priority Critical patent/JPH11111720A/en
Publication of JPH11111720A publication Critical patent/JPH11111720A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To make an electric resistance of wiring constituted in a groove uniform, by heating a semiconductor substrate in a high gradient magnetic field space where unnecessary gas such as steam or the like is shut in high vacuum, and by applying a magnetic force to metallic molecules to move them in the direction of the bottom of the groove when the semiconductor substrate is reflown. SOLUTION: A high vacuum is produced in a reaction chamber 5, and a current is supplied to a superconductive magnet 16 from a power source 25 to generate a high magnetic field in a space where a silicon substrate 1 is arranged and a high gradient magnetic field around a metal net 28, and then the silicon substrate 1 is heated to a temperature less than the melting point of a Cu film by a stage 6 and a heating plate 12. Since Cu molecules are diamagnetic, they receive a magnetic repulsive force in the direction of thickness of the silicon substrate 1, that is, in the direction of the bottom of a groove, from the high gradient magnetic field generated around the metal net 28, thereby flowing into the groove in a state where cavity is not produced to form the Cu film. The surface of the silicone substrate 1 is then cut away to form a Cu wiring having no cavity and uniform electric resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法に関し、特に溝内への金属膜の形成方法に関する。
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a metal film in a groove.

【0002】[0002]

【従来の技術】狭い溝に配線となる金属をリフローさせ
溝内に金属膜を形成させる半導体装置では、溝付き基板
に前記金属をスパッタリングした後、前記基板を単に融
点未満の温度に加熱してスパッタリングした金属の拡散
作用を利用して流動させ溝内に流し込ませ、金属膜を形
成させる方法が主に用いられている。
2. Description of the Related Art In a semiconductor device for forming a metal film in a groove by reflowing a metal serving as a wiring in a narrow groove, the metal is sputtered on a grooved substrate, and then the substrate is simply heated to a temperature lower than a melting point. A method is mainly used in which a sputtered metal is made to flow using the diffusion action of the sputtered metal and is poured into a groove to form a metal film.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の配線の
形成方法は、流動の溝底部への流れ力が小さく溝開放部
で溝縁の両サイドの金属が先にブリッチ状に結合し、溝
内部に空洞部が残留する。このため、溝内に構成される
配線の電気抵抗値が一様でなくなり、電気的抵抗値が不
均一となり、半導体装置の特性がばらつくという欠点が
ある。
In the above-described conventional method of forming a wiring, the flow force of the flow to the bottom of the groove is small and the metal on both sides of the groove edge is firstly connected in a blitch shape at the groove opening, and the groove is formed. A cavity remains inside. For this reason, the electric resistance value of the wiring formed in the groove becomes non-uniform, the electric resistance value becomes non-uniform, and the characteristics of the semiconductor device vary.

【0004】本発明の目的は、溝内に構成される配線の
電気抵抗値を一様にし均一な特性を得る半導体装置の製
造方法を提供することにある。
An object of the present invention is to provide a method of manufacturing a semiconductor device in which the electric resistance value of wiring formed in a groove is made uniform and uniform characteristics are obtained.

【0005】[0005]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板をリフローさせる際に、高真空中
で水蒸気等の不要ガスを遮断した状態の高磁気勾配磁場
空間で基板を加熱させ、前記金属分子を溝底部方向に移
動させる磁気力を作用させる。高磁気勾配磁場を発生さ
せる手段として、超伝導磁石や磁性金属網等を用いる。
According to the method of manufacturing a semiconductor device of the present invention, when reflowing a semiconductor substrate, the substrate is heated in a high magnetic gradient magnetic field space in a state where unnecessary gases such as water vapor are cut off in a high vacuum. Then, a magnetic force is applied to move the metal molecules toward the groove bottom. As a means for generating a high magnetic gradient magnetic field, a superconducting magnet or a magnetic metal net is used.

【0006】[0006]

【発明の実施の形態】次に、本発明について図面を参照
して説明する。図1及び図2は本発明の図1の実施例を
説明するための装置の断面図及び基板の一部の拡大図で
ある。図2中の(a)において半導体装置の溝内金属配
線膜形成工程前のシリコン基板1は、溝2を加工したシ
リコン基板1の表面に溝内に形成する金属膜例えば溝内
に銅配線を形成する際には銅を前工程にてスパッター等
で溝2の開口部縁にCu膜3を、溝2底部にCu膜4を
形成している。この状態からリフロー工程を行う。
Next, the present invention will be described with reference to the drawings. 1 and 2 are a sectional view of an apparatus for explaining the embodiment of FIG. 1 of the present invention and an enlarged view of a part of a substrate. In FIG. 2A, the silicon substrate 1 before the step of forming the in-groove metal wiring film of the semiconductor device has a metal film formed in the groove on the surface of the silicon substrate 1 in which the groove 2 has been processed, for example, a copper wiring in the groove. In forming the Cu film, a Cu film 3 is formed on the edge of the opening of the groove 2 and a Cu film 4 is formed on the bottom of the groove 2 by sputtering or the like in a previous step. The reflow process is performed from this state.

【0007】図1において、前記半導体装置の溝内金属
配線膜形成工程前のシリコン基板1を反応容器5内に設
けられた加熱用ヒータを内蔵したステージ6の上にお
き、反応容器5の内部を真空ポンプ6,弁7,配管8に
て0.018Pa 程度の真空にする。次に不活性ガス供
給ボンベ9,弁10,配管11にてアルゴンガス等の不
活性ガスを適量供給する。シリコン基板1の上部にも、
加熱用ヒータを内蔵した加熱板12を設け、ステージ
6,加熱板12はリード線13,14によりヒータ用加
熱量制御装置15に接続されている。
In FIG. 1, the silicon substrate 1 before the step of forming a metal wiring film in a groove of the semiconductor device is placed on a stage 6 having a built-in heating heater provided in a reaction vessel 5, and the inside of the reaction vessel 5 is Is evacuated to about 0.018 Pa by a vacuum pump 6, a valve 7, and a pipe 8. Next, an appropriate amount of an inert gas such as an argon gas is supplied through an inert gas supply cylinder 9, a valve 10, and a pipe 11. In the upper part of the silicon substrate 1,
A heating plate 12 having a built-in heating heater is provided, and the stage 6 and the heating plate 12 are connected to a heater heating amount control device 15 by lead wires 13 and 14.

【0008】反応容器5の外側には磁場発生手段の円筒
状の例えばNbTi導体で構成した超電導磁石16を配
置し、超電導磁石16を取り巻くように熱シールド板1
7を、それらの周りを真空断熱容器18で囲う。超電導
磁石16および熱シールド板17は、冷却手段のヘリウ
ム冷凍機19の例えば冷却温度4.2K の第2ステージ
20および例えば冷却温度80Kの第1ステージ21と
熱的に一体化され、所定の温度に冷却される。ヘリウム
冷凍機19は作動流体のヘリウムガス圧縮機22と高圧
配管23と低圧配管24とで接続されている。超電導磁
石16は電源25とリード線26,27で接続され、所
定の電流を供給され、所定の磁場を発生する。
A cylindrical superconducting magnet 16 made of, for example, an NbTi conductor as a magnetic field generating means is arranged outside the reaction vessel 5, and the heat shield plate 1 is arranged so as to surround the superconducting magnet 16.
7 are surrounded by a vacuum insulated container 18 around them. The superconducting magnet 16 and the heat shield plate 17 are thermally integrated with a second stage 20 having a cooling temperature of 4.2K and a first stage 21 having a cooling temperature of 80K, for example, at a predetermined temperature. Is cooled. The helium refrigerator 19 is connected by a helium gas compressor 22 for working fluid, a high-pressure pipe 23 and a low-pressure pipe 24. The superconducting magnet 16 is connected to a power supply 25 by lead wires 26 and 27, is supplied with a predetermined current, and generates a predetermined magnetic field.

【0009】シリコン基板1の上部には、高勾配磁場を
発生させるための、磁性材料例えば高ニッケルステンレ
ス鋼製の金網28を配置させる。ここで、超電導磁石1
6に通電せずシリコン基板1を配置した空間に磁場を発
生させずに、ステージ6および加熱板12で基板をCu
膜3の融点未満の温度である約450℃に加熱すると、
図2の(b)のように、溝2部への流動の流れ力が小さ
く溝開放部で溝縁の両サイドのCu膜3が先にブリッチ
状に結合し、溝内部に空洞部29が残留する。このた
め、溝2内に構成される配線の電気抵抗値が一様でなく
なり、電気的抵抗値が不均一となり、半導体装置の特性
がばらついてしまう。
A wire mesh 28 made of a magnetic material, for example, high nickel stainless steel, for generating a high gradient magnetic field is disposed on the upper portion of the silicon substrate 1. Here, the superconducting magnet 1
The substrate 6 is cut by the stage 6 and the heating plate 12 without generating a magnetic field in the space where the silicon substrate 1 is disposed without supplying electricity to the substrate 6.
When heated to about 450 ° C., which is lower than the melting point of the film 3,
As shown in FIG. 2B, the flow force of the flow to the groove 2 is small, and the Cu films 3 on both sides of the groove edge are joined in a blitch shape at the groove opening, and the cavity 29 is formed inside the groove. Remains. For this reason, the electric resistance value of the wiring formed in the groove 2 becomes non-uniform, the electric resistance value becomes non-uniform, and the characteristics of the semiconductor device vary.

【0010】そこで、超電導磁石16に電源25から電
流を供給し、シリコン基板1を配置した空間に例えば5
Tの高磁場を発生させ、金網28の周囲に高勾配磁場を
つくり、シリコン基板1をステージ6および加熱板12
で基板をCu膜3の融点未満の温度である約450℃に
加熱すると、Cu分子は反磁性であるため金網28の周
囲に発生する高勾配磁場から磁気反発力を受け、Cu分
子はシリコン基板1上の板厚方向すなわち溝2の底部方
向に押しやられる力を受け、図2の(c)に示すように
空洞部が生じない状態で溝2内に流れ込みCu膜30を
形成する。この後、シリコン基板1の表面を削り取ると
図2の(d)のようになり、空洞部のない均一な電気抵
抗を有したCuの配線31が形成され、半導体装置の均
一な特性を得ることができる。
Therefore, a current is supplied from the power supply 25 to the superconducting magnet 16 so that, for example, 5
A high magnetic field of T is generated to create a high gradient magnetic field around the wire mesh 28, and the silicon substrate 1 is moved to the stage 6 and the heating plate 12
When the substrate is heated to about 450 ° C., which is lower than the melting point of the Cu film 3, the Cu molecules are diamagnetic and receive a magnetic repulsive force from a high gradient magnetic field generated around the wire mesh 28, and the Cu molecules are When a force is pushed in the thickness direction of the upper surface of the groove 1, that is, in the direction of the bottom of the groove 2, the Cu film 30 flows into the groove 2 without forming a cavity as shown in FIG. After that, when the surface of the silicon substrate 1 is scraped off, the wiring becomes as shown in FIG. 2D, and a Cu wiring 31 having a uniform electric resistance without a cavity is formed to obtain uniform characteristics of the semiconductor device. Can be.

【0011】ここで、配線材料の磁化率が負、すなわち
反磁化率が大きい場合には、金網28は不要であり、超
電導磁石16が発生する磁石開口部付近に発生する磁気
勾配のみで金属膜の金属分子に磁場方向に対する反力を
得ることができる。
Here, when the magnetic susceptibility of the wiring material is negative, that is, the anti-magnetic susceptibility is large, the wire netting 28 is unnecessary, and the metal film is formed only by the magnetic gradient generated near the magnet opening generated by the superconducting magnet 16. A reaction force with respect to the direction of the magnetic field can be obtained for the metal molecules.

【0012】また、配線材料の磁化率が正で磁化率が小
さい場合には、図3に示すように金網28は超電導磁石
16が発生する磁場空間内でかつシリコン基板1とステ
ージ6の間もしくはステージ6の裏面側に配置し、配線
材料の金属分子に磁気吸引力を発生させ、金属分子を溝
2の底部方向に流動させるようにできる。また、配線材
料の磁化率が正で磁化率が大きい場合には、超電導磁石
16を金網28は不要であり、超電導磁石16が発生す
る磁石開口部付近に生じる磁気勾配のみで金属膜の金属
分子に磁場方向に作用する磁気吸引力を得ることができ
る。
When the susceptibility of the wiring material is positive and the susceptibility is small, as shown in FIG. 3, the wire mesh 28 is located in the magnetic field space generated by the superconducting magnet 16 and between the silicon substrate 1 and the stage 6 or It is arranged on the back side of the stage 6, and generates a magnetic attraction force on the metal molecules of the wiring material so that the metal molecules can flow toward the bottom of the groove 2. When the magnetic susceptibility of the wiring material is positive and the magnetic susceptibility is large, the wire mesh 28 is unnecessary for the superconducting magnet 16, and the metal molecules of the metal film are formed only by the magnetic gradient generated near the magnet opening generated by the superconducting magnet 16. A magnetic attraction force acting in the direction of the magnetic field can be obtained.

【0013】また、磁気反発力もしくは磁気吸引力をリ
フロー工程時に制御するために、超電導磁石への供給電
流値を制御したり、磁石16とシリコン基板1の相対位
置を移動手段等で制御することができる。
In order to control the magnetic repulsive force or the magnetic attractive force during the reflow process, the value of the current supplied to the superconducting magnet is controlled, and the relative position between the magnet 16 and the silicon substrate 1 is controlled by moving means or the like. Can be.

【0014】また、本実施例では超電導磁石にNbTi
導体製の磁石を適用したが、Nb3Sn導体製やNb3
l導体製や高温超電導導体製や常温電磁石、もしくはこ
れらの複合の磁石で構成しても同様な効果があり、常伝
導磁石や永久磁石や永久磁石と鉄ヨークで構成しても磁
気反発力もしくは磁気吸引力方向が同じであれば同様な
効果が生じる。
In this embodiment, NbTi is used for the superconducting magnet.
Although a conductor magnet was used, Nb 3 Sn conductor or Nb 3 A
The same effect can be obtained by using a conductor, a high-temperature superconducting conductor, a room-temperature electromagnet, or a composite magnet made of these materials. The same effect can be obtained by using a normal-conducting magnet, a permanent magnet, or a permanent magnet and an iron yoke. If the direction of the magnetic attraction force is the same, a similar effect is produced.

【0015】したがって、本発明によれば、前記配線用
金属分子を溝底部方向に移動させる磁気力が発生するの
で、溝内に空洞部が生じない状態で溝内に流れ込んだ金
属膜を形成できるので、均一な電気抵抗を有した金属の
配線が形成され、半導体装置の均一な特性を得ることが
できる。
Therefore, according to the present invention, since a magnetic force is generated to move the metal molecules for wiring in the direction of the bottom of the groove, it is possible to form a metal film flowing into the groove without forming a cavity in the groove. Therefore, a metal wiring having uniform electric resistance is formed, and uniform characteristics of the semiconductor device can be obtained.

【0016】また、本実施例では冷凍機19はヘリウム
冷凍機を使用したが、磁石の必要冷却温度に応じて、他
に作動冷媒に窒素,空気,水素,フロン系ガスを使用す
る機器やペルチェ素子を使用した電子式の機器が使用さ
れてもよい。ガスを作動流体に使用した冷凍機の方式と
しては、ギフォード・マクマホン式,ソルベイ式,スタ
ーリング式,コリンズ型膨張機式,膨張タービン式,膨
張弁式、これらを組み合わせた機器等が使用されてもよ
い。
In this embodiment, a helium refrigerator is used as the refrigerator 19, but other devices using nitrogen, air, hydrogen, chlorofluorocarbon-based gas or Peltier according to the required cooling temperature of the magnet. An electronic device using an element may be used. Gifford McMahon, Solvay, Stirling, Collins type expander type, expansion turbine type, expansion valve type, and equipment combining these are used as refrigerators using gas as the working fluid. Good.

【0017】図4,図5に本発明になる他の実施例を示
す。図4が図3と異なる点は、金網28の代わりに、小
型永久磁石を配置した磁気勾配発生手段32を配置した
点にある。磁気勾配発生手段32は、図5に示すよう
に、FRP樹脂のような非磁性材料で製作した平板33
に小型永久磁石34を密に配置して構成され、それぞれ
の小型永久磁石34の磁極の向きは統一しても、NS極
交互に配置してもよい。本実施例によれば、電磁磁石を
使用しないので、装置を小型に構成できる効果がある。
FIGS. 4 and 5 show another embodiment according to the present invention. FIG. 4 differs from FIG. 3 in that a magnetic gradient generating means 32 having small permanent magnets is disposed in place of the wire mesh 28. As shown in FIG. 5, the magnetic gradient generating means 32 is a flat plate 33 made of a non-magnetic material such as FRP resin.
The small permanent magnets 34 may be arranged densely, and the magnetic pole directions of the small permanent magnets 34 may be unified or arranged alternately with the NS poles. According to the present embodiment, since the electromagnetic magnet is not used, there is an effect that the device can be made compact.

【0018】[0018]

【発明の効果】本発明によれば、前記配線用金属分子を
溝底部方向に移動させる磁気力が発生するので、溝内に
空洞部が生じない状態で溝内に流れ込んだ金属膜を形成
できるので、均一な電気抵抗を有した金属の配線が形成
され、半導体装置の均一な特性を得ることができる。
According to the present invention, a magnetic force is generated to move the metal molecules for wiring toward the bottom of the groove, so that a metal film flowing into the groove without forming a cavity in the groove can be formed. Therefore, a metal wiring having uniform electric resistance is formed, and uniform characteristics of the semiconductor device can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になる一実施例の半導体製造装置の構造
を説明する図。
FIG. 1 is a diagram illustrating the structure of a semiconductor manufacturing apparatus according to one embodiment of the present invention.

【図2】図1の半導体製造装置によりシリコン基板に被
膜を形成する工程を説明する断面図。
FIG. 2 is a sectional view illustrating a step of forming a film on a silicon substrate by the semiconductor manufacturing apparatus of FIG.

【図3】本発明の他の実施例である半導体製造装置を説
明する図。
FIG. 3 is a diagram illustrating a semiconductor manufacturing apparatus according to another embodiment of the present invention.

【図4】本発明の他の実施例である半導体製造装置の説
明図。
FIG. 4 is an explanatory view of a semiconductor manufacturing apparatus according to another embodiment of the present invention.

【図5】図4に使用した磁気勾配発生手段の説明図。FIG. 5 is an explanatory view of a magnetic gradient generating means used in FIG. 4;

【符号の説明】[Explanation of symbols]

1…シリコン基板、2…溝、3…Cu膜、5…反応容
器、6…ステージ、16…超電導磁石、28…金網。
DESCRIPTION OF SYMBOLS 1 ... Silicon substrate, 2 ... Groove, 3 ... Cu film, 5 ... Reaction vessel, 6 ... Stage, 16 ... Superconducting magnet, 28 ... Wire mesh.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 穣 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Minoru Morita 502, Kandachicho, Tsuchiura-shi, Ibaraki Pref.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板表面の溝内に前記溝縁にある配
線用金属膜を加熱手段により加熱し、前記溝内に流動せ
しめる半導体装置の製造方法において、前記金属膜が前
記溝内に流動せしめる方向に、磁場発生手段により直接
もしくは磁気勾配発生手段を介して磁気勾配を前記半導
体基板表面を含む空間に発生せしめることを特徴とする
半導体装置の製造方法。
In a method of manufacturing a semiconductor device, a wiring metal film at a groove edge is heated by a heating means in a groove on a surface of a semiconductor substrate and caused to flow into the groove, wherein the metal film flows into the groove. A method of manufacturing a semiconductor device, wherein a magnetic gradient is generated in a space including a surface of the semiconductor substrate by a magnetic field generating means directly or through a magnetic gradient generating means in a direction to be made.
JP27084597A 1997-10-03 1997-10-03 Manufacture of semiconductor device Pending JPH11111720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27084597A JPH11111720A (en) 1997-10-03 1997-10-03 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27084597A JPH11111720A (en) 1997-10-03 1997-10-03 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH11111720A true JPH11111720A (en) 1999-04-23

Family

ID=17491806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27084597A Pending JPH11111720A (en) 1997-10-03 1997-10-03 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH11111720A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317930A (en) * 2004-04-01 2005-11-10 Kyoritsu Kagaku Sangyo Kk Pattern forming method using magnetic field and method of manufacturing electronic equipment
JP2007187368A (en) * 2006-01-12 2007-07-26 Railway Technical Res Inst Magnetic work substance rotary magnetic refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317930A (en) * 2004-04-01 2005-11-10 Kyoritsu Kagaku Sangyo Kk Pattern forming method using magnetic field and method of manufacturing electronic equipment
JP2007187368A (en) * 2006-01-12 2007-07-26 Railway Technical Res Inst Magnetic work substance rotary magnetic refrigerator
JP4567609B2 (en) * 2006-01-12 2010-10-20 財団法人鉄道総合技術研究所 Magnetic working substance rotating type magnetic refrigerator

Similar Documents

Publication Publication Date Title
JP2716440B2 (en) Magnetic refrigerator that transfers heat by conduction
US5884485A (en) Power lead for electrically connecting a superconducting coil to a power supply
EP0496530B1 (en) A static magnetic refrigerator
CN103999214A (en) Electronic device with cooling by a liquid metal spreader
US10429104B2 (en) Method and apparatus for electricity generation using electromagnetic induction including thermal transfer between vortex flux generator and refrigerator compartment
Polash et al. Infinite-stage Nernst-Ettingshausen cryocooler for practical applications
JPH11111720A (en) Manufacture of semiconductor device
JPH10335137A (en) Cooling method and conducting method for superconductor
JP2004222494A (en) Vacuum retention method and superconducting machine with vacuum retention
JP3107228B2 (en) Superconducting magnet system
JPH10275719A (en) Method for cooling superconductor
JP3233811B2 (en) Magnetic refrigerator
JPH10144545A (en) Current limiting device
JP3377350B2 (en) Thermoelectric cooling type power lead
JP3450318B2 (en) Thermoelectric cooling type power lead
US3521207A (en) Power supply for superconducting magnet
JPH1072667A (en) Superconducting magnetron sputtering device
JP3860070B2 (en) Thermoelectric cooling power lead
JPH05259514A (en) Thermoelectric device, and its manufacturing method and device
JP2013093401A (en) Superconducting magnet and manufacturing method thereof
JP2013016618A (en) Superconductive magnet and manufacturing method of the same
Cheng et al. Study on $\hbox {Nb} _ {3}\hbox {Sn} $ Superconducting Coil With Ceramic Former
Shavrov et al. SEARCH FOR THE NEW APPROACHES TO NEW GENERATION OF CRYOGENIC AND SUPERCONDUCTING TECHNOLOGY BASED ON PHASE TRANSITIONS IN MAGNETIC FIELDS
JPH06275875A (en) Conduction cooling-type superconducting electromagnet device
CN109616271A (en) A kind of MnAl base magnetic refrigerating material and preparation method thereof of Cu doping