JPH11111707A - Vapor-phase growth system - Google Patents

Vapor-phase growth system

Info

Publication number
JPH11111707A
JPH11111707A JP29039597A JP29039597A JPH11111707A JP H11111707 A JPH11111707 A JP H11111707A JP 29039597 A JP29039597 A JP 29039597A JP 29039597 A JP29039597 A JP 29039597A JP H11111707 A JPH11111707 A JP H11111707A
Authority
JP
Japan
Prior art keywords
susceptor
wafer
phase growth
vapor phase
growth apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29039597A
Other languages
Japanese (ja)
Inventor
Eiji Sato
栄治 佐藤
Nobuhiro Nirasawa
信広 韮沢
Nobuhisa Komatsu
伸壽 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP29039597A priority Critical patent/JPH11111707A/en
Publication of JPH11111707A publication Critical patent/JPH11111707A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformly distribute heat over a wafer and thereby to minimize variations in the surfaces of vapor-phase grown film formed on the surface of the wafer, by partially supporting the wafer at part of a susceptor. SOLUTION: An inner susceptor 200a of a susceptor 200 has a protrusion 210 around the outer circumferential edge of its upper surface, and a recessed flat portion 220 on the inner side of the protrusion 210. The top of the protrusion 210 may have a width W large enough to support a wafer 40: the width W may, e.g. be set to about 10 mm. The height H from the surface of the portion 220 to the top of the protrusion 210 is set to about 1 mm. As a result, the wafer 40 can be supported partially at part of the susceptor 200. Hence, heat is transmitted from the periphery towards the center of the wafer 40, and thus the heat is distributed uniformly over the wafer 40. Consequently, variations in the surfaces of vapor-phase grown films formed on the surface of the wafer can be minimized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は気相成長装置に関す
る。更に詳細には、本発明は改良されたサセプタを有す
るCVD装置に関する。
[0001] The present invention relates to a vapor phase growth apparatus. More particularly, the present invention relates to a CVD apparatus having an improved susceptor.

【0002】[0002]

【従来の技術】半導体ICの製造においては、ウエハの
表面に酸化シリコンなどの薄膜を形成する工程がある。
薄膜の形成方法には化学的気相成長法(CVD)が用い
られている。CVD法には、常圧法、減圧法およびプラ
ズマ法の3方法がある。
2. Description of the Related Art In the manufacture of semiconductor ICs, there is a step of forming a thin film such as silicon oxide on the surface of a wafer.
Chemical vapor deposition (CVD) is used as a method of forming a thin film. The CVD method includes three methods: a normal pressure method, a reduced pressure method, and a plasma method.

【0003】シリコン酸化膜の形成材料には例えば、モ
ノシランガスのSiH4 などが使用されてきたが、半導
体デバイスの微細化に伴ってステップカバレージの低下
が問題となってきた。このモノシランガスの代わりに、
最近、液体のテトラエチルオルソシリケート(TEO
S)[Si(OC254 ]が使用されるようになっ
てきた。TEOSはステップカバレージに優れた緻密な
膜を形成できるためである。TEOSを用いてシリコン
酸化膜を成膜する場合、TEOSを加熱して気化させ、
TEOSガスとして反応炉に供給する。また、タンタル
酸化膜のTa25膜は液体のTa(OC255を気化
して反応炉に導入することにより成膜される。気化され
たSi(OC254又はTa(OC255ガスは酸
素ガス又はオゾンガスと混合されて成膜反応に使用され
る。
For example, a monosilane gas such as SiH 4 has been used as a material for forming a silicon oxide film. However, a reduction in step coverage has become a problem with miniaturization of semiconductor devices. Instead of this monosilane gas,
Recently, liquid tetraethylorthosilicate (TEO)
S) [Si (OC 2 H 5 ) 4 ] has been used. This is because TEOS can form a dense film with excellent step coverage. When a silicon oxide film is formed using TEOS, TEOS is heated and vaporized,
It is supplied to the reactor as TEOS gas. The Ta 2 O 5 film of the tantalum oxide film is formed by evaporating liquid Ta (OC 2 H 5 ) 5 and introducing it into the reaction furnace. The vaporized Si (OC 2 H 5 ) 4 or Ta (OC 2 H 5 ) 5 gas is mixed with an oxygen gas or an ozone gas and used for a film forming reaction.

