JPH11108894A - Lc/ms interface - Google Patents

Lc/ms interface

Info

Publication number
JPH11108894A
JPH11108894A JP9286000A JP28600097A JPH11108894A JP H11108894 A JPH11108894 A JP H11108894A JP 9286000 A JP9286000 A JP 9286000A JP 28600097 A JP28600097 A JP 28600097A JP H11108894 A JPH11108894 A JP H11108894A
Authority
JP
Japan
Prior art keywords
pipe
inner diameter
chamber
outlet
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9286000A
Other languages
Japanese (ja)
Inventor
Hiroaki Wake
弘明 和気
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP9286000A priority Critical patent/JPH11108894A/en
Publication of JPH11108894A publication Critical patent/JPH11108894A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To expand the tolerance range of a skimmer arranging position. SOLUTION: The inner diameter D2 on the internal side of a desolvating pipe 23 is made larger than the inner diameter D0 on the side of the inlet end thereof and the inner diameter D1 on the side of the outlet end thereof. By this constitution, the pressure P2 inside the outlet end of the desolvating pipe 23 becomes for lower than atmospheric pressure P0 and the pressure difference between the inside and outside of the outlet end becomes small. Therefore, a Mach disk is not generated by ejected gas molecules and, even if a skimmer 36 is arranged in the vicinity of the outlet of the desolvating pipe 23, the plunging of gas molecules can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば液体クロマ
トグラフ質量分析装置の液体クロマトグラフ(LC)部
と質量分析(MS)部との間に配置され、LC部から与
えられる液体試料をイオン化してMS部に導入するため
のLC/MSインタフェイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, a liquid chromatograph mass spectrometer which is disposed between a liquid chromatograph (LC) section and a mass spectrometry (MS) section to ionize a liquid sample supplied from the LC section. To an LC / MS interface to be introduced into the MS section.

【0002】[0002]

【従来の技術】図2は、液体クロマトグラフ質量分析装
置(LC/MS)の一例を示す概略構成図である。LC
部10のカラム11内から時間的に分離して溶出する液
体試料はインタフェイス部20に導入され、ニードル2
2先端のノズルから霧化室21内に噴霧されてイオン化
される。発生したイオンは、インタフェイス部20とM
S部30との間に設けられたヒーテッドキャピラリ等の
脱溶媒パイプ23を通ってMS部30へと送り込まれ
る。
2. Description of the Related Art FIG. 2 is a schematic diagram showing an example of a liquid chromatograph mass spectrometer (LC / MS). LC
The liquid sample which is temporally separated and eluted from the column 11 of the section 10 is introduced into the interface section 20 and the needle 2
It is sprayed into the atomization chamber 21 from the nozzle at the two ends and is ionized. The generated ions are transmitted to the interface unit 20 and M
It is sent to the MS unit 30 through a desolvation pipe 23 such as a heated capillary provided between the S unit 30.

【0003】MS部30は、第1中間室31、第2中間
室32及び分析室33の3室から成り、霧化室21と第
1中間室31との間に上記脱溶媒パイプ23、第1中間
室31と第2中間室32との間には極小径の通過孔(オ
リフェス)を有するスキマー36が設けられている。第
1中間室31はロータリーポンプによって約1Torr程度
まで排気され、第2中間室32はターボ分子ポンプによ
って約10-3〜10-4Torr程度まで排気され、また分析
室33はターボ分子ポンプによって約10-5〜10-6To
rr程度まで排気される。
The MS section 30 comprises a first intermediate chamber 31, a second intermediate chamber 32, and an analysis chamber 33. The desolvation pipe 23 and the second intermediate chamber 31 are provided between the atomizing chamber 21 and the first intermediate chamber 31. A skimmer 36 having a very small diameter passage hole (orifice) is provided between the first intermediate chamber 31 and the second intermediate chamber 32. The first intermediate chamber 31 is evacuated to about 1 Torr by a rotary pump, the second intermediate chamber 32 is evacuated to about 10 -3 to 10 -4 Torr by a turbo molecular pump, and the analysis chamber 33 is exhausted to about 10 Torr by a turbo molecular pump. 10 -5 to 10 -6 To
It is exhausted to about rr.