【0004】このような気化Si(OC254又は
Ta(OC255ガスを使用する従来の気相成長装置
1の一例を図1に示す。この装置は反応炉10を有す
る。反応炉10の上部にはガスヘッド2が設けられてい
る。ガスヘッド2はガスヘッドベース3の下面側に装着
され、一方、ガスヘッドベース3の上面にはガスマニホ
ールド4が装着されている。ガスマニホールド4内には
気化ガス(例えば、Si(OC254又はTa(O
255)を送入するガス導路5aと酸素ガスを送入
するガス導路5bが設けられている。このガス導路5a
及び5bはそれぞれガスヘッドベース3のガス導路5
a’及び5b’にそれぞれ連通し、更にガスヘッド2に
設けられたガス導路5a’’及び5b’’に連通してい
る。ガスヘッド2に設けられたガス導路5a’’及び5
b’’の下端側には反応炉内に向けて開口する微小なガ
ス吹出口6が設けられている。また、ガスマニホールド
4及びガスヘッドベース3内には、気化ガスの再液化を
防止するため、加熱用熱媒体を循環させるための導路7
が設けられている。加熱媒体循環用導路7を設ける代わ
りに、別の加熱手段(例えば、コイルヒータなど)を使
用することもできる。
FIG. 1 shows an example of a conventional vapor phase growth apparatus 1 using such a vaporized Si (OC 2 H 5 ) 4 or Ta (OC 2 H 5 ) 5 gas. This apparatus has a reaction furnace 10. A gas head 2 is provided above the reaction furnace 10. The gas head 2 is mounted on the lower surface side of the gas head base 3, while the gas manifold 4 is mounted on the upper surface of the gas head base 3. In the gas manifold 4, a vaporized gas (for example, Si (OC 2 H 5 ) 4 or Ta (O
A gas conduit 5a for supplying C 2 H 5 ) 5 ) and a gas conduit 5b for supplying oxygen gas are provided. This gas conduit 5a
And 5b are gas conduits 5 of the gas head base 3, respectively.
a ′ and 5b ′, respectively, and further to gas conduits 5a ″ and 5b ″ provided in the gas head 2. Gas conduits 5a ″ and 5 provided in gas head 2
A small gas outlet 6 opening toward the inside of the reaction furnace is provided at the lower end side of b ″. In addition, in the gas manifold 4 and the gas head base 3, a conduit 7 for circulating a heating medium for heating in order to prevent re-liquefaction of the vaporized gas.
Is provided. Instead of providing the heating medium circulation path 7, another heating means (for example, a coil heater or the like) can be used.

【0005】チャンバベース11に石英フード12が設
けられている。石英フード12は締着手段13により着
脱可能に設けられている。石英フード12の内部にはヒ
ータ14が収容されている。ヒータ14の下部には石英
製の絶縁材15が配置され、更にこの絶縁材15の下部
には3段重ねのリフレクタ16が配置されている。リフ
レクタ16は必ずしも使用する必要はないが、使用する
と熱効率が高まる。使用する場合、リフレクタ16は少
なくとも1段あればよい。リフレクタの材質は特に限定
されない。例えば、リフレクタ16用の材料としてモリ
ブデンなどが好適に使用される。ヒータ14は例えば、
SiC,ニクロム線,カーボンなど公知の全てのものを
使用できる。ヒータ14は周方向に沿って複数個に分割
されており、所望により必要箇所だけ(例えば、最外周
部分だけ)を駆動させることができる。
A quartz hood 12 is provided on a chamber base 11. The quartz hood 12 is provided detachably by fastening means 13. A heater 14 is accommodated inside the quartz hood 12. A quartz insulating material 15 is arranged below the heater 14, and a three-tiered reflector 16 is arranged below the insulating material 15. Although it is not necessary to use the reflector 16, use of the reflector 16 increases the thermal efficiency. When used, at least one reflector 16 may be used. The material of the reflector is not particularly limited. For example, molybdenum or the like is suitably used as a material for the reflector 16. The heater 14 is, for example,
All known materials such as SiC, nichrome wire, and carbon can be used. The heater 14 is divided into a plurality of pieces along the circumferential direction, and can drive only necessary portions (for example, only the outermost peripheral portion) as desired.

【0006】石英フード12の厚さは特に限定されな
い。反応炉内の圧力変動及び石英フード12の上面に載
置されるサセプタ18の重量に耐えることができる強度
を有する必要十分な厚さであればよい。例えば、図1の
気相成長装置を減圧CVD装置として使用する場合、反
応炉10内の圧力は1Torr程度にまで減圧されるので、
石英フード12の上部厚さは約25mm程度であり、脚
部の厚さは約10mm程度であり、足部の厚さは約20
mm程度である。これ以外の厚さも当然使用できる。炉
内圧力と石英フード12内の圧力を一致させるように調
整すれば石英フード12の厚さを薄くすることも可能で
ある。しかし、炉内圧力よりもフード内圧力を低くする
ほうが、石英フード12への熱放散が防止され熱効率が
向上する。このため、石英フード12内を排気するため
の排気口17が設けられている。
[0006] The thickness of the quartz hood 12 is not particularly limited. Any thickness may be used as long as it is strong enough to withstand the pressure fluctuation in the reactor and the weight of the susceptor 18 placed on the upper surface of the quartz hood 12. For example, when the vapor phase growth apparatus of FIG. 1 is used as a low pressure CVD apparatus, the pressure in the reaction furnace 10 is reduced to about 1 Torr.
The upper thickness of the quartz hood 12 is about 25 mm, the thickness of the legs is about 10 mm, and the thickness of the feet is about 20 mm.
mm. Other thicknesses can of course be used. If the pressure in the furnace and the pressure in the quartz hood 12 are adjusted to be the same, the thickness of the quartz hood 12 can be reduced. However, when the pressure in the hood is lower than the pressure in the furnace, heat dissipation to the quartz hood 12 is prevented, and the thermal efficiency is improved. For this reason, an exhaust port 17 for exhausting the inside of the quartz hood 12 is provided.

【0007】石英フード12の略中央部上面にはサセプ
タ18が載置されている。サセプタ18は、実際にウエ
ハが載置される内側サセプタ18aと、この内側サセプ
タを取り囲む外側サセプタ18bとからなる。外側サセ
プタ18bはガイドリングとも呼ばれる。内側サセプタ
18a及び外側サセプタ18bの形成材料は特に限定さ
れないが、ウエハが重金属で汚染されることを避けるた
めに、例えば、グラッシーカーボンなどから構成するこ
とが好ましい。石英フード12の脇にはウエハ受け渡し
のため内側サセプタ18a上のウエハを上下させる昇降
ツメ20が配設されている。
[0007] A susceptor 18 is mounted on the upper surface of substantially the central portion of the quartz hood 12. The susceptor 18 includes an inner susceptor 18a on which a wafer is actually placed, and an outer susceptor 18b surrounding the inner susceptor. The outer susceptor 18b is also called a guide ring. The material for forming the inner susceptor 18a and the outer susceptor 18b is not particularly limited. However, it is preferable that the inner susceptor 18a and the outer susceptor 18b be made of, for example, glassy carbon in order to avoid contamination of the wafer with heavy metals. A lifting claw 20 for raising and lowering the wafer on the inner susceptor 18a for transferring the wafer is provided beside the quartz hood 12.

【0008】反応炉10の一方の側壁部21に密閉可能
なロードロック室30が設けられており、このロードロ
ック室30と反応炉10とを区切るゲート31を開閉す
ることにより、ウエハの出し入れを行う。
A load lock chamber 30 that can be hermetically sealed is provided on one side wall 21 of the reaction furnace 10. A gate 31 that separates the load lock chamber 30 from the reaction furnace 10 is opened and closed to load and unload a wafer. Do.

【0009】しかし、図1に示されるような枚葉式CV
D装置の場合、チャンバ側壁に近いウエハの周辺部の温
度が低下しやすく、ウエハの面内温度分布にムラ又はバ
ラツキが生じることがある。その結果、ウエハ表面に成
長される成膜面間バラツキも悪化し、製品品質を劣化さ
せる大きな原因となっていた。
However, a single-wafer CV as shown in FIG.
In the case of the D apparatus, the temperature of the peripheral portion of the wafer close to the side wall of the chamber is likely to decrease, and the temperature distribution in the surface of the wafer may be uneven or uneven. As a result, the variation between the film-forming surfaces grown on the wafer surface also deteriorates, which is a major cause of deteriorating the product quality.

【0010】更に、最近はウエハサイズが5インチから
8インチ及び12インチなど大口径化する傾向がある。
しかし、完全に平坦なウエハは存在しない。また、ウエ
ハが加熱されると、その熱応力のためにウエハが若干反
ることがある。ウエハが大口径化するにつれてこの傾向
は強くなる。従って、ウエハ下面とサセプタ表面との接
触にもバラツキが生じる。これも、ウエハ表面に成長さ
れる成膜面間バラツキを悪化させ、製品品質を劣化させ
る一因となる。
Further, recently, the wafer size tends to increase from 5 inches to 8 inches and 12 inches.
However, there is no perfectly flat wafer. When the wafer is heated, the wafer may be slightly warped due to the thermal stress. This tendency becomes stronger as the diameter of the wafer increases. Therefore, the contact between the lower surface of the wafer and the surface of the susceptor also varies. This also worsens the variation between the film-forming surfaces grown on the wafer surface and contributes to the degradation of product quality.

【0011】[0011]

【発明が解決しようとする課題】従って、本発明の目的
は、成膜面間バラツキをできるだけ小さくすることので
きる気相成長装置を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a vapor phase growth apparatus capable of minimizing variations between film forming surfaces.

【0012】[0012]

【課題を解決するための手段】前記課題は、少なくと
も、反応炉と、該反応炉内に反応ガスを供給するための
反応ガス供給手段と、その上面に基板が載置されるサセ
プタとを有し、前記サセプタは加熱手段により所定の温
度に加熱される気相成長装置において、前記サセプタ
は、その上面に載置されるウエハを面全体で支持するの
ではなく、面の一部分で支持することにより解決され
る。
The object of the present invention is to provide at least a reaction furnace, reaction gas supply means for supplying a reaction gas into the reaction furnace, and a susceptor on which a substrate is mounted. In the vapor phase growth apparatus in which the susceptor is heated to a predetermined temperature by a heating unit, the susceptor supports a wafer mounted on an upper surface of the susceptor not at the entire surface but at a part of the surface. Is solved by

【0013】ウエハがサセプタと全面接触すると、ウエ
ハの周辺部の熱がチャンバ側壁側に逃げてしまうため
に、ウエハの温度分布にムラが発生する。これに対し、
本発明に従って、ウエハをサセプタの一部分で部分的に
支持すると、ウエハ周辺からウエハの中心に向かって熱
が伝わり、ウエハの熱分布が均一になる。
When the entire surface of the wafer comes in contact with the susceptor, the heat in the peripheral portion of the wafer escapes to the side wall of the chamber, so that the temperature distribution of the wafer becomes uneven. In contrast,
When the wafer is partially supported by a part of the susceptor according to the present invention, heat is transmitted from the periphery of the wafer to the center of the wafer, and the heat distribution of the wafer becomes uniform.

【0014】[0014]

【発明の実施の形態】図2は本発明によるサセプタの一
例の部分拡大断面図である。図示されているように、本
発明のサセプタ200も、図1に示された従来のサセプ
タ18と同様に、内側サセプタ200aと外側サセプタ
200bとからなる。本発明のサセプタは従来のサセプ
タと異なり、内側サセプタ200aは、その上面の外周
縁に隆起部210を有し、この隆起部の内側に凹陥平面
部220を有する。隆起部210の上面の幅(W)は特
に限定されない。ウエハ40を支持するのに必要十分な
幅を有すればよい。一例として、隆起部210の上面の
幅は約10mm程度であることが好ましい。また、凹陥
平面部220の表面から隆起部210の上面までの高さ
(H)も特に限定されない。一例として、凹陥平面部2
20の表面から隆起部210の上面までの高さは約1m
m程度であることが好ましい。
FIG. 2 is a partially enlarged sectional view of an example of a susceptor according to the present invention. As shown, the susceptor 200 of the present invention also includes an inner susceptor 200a and an outer susceptor 200b, like the conventional susceptor 18 shown in FIG. The susceptor of the present invention differs from a conventional susceptor in that the inner susceptor 200a has a raised portion 210 on the outer peripheral edge of its upper surface, and has a concave flat portion 220 inside the raised portion. The width (W) of the upper surface of the raised portion 210 is not particularly limited. What is necessary is just to have a width necessary and sufficient to support the wafer 40. As an example, the width of the upper surface of the raised portion 210 is preferably about 10 mm. Further, the height (H) from the surface of the concave plane portion 220 to the upper surface of the raised portion 210 is not particularly limited. As an example, the concave plane portion 2
The height from the surface of 20 to the upper surface of the ridge 210 is about 1 m
m is preferable.

【0015】図3は本発明によるサセプタの別の例の部
分拡大断面図である。図示されているように、この実施
例によるサセプタ300は単一の部材からなる。すなわ
ち、図2に示されるような外側サセプタはなく、内側サ
セプタだけから構成されるようなサセプタである。この
実施例によるサセプタ300は、その外周縁に隆起部3
10を有し、この隆起部の内側に凹陥平面部320を有
する。隆起部310の上面の幅(W)は特に限定されな
い。ウエハ40を支持するのに必要十分な幅を有すれば
よい。一例として、隆起部310の上面の幅は約10m
m程度であることが好ましい。また、凹陥平面部320
の表面から隆起部310の上面までの高さ(H)も特に
限定されない。一例として、凹陥平面部320の表面か
ら隆起部310の上面までの高さは約1mm程度である
ことが好ましい。
FIG. 3 is a partially enlarged sectional view of another example of the susceptor according to the present invention. As shown, the susceptor 300 according to this embodiment comprises a single member. That is, the susceptor does not include the outer susceptor as shown in FIG. 2 but includes only the inner susceptor. The susceptor 300 according to this embodiment has a raised portion 3 on its outer peripheral edge.
10 and a concave flat portion 320 inside the raised portion. The width (W) of the upper surface of the raised portion 310 is not particularly limited. What is necessary is just to have a width necessary and sufficient to support the wafer 40. As an example, the width of the upper surface of the ridge 310 is about 10 m.
m is preferable. Also, the concave plane portion 320
The height (H) from the surface to the upper surface of the raised portion 310 is not particularly limited. As an example, the height from the surface of the concave flat portion 320 to the upper surface of the raised portion 310 is preferably about 1 mm.

【0016】また、サセプタに設けられる隆起部は半径
方向内側にも設けることができる。従って、図3に示さ
れるように、サセプタ外周縁の隆起部310に加えて、
サセプタの中心寄りの位置に別の隆起部330を設ける
こともできる。別法として、サセプタ外周縁の隆起部3
10を設ける代わりに、サセプタの中心寄りの位置の隆
起部330だけを設けることもできる。従って、本発明
によれば、サセプタに設けられる隆起部はサセプタ上面
の適当な箇所に少なくとも1つ配設されていればよい。
The ridge provided on the susceptor may be provided on the inner side in the radial direction. Therefore, as shown in FIG. 3, in addition to the bulge 310 on the outer peripheral edge of the susceptor,
Another ridge 330 may be provided near the center of the susceptor. Alternatively, a bulge 3 at the outer periphery of the susceptor
Instead of providing 10, only the raised portion 330 located near the center of the susceptor may be provided. Therefore, according to the present invention, it is sufficient that at least one raised portion provided on the susceptor is provided at an appropriate position on the upper surface of the susceptor.

【0017】サセプタは円盤状なので、隆起部は所定の
半径方向幅を有する円環状の形状を有するが、この円環
は連続状でも断続状でもどちらの形状でもよい。別法と
して、図示されているような半径方向に所定の幅(W)
を有する形状の隆起部だけでなく、任意の形状を有する
突起を使用することもできる。この場合、上端面が平面
状の突起に限らず、曲面、尖状など様々な上端面を有す
る突起を使用できる。突起の個数は特に限定されない。
ウエハを安定的に支持できれば、2個でもよい。3個以
上の突起でウエハを支持することが好ましいが、突起の
個数が多すぎるとウエハ温度分布の均一化に逆効果とな
るので好ましくない。
Since the susceptor has a disk shape, the raised portion has an annular shape having a predetermined radial width. The annular shape may be continuous or intermittent. Alternatively, a predetermined width (W) in the radial direction as shown
Not only a ridge having a shape having a shape but also a protrusion having an arbitrary shape can be used. In this case, the upper end surface is not limited to a flat projection, and a projection having various upper end surfaces such as a curved surface and a pointed shape can be used. The number of projections is not particularly limited.
Two wafers may be used as long as the wafer can be stably supported. It is preferable to support the wafer with three or more projections. However, if the number of projections is too large, it is not preferable because it has an adverse effect on uniformizing the wafer temperature distribution.

【0018】本発明のサセプタは図1に示されるような
気相成長装置で使用できるばかりか、サセプタを加熱し
て使用するその他の構造を有する公知の全ての気相成長
装置でも使用できる。本発明のサセプタを熱CVD装置
で使用する場合、このCVD装置は常圧、減圧及びプラ
ズマの全てのタイプを包含する。
The susceptor of the present invention can be used not only in a vapor phase growth apparatus as shown in FIG. 1, but also in all known vapor phase growth apparatuses having other structures in which the susceptor is heated and used. When the susceptor of the present invention is used in a thermal CVD apparatus, the CVD apparatus includes all types of normal pressure, reduced pressure, and plasma.

【0019】[0019]

【実施例】図1に示される熱CVD装置において、サセ
プタ18の代わりに、図2に示されるサセプタ200を
使用し、反応ガスとして、Ta(OC255ガスを使
用し、サセプタ温度は500℃、ウエハ温度は450℃
の加熱条件で、Ta25膜を直径5インチのシリコンウ
エハ表面に成膜した。この条件で、25枚連続的に成膜
した。比較例として、図1に示されるサセプタ18をそ
のまま使用したこと以外は前記と同様な条件で25枚連
続的に成膜した。
EXAMPLE In the thermal CVD apparatus shown in FIG. 1, a susceptor 200 shown in FIG. 2 was used in place of the susceptor 18, a Ta (OC 2 H 5 ) 5 gas was used as a reaction gas, and a susceptor temperature was used. Is 500 ℃, wafer temperature is 450 ℃
Under the heating conditions described above, a Ta 2 O 5 film was formed on the surface of a silicon wafer having a diameter of 5 inches. Under these conditions, 25 films were continuously formed. As a comparative example, 25 films were continuously formed under the same conditions as above except that the susceptor 18 shown in FIG. 1 was used as it was.

【0020】成膜中のウエハの温度分布を測定した。結
果を図4に示す。図4(A)に示されるように、本発明
のサセプタを使用した場合、ウエハの温度分布は中央部
と周辺部との間にさほど大きな差は生じなかった。これ
に対し、図4(B)に示される従来のサセプタの温度分
布は、中央部と周辺部との間に大きな差が生じていた。
The temperature distribution of the wafer during film formation was measured. FIG. 4 shows the results. As shown in FIG. 4A, when the susceptor of the present invention was used, the temperature distribution of the wafer did not significantly differ between the central portion and the peripheral portion. On the other hand, the temperature distribution of the conventional susceptor shown in FIG. 4B has a large difference between the central part and the peripheral part.

【0021】得られた気相成長膜の膜厚分布を測定し
た。結果を図5に示す。図5(A)に示されるように、
本発明のサセプタを使用した場合、ウエハの膜厚分布は
中央部と周辺部との間にさほど大きな差は生じなかっ
た。中央部と周辺部との膜面間のバラツキは±2〜3%
程度であった。これに対し、図4(B)に示されるよう
に、従来のサセプタを使用した場合のウエハ膜厚分布
は、中央部と周辺部との間に大きな差が生じ、中央部と
周辺部との膜面間のバラツキは±6%程度であった。膜
面間バラツキは、バラツキ(±%)={(最大値−最小
値)/(最大値+最小値)}x100の計算式により算
出した。
The thickness distribution of the obtained vapor growth film was measured. FIG. 5 shows the results. As shown in FIG.
When the susceptor of the present invention was used, the film thickness distribution of the wafer did not show a significant difference between the central portion and the peripheral portion. The variation between the film surface of the central part and the peripheral part is ± 2 to 3%
It was about. On the other hand, as shown in FIG. 4B, when the conventional susceptor is used, the wafer film thickness distribution has a large difference between the central portion and the peripheral portion, and the difference between the central portion and the peripheral portion. The variation between the film surfaces was about ± 6%. The variation between the film surfaces was calculated by the following formula: variation (±%) = {(maximum value−minimum value) / (maximum value + minimum value)} × 100.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
ウエハをサセプタの一部分で部分的に支持することによ
り、ウエハ周辺からウエハの中心に向かって熱が伝わ
り、ウエハの熱分布が均一になる。その結果、ウエハ表
面の気相成長膜の成膜面間バラツキが最小に抑えられ
る。
As described above, according to the present invention,
By partially supporting the wafer with a part of the susceptor, heat is transmitted from the periphery of the wafer to the center of the wafer, and the heat distribution of the wafer becomes uniform. As a result, the variation between the deposition surfaces of the vapor-phase grown film on the wafer surface can be minimized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の気相成長装置の一例の概要断面図であ
る。
FIG. 1 is a schematic sectional view of an example of a conventional vapor phase growth apparatus.

【図2】本発明によるサセプタの一例の部分概要断面図
である。
FIG. 2 is a partial schematic sectional view of an example of a susceptor according to the present invention.

【図3】本発明によるサセプタの別の例の部分概要断面
図である。
FIG. 3 is a partial schematic sectional view of another example of a susceptor according to the present invention.

【図4】温度分布を示す特性図であり、(A)は本発明
のサセプタを使用した場合の温度分布を示し、(B)は
従来のサセプタを使用した場合の温度分布を示す。
4A and 4B are characteristic diagrams showing a temperature distribution. FIG. 4A shows a temperature distribution when the susceptor of the present invention is used, and FIG. 4B shows a temperature distribution when a conventional susceptor is used.

【図5】膜厚分布を示す特性図であり、(A)は本発明
のサセプタを使用した場合の膜厚分布を示し、(B)は
従来のサセプタを使用した場合の膜厚分布を示す。
5A and 5B are characteristic diagrams showing a film thickness distribution, wherein FIG. 5A shows a film thickness distribution when a susceptor of the present invention is used, and FIG. 5B shows a film thickness distribution when a conventional susceptor is used. .

【符号の説明】[Explanation of symbols]

1 従来の気相成長装置 2 ガスヘッド 3 ガスヘッドベース 4 ガスマニホールド 10 反応炉 12 石英フード 14 ヒータ 16 リフレクタ 18 従来のサセプタ 200,300 本発明によるサセプタ 210,310,330 隆起部 220,320 凹陥平面部 DESCRIPTION OF SYMBOLS 1 Conventional vapor phase growth apparatus 2 Gas head 3 Gas head base 4 Gas manifold 10 Reactor 12 Quartz hood 14 Heater 16 Reflector 18 Conventional susceptor 200, 300 Susceptors 210, 310, 330 according to the present invention Raised portions 220, 320 Department

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、反応炉と、該反応炉内に反
応ガスを供給するための反応ガス供給手段と、その上面
に基板が載置されるサセプタとを有し、前記サセプタは
加熱手段により所定の温度に加熱される気相成長装置に
おいて、 前記サセプタは、基板が載置される側の面に、基板を支
持するための隆起部が少なくとも一つ設けられているこ
とを特徴とする気相成長装置。
At least a reaction furnace, a reaction gas supply means for supplying a reaction gas into the reaction furnace, and a susceptor on which a substrate is mounted on an upper surface thereof, wherein the susceptor is heated by a heating means In the vapor phase growth apparatus heated to a predetermined temperature, the susceptor is provided with at least one raised portion for supporting the substrate on a surface on which the substrate is mounted. Phase growth equipment.
【請求項2】 隆起部は、サセプタ上面の外周縁に沿っ
て連続した、半径方向に向かって所定の幅を有する円環
状の形状に成形されている請求項1の気相成長装置。
2. The vapor phase growth apparatus according to claim 1, wherein the raised portion is formed in an annular shape having a predetermined width in a radial direction and continuing along an outer peripheral edge of an upper surface of the susceptor.
【請求項3】 隆起部は、サセプタ上面の外周縁に沿っ
て断続した、半径方向に向かって所定の幅を有する円環
状の形状に成形されている請求項1の気相成長装置。
3. The vapor phase growth apparatus according to claim 1, wherein the protruding portion is formed in an annular shape having a predetermined width in a radial direction and intermittent along an outer peripheral edge of an upper surface of the susceptor.
【請求項4】 隆起部は、サセプタ上面の半径方向内側
に連続した、半径方向に向かって所定の幅を有する円環
状の形状に成形されている請求項1の気相成長装置。
4. The vapor phase growth apparatus according to claim 1, wherein the protruding portion is formed in an annular shape having a predetermined width in the radial direction and continuing radially inward of the upper surface of the susceptor.
【請求項5】 隆起部は、サセプタ上面の半径方向内側
に断続した、半径方向に向かって所定の幅を有する円環
状の形状に成形されている請求項1の気相成長装置。
5. The vapor phase growth apparatus according to claim 1, wherein the protruding portion is formed in an annular shape having a predetermined width in a radial direction, the shape being interrupted on a radially inner side of an upper surface of the susceptor.
【請求項6】 隆起部は、サセプタ上面の外周縁に沿っ
て連続した又は断続した、半径方向に向かって所定の幅
を有する円環状の形状に成形され、更に、サセプタ上面
の半径方向内側にも連続した又は断続した、半径方向に
向かって所定の幅を有する円環状の形状に成形されてい
る請求項1の気相成長装置。
6. The raised portion is formed in an annular shape having a predetermined width in the radial direction, which is continuous or interrupted along the outer peripheral edge of the susceptor upper surface, and furthermore, is formed radially inward of the susceptor upper surface. 2. The vapor phase growth apparatus according to claim 1, wherein said apparatus is also formed into a continuous or intermittent annular shape having a predetermined width in a radial direction.
【請求項7】 隆起部は、サセプタ上面に設けられた複
数個の突起からなる請求項1の気相成長装置。
7. The vapor phase growth apparatus according to claim 1, wherein the raised portion comprises a plurality of protrusions provided on the upper surface of the susceptor.
【請求項8】 熱CVD装置である請求項1〜7の気相
成長装置。
8. The vapor phase growth apparatus according to claim 1, which is a thermal CVD apparatus.
JP29039597A 1997-10-07 1997-10-07 Vapor-phase growth system Pending JPH11111707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29039597A JPH11111707A (en) 1997-10-07 1997-10-07 Vapor-phase growth system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29039597A JPH11111707A (en) 1997-10-07 1997-10-07 Vapor-phase growth system

Publications (1)

Publication Number Publication Date
JPH11111707A true JPH11111707A (en) 1999-04-23

Family

ID=17755464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29039597A Pending JPH11111707A (en) 1997-10-07 1997-10-07 Vapor-phase growth system

Country Status (1)

Country Link
JP (1) JPH11111707A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006012048A2 (en) * 2004-06-29 2006-02-02 Intel Corporation Deposition apparatus for providing uniform low-k dielectric
WO2007018157A1 (en) * 2005-08-05 2007-02-15 Tokyo Electron Limited Substrate processing apparatus and substrate stage used therein
WO2010140766A3 (en) * 2009-06-01 2011-03-10 주식회사 유진테크 Substrate-supporting unit and substrate-processing apparatus comprising same
DE102015113956A1 (en) * 2015-08-24 2017-03-02 Meyer Burger (Germany) Ag substrate carrier
CN106948002A (en) * 2017-03-15 2017-07-14 南京国盛电子有限公司 The two-sided base construction of electromagnetic induction heating epitaxial furnace
KR20180046867A (en) * 2016-10-28 2018-05-09 램 리써치 코포레이션 Planar substrate edge contact with open volume equalization pathways and side containment
JP2021190688A (en) * 2020-05-28 2021-12-13 環球晶圓股▲ふん▼有限公司Global Wafers Co., Ltd. Wafer mount station and wafer embedding structure formation method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006012048A3 (en) * 2004-06-29 2006-09-28 Intel Corp Deposition apparatus for providing uniform low-k dielectric
WO2006012048A2 (en) * 2004-06-29 2006-02-02 Intel Corporation Deposition apparatus for providing uniform low-k dielectric
WO2007018157A1 (en) * 2005-08-05 2007-02-15 Tokyo Electron Limited Substrate processing apparatus and substrate stage used therein
WO2010140766A3 (en) * 2009-06-01 2011-03-10 주식회사 유진테크 Substrate-supporting unit and substrate-processing apparatus comprising same
JP2012529173A (en) * 2009-06-01 2012-11-15 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate support unit and substrate processing apparatus including the same
DE102015113956A1 (en) * 2015-08-24 2017-03-02 Meyer Burger (Germany) Ag substrate carrier
DE102015113956B4 (en) 2015-08-24 2024-03-07 Meyer Burger (Germany) Gmbh Substrate carrier
US10964568B2 (en) 2015-08-24 2021-03-30 Meyer Burger (Germany) Gmbh Substrate carrier
JP2022120080A (en) * 2016-10-28 2022-08-17 ラム リサーチ コーポレーション Planar substrate edge contact with open-volume pressure-equalization pathways and side containment
KR20180046867A (en) * 2016-10-28 2018-05-09 램 리써치 코포레이션 Planar substrate edge contact with open volume equalization pathways and side containment
JP2018078284A (en) * 2016-10-28 2018-05-17 ラム リサーチ コーポレーションLam Research Corporation Planar substrate edge contact with open volume equalization pathways and side containment
US11443975B2 (en) 2016-10-28 2022-09-13 Lam Research Corporation Planar substrate edge contact with open volume equalization pathways and side containment
CN106948002A (en) * 2017-03-15 2017-07-14 南京国盛电子有限公司 The two-sided base construction of electromagnetic induction heating epitaxial furnace
CN106948002B (en) * 2017-03-15 2019-07-09 南京国盛电子有限公司 The two-sided base construction of electromagnetic induction heating epitaxial furnace
JP2021190688A (en) * 2020-05-28 2021-12-13 環球晶圓股▲ふん▼有限公司Global Wafers Co., Ltd. Wafer mount station and wafer embedding structure formation method

Similar Documents

Publication Publication Date Title
US6301434B1 (en) Apparatus and method for CVD and thermal processing of semiconductor substrates
US7166165B2 (en) Barrier coating for vitreous materials
US5888304A (en) Heater with shadow ring and purge above wafer surface
US6364954B2 (en) High temperature chemical vapor deposition chamber
US6176929B1 (en) Thin-film deposition apparatus
US7699604B2 (en) Manufacturing apparatus for semiconductor device and manufacturing method for semiconductor device
US20030205324A1 (en) Wafer holder with stiffening rib
US20050078953A1 (en) Substrate heater assembly
US20030049372A1 (en) High rate deposition at low pressures in a small batch reactor
JP5677563B2 (en) Substrate processing apparatus, substrate manufacturing method, and semiconductor device manufacturing method
US20180237916A1 (en) Apparatus to improve substrate temperature uniformity
US11236424B2 (en) Process kit for improving edge film thickness uniformity on a substrate
KR101030422B1 (en) Susceptor
JPH09219369A (en) Equipment and method for manufacturing semiconductor device
JPH11111707A (en) Vapor-phase growth system
US20010052324A1 (en) Device for producing and processing semiconductor substrates
TW202012679A (en) Method of manufacturing epitaxial silicon wafers
JP2020102533A (en) SiC CHEMICAL VAPOR DEPOSITION APPARATUS
JPH0930893A (en) Vapor growth device
JP3738494B2 (en) Single wafer heat treatment equipment
JP3603216B2 (en) Thin film growth equipment
JPH10223538A (en) Vertical heat-treating apparatus
JPH09153485A (en) Vapor growth device
JP2024017276A (en) Deposition device
JPH11100675A (en) Vapor growth method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A02 Decision of refusal

Effective date: 20040928

Free format text: JAPANESE INTERMEDIATE CODE: A02