【0004】脱溶媒パイプ23を通過したイオンはスキ
マー36の通過孔を通って第1中間室31から第2中間
室32に導入され、イオンレンズ37により収束及び加
速されて分析室33へ送られる。そして、特定の質量数
(質量m/電荷z)を有する目的イオンのみが分析室3
3内に配置された四重極フィルタ34を通り抜け、検出
器35に到達する。検出器35ではイオン数に応じた電
流が取り出される。
The ions that have passed through the desolvation pipe 23 are introduced from the first intermediate chamber 31 into the second intermediate chamber 32 through the passage holes of the skimmer 36, converged and accelerated by the ion lens 37, and sent to the analysis chamber 33. . Then, only the target ions having a specific mass number (mass m / charge z) are supplied to the analysis chamber 3
It passes through a quadrupole filter 34 arranged in 3 and reaches a detector 35. The detector 35 extracts a current corresponding to the number of ions.

【0005】上記インタフェイス部20は、液体試料を
加熱、高速気流、高電界等によって霧化させることで気
体イオンを生成するものであって、エレクトロスプレイ
イオン化法(ESI)、大気圧化学イオン化法(APC
I)等の大気圧イオン化法が最も広く使用されている。
The interface section 20 generates gas ions by atomizing a liquid sample by heating, high-speed gas flow, high electric field, and the like. The interface section 20 includes an electrospray ionization method (ESI) and an atmospheric pressure chemical ionization method. (APC
Atmospheric pressure ionization methods such as I) are most widely used.

【0006】図3は、ESIによるイオン化の場合のイ
ンタフェイス部周辺の詳細構成図である。液体試料が流
出するニードル22の先端には、電圧源V1により数k
Vの高電圧が印加されている。これによりニードル22
先端に到達した液体試料は強く帯電し、その外周を取り
巻くネブライズ管24から噴出する補助ガス(主として
窒素ガス)の助けを受けて帯電液滴として噴霧される。
液滴は周囲の大気成分と衝突して微細化され、液滴中の
溶媒が蒸発して気体イオンが発生する。発生したイオン
や微細液滴は、ニードル22の前方に配置されている脱
溶媒パイプ23の中に飛び込む。この脱溶媒パイプ23
は電圧源V2によりマイナス数十V程度の電圧が印加さ
れるとともに、図示しないヒータにより200℃程度の
温度に加熱されている。このため、脱溶媒パイプ23中
に飛び込んだ微細液滴は、そのパイプ23中を通過する
間に溶媒の蒸発が進行し、より多くのイオンが発生して
脱溶媒パイプ23の出口から放出される。
FIG. 3 is a detailed configuration diagram around the interface section in the case of ionization by ESI. At the tip of the needle 22 from which the liquid sample flows, several k
A high voltage of V is applied. Thereby, the needle 22
The liquid sample that has reached the tip is strongly charged, and is sprayed as charged droplets with the aid of an auxiliary gas (mainly nitrogen gas) ejected from the nebulizing tube 24 surrounding the periphery.
The droplet collides with the surrounding atmospheric components and is miniaturized, and the solvent in the droplet evaporates to generate gas ions. The generated ions and fine droplets jump into a desolvation pipe 23 disposed in front of the needle 22. This desolvation pipe 23
Is applied with a voltage of about several tens of volts by a voltage source V2, and is heated to a temperature of about 200 ° C. by a heater (not shown). For this reason, the fine droplets that have jumped into the desolvation pipe 23 evaporate the solvent while passing through the pipe 23, generate more ions and are discharged from the outlet of the desolvation pipe 23. .

【0007】上記構成のインタフェイス部20では、脱
溶媒パイプ23の入口側(霧化室21内)は大気圧P
0、出口側(第1中間室31内)は圧力P0よりも遙かに
低い圧力P1になっている。内径D0(例えば0.5m
m)の脱溶媒パイプ23内には霧化室21側からネブラ
イズガスや大気が次々に流れ込むので、その内部はほぼ
大気圧P0になっている。また、第1中間室31内の温
度は脱溶媒パイプ23内部よりも遙かに低くなってい
る。このため、脱溶媒パイプ23出口から第1中間室3
1内に噴出したガス(イオンを含む)は急激な断熱膨張
により略円錐状の高速噴流となり、所定距離だけ離れた
位置にいわゆるマッハディスクが生じる。一般に、この
所定距離(マッハディスク距離)XMは、次式で求めら
れる。 XM=0.67(P0/P1)1/2・d ここで、dは脱溶媒パイプ23の出口口径であるので、
ここではd=D0である。
In the interface section 20 having the above structure, the inlet side of the desolvation pipe 23 (inside the atomizing chamber 21) has an atmospheric pressure P.
0, the pressure on the outlet side (inside the first intermediate chamber 31) is much lower than the pressure P0. Inner diameter D0 (for example, 0.5m
The nebulizing gas and the atmosphere flow into the desolvation pipe 23 of m) one after another from the atomization chamber 21 side, so that the inside is almost at atmospheric pressure P0. The temperature in the first intermediate chamber 31 is much lower than that in the desolvation pipe 23. For this reason, the first intermediate chamber 3
The gas (including ions) jetted into 1 becomes a substantially conical high-speed jet due to rapid adiabatic expansion, and a so-called Mach disk is generated at a position separated by a predetermined distance. Generally, the predetermined distance (Mach disk distance) XM is obtained by the following equation. XM = 0.67 (P0 / P1) 1/2 · d where d is the outlet diameter of the desolvation pipe 23,
Here, d = D0.

【0008】[0008]

【発明が解決しようとする課題】脱溶媒パイプ23中に
おいてイオンはほぼその中心軸に沿って進み、脱溶媒パ
イプ23を出た後もマッハディスクまではほぼ直進する
と考えられる。ガス流はマッハディスク距離より下流側
では残留ガス分子との衝突による熱運動流れに戻るか
ら、その進行方向が乱れ、イオン流もこの影響を受け
る。このため、イオンを効率よくサンプリングするに
は、スキマー36の通過孔をマッハディスク距離XM以
内に配置するとよい。一方、通過孔を脱溶媒パイプ23
の出口に近付け過ぎると、イオンは効率よくサンプリン
グできるものの、同時に噴出したガス分子の第2中間室
32への飛込みも多くなる。このため、第2中間室32
の真空度が劣化し易くなり、真空度を維持するには高い
排気能力を有する真空ポンプを用いなければならない。
このため、イオンのサンプリング効率とガス分子の飛込
みの少なさとの両者を満足するには、スキマー36の通
過孔をマッハディスク距離XM又はそのやや内側に配置
するのが最適である。このように、従来の構成では、ス
キマーの通過孔の位置の調整は極めて微妙であり、適切
な位置に配置されないとイオンのサンプリング効率が極
端に落ちる、或いは、多くのガス分子が通過孔を通り抜
け後段の真空排気の負担が重くなるという問題があっ
た。
It is considered that ions in the desolvation pipe 23 travel substantially along the central axis, and after exiting the desolvation pipe 23, they travel substantially straight to the Mach disk. Since the gas flow returns to the thermal motion flow due to collision with the residual gas molecules downstream of the Mach disk distance, its traveling direction is disturbed, and the ion flow is also affected by this. For this reason, in order to sample ions efficiently, the passage hole of the skimmer 36 is preferably arranged within the Mach disk distance XM. On the other hand, the passage holes are formed in the
Too close to the outlet, the ions can be efficiently sampled, but the ejected gas molecules also jump into the second intermediate chamber 32 at the same time. For this reason, the second intermediate chamber 32
The degree of vacuum is easily deteriorated, and a vacuum pump having a high evacuation capacity must be used to maintain the degree of vacuum.
Therefore, in order to satisfy both the ion sampling efficiency and the small number of gas molecules, it is optimal to arrange the passage hole of the skimmer 36 at the Mach disk distance XM or slightly inside. As described above, in the conventional configuration, the adjustment of the position of the passage hole of the skimmer is extremely delicate, and if not arranged at an appropriate position, the ion sampling efficiency is extremely reduced, or many gas molecules pass through the passage hole. There is a problem that the load of the vacuum evacuation at the subsequent stage becomes heavy.

【0009】なお、上記構成では、ニードル22の中心
軸と脱溶媒パイプ23の中心軸とを平行にずらすことに
より大きな液滴が脱溶媒パイプ23に飛び込むことを防
止したり、或いは、脱溶媒パイプ23とスキマー36と
の間にイオン偏向のための電極板を配置したりすること
もあるが、いずれの場合でもスキマー36の位置調整が
微妙であることに変わりはない。
In the above configuration, large liquid droplets can be prevented from jumping into the desolvation pipe 23 by displacing the center axis of the needle 22 and the center axis of the desolvation pipe 23 in parallel. In some cases, an electrode plate for ion deflection may be arranged between 23 and the skimmer 36, but in any case, the position adjustment of the skimmer 36 is still delicate.

【0010】本発明は上記課題を解決するために成され
たものであり、その目的とするところは、スキマーの通
過孔等のイオンサンプリング部の位置精度の許容範囲を
広げつつ、イオンを効率的にサンプリングする一方、不
所望のガス分子の後段への飛込みを排除することができ
るLC/MSインタフェイスを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to increase the permissible range of the position accuracy of an ion sampling unit such as a passage hole of a skimmer and to efficiently convert ions. It is an object of the present invention to provide an LC / MS interface that can sample undesired gas molecules and eliminate undesired gas molecules from jumping to the subsequent stage.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に成された本発明は、液体クロマトグラフ質量分析装置
の液体クロマトグラフ部から与えられる液体試料をイオ
ン化して質量分析部に導入するためのLC/MSインタ
フェイスにおいて、 a)液体試料を噴霧する噴霧手段を備えた、大気圧下にあ
る霧化室と、 b)該霧化室の後段に設けた真空室と、 c)前記霧化室で発生したイオンを前記真空室に輸送する
ための輸送管であって、その管内の一部が霧化室側入口
の内径及び真空室側出口の内径よりも太い内径となって
いる輸送管と、 d)該輸送管の出口から所定距離だけ離れた位置に配置し
たイオン採取手段と、を備えたことを特徴としている。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is directed to a method for ionizing a liquid sample supplied from a liquid chromatograph section of a liquid chromatograph mass spectrometer and introducing the ionized liquid sample into the mass spectrometric section. A) an atomizing chamber at atmospheric pressure provided with a spraying means for spraying a liquid sample; b) a vacuum chamber provided downstream of said atomizing chamber; A transport pipe for transporting ions generated in the atomization chamber to the vacuum chamber, wherein a part of the pipe has an inner diameter larger than the inner diameter of the inlet on the atomization chamber side and the inner diameter of the outlet on the vacuum chamber side. A pipe; and d) ion sampling means arranged at a predetermined distance from the outlet of the transport pipe.

【0012】[0012]

【発明の実施の形態】本発明に係るLC/MSインタフ
ェイスでは、噴霧手段から噴出されたガスとイオンとが
輸送管に飛び込むと、イオンは輸送管に印加されている
電圧により管内に発生する電位の影響を受けて、輸送管
の中心軸付近を通過する。一方、ガスは内径つまり断面
積の広い部分を通過する際にその内部で広がるので、こ
れにより、輸送管の出口端の内側(上流側)と外側(下
流側)との圧力差は従来のように同一内径の輸送管に比
べて小さくなる。このため、輸送管の出口において噴出
するガスの速度は従来と比較して遅くなり、マッハディ
スクは生じにくい。このため、輸送管を出たイオンは、
中心軸の略延長線上に配置されているイオン採取手段に
より採取され、一方、ガスは噴出直後から大きく広がる
のでイオン採取手段には捕らわれにくい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In an LC / MS interface according to the present invention, when gas and ions ejected from a spraying unit jump into a transport pipe, the ions are generated in the pipe by a voltage applied to the transport pipe. Under the influence of the electric potential, it passes near the central axis of the transport pipe. On the other hand, the gas spreads inside when passing through a portion having a large inner diameter, that is, a cross-sectional area, so that the pressure difference between the inside (upstream side) and the outside (downstream side) of the outlet end of the transport pipe is different from the conventional case. Therefore, the size is smaller than that of a transport pipe having the same inner diameter. For this reason, the velocity of the gas ejected at the outlet of the transport pipe becomes slower than in the conventional case, and a Mach disk hardly occurs. For this reason, ions that exit the transport tube
The gas is collected by the ion collecting means arranged substantially on the extension of the central axis. On the other hand, since the gas spreads immediately after the ejection, the gas is hardly caught by the ion collecting means.

【0013】[0013]

【発明の効果】このように、本発明に係るLC/MSイ
ンタフェイスによれば、出口に配置するイオン採取部の
位置の許容範囲が広がり、従来のインタフェイスのよう
にマッハディスクの発生位置を考慮した厳密な配置によ
らずとも、輸送管から飛び出したイオンを効率的に採取
し、他方補助ガス等の不所望のガス分子はできる限り排
除することができる。
As described above, according to the LC / MS interface according to the present invention, the allowable range of the position of the ion sampling unit arranged at the outlet is widened, and the generation position of the Mach disk is changed as in the conventional interface. Irrespective of the exact arrangement taken into account, it is possible to efficiently collect the ions that have jumped out of the transport tube, while eliminating unwanted gas molecules, such as auxiliary gases, as far as possible.

【0014】[0014]

【実施例】以下、本発明に係るLC/MSインタフェイ
スの一実施例を図1により説明する。図1は本実施例の
構成図である。本発明に係るLC/MSインタフェイス
の特徴は、従来のように入口から出口まで一定の内径D
0を有する脱溶媒パイプを用いる代わりに、図1に示し
たように、その内部における内径D2が、入口端側内径
D0及び出口端側内径D1よりも大きくなっている、内径
が不均一の脱溶媒パイプ23を用いることにある。図1
では、入口端側内径D0と出口端側内径D1とは同一にな
っているが、D0<D1<D2の関係になるようにしても
よい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of an LC / MS interface according to the present invention will be described below with reference to FIG. FIG. 1 is a configuration diagram of the present embodiment. A feature of the LC / MS interface according to the present invention is that a constant inner diameter D from the inlet to the outlet as in the prior art.
Instead of using a desolvation pipe having 0, as shown in FIG. 1, the inside diameter D2 in the inside is larger than the inlet end inner diameter D0 and the outlet end inner diameter D1. That is, a solvent pipe 23 is used. FIG.
In this example, the inner diameter D0 on the inlet end side and the inner diameter D1 on the outlet end side are the same, but the relation of D0 <D1 <D2 may be satisfied.

【0015】補助ガスの流れに乗ってニードル22先端
より強制噴霧された帯電液滴は、霧化室21中の大気成
分と衝突して分裂して微細液滴となるとともに、液滴中
の溶媒が蒸発して、液滴から発生したイオンと微細液滴
とが入り混じった状態で脱溶媒パイプ23中に飛び込
む。脱溶媒パイプ23には電圧源V2より電圧が印加さ
れ、そのパイプ23内には中心軸より同心円上に均一な
電位が生じているから、イオンはほぼその中心軸に沿っ
て脱溶媒パイプ23中を右方向へ進む。
The charged droplets forcibly sprayed from the tip of the needle 22 along with the flow of the auxiliary gas collide with the atmospheric components in the atomizing chamber 21 to be divided into fine droplets and the solvent in the droplets. Is evaporated, and jumps into the desolvation pipe 23 in a state where ions generated from the droplets and fine droplets are mixed. A voltage is applied from the voltage source V2 to the desolvation pipe 23, and a uniform potential is generated concentrically from the central axis in the pipe 23, so that ions are substantially distributed along the central axis in the desolvation pipe 23. Go right.

【0016】一方、脱溶媒パイプ23に飛び込んだガス
分子も脱溶媒パイプ23中を右方向へ進むが、内径がD
2に広がった箇所で進行方向が乱れ、速度が低下する。
このため、この部分では圧力はP0とP1の中間であるP
2になる。また、脱溶媒パイプ23の出口端の内側での
圧力もほぼP2になる。つまり、本実施例では、脱溶媒
パイプ23の出口端の内側(上流側)と外側(下流側)
との圧力差が従来のものよりも遙かに小さくなる。この
ため、脱溶媒パイプ23出口から噴出するガス分子の速
度は遅く、マッハディスクは発生しない。すなわち、ガ
ス分子は脱溶媒パイプ23出口から飛び出した直後から
第1中間室31内で大きく広がる。従って、スキマー3
6の通過孔が脱溶媒パイプ23出口端の近傍に配置され
ていても、その通過孔に飛び込むガス分子の数は少な
い。
On the other hand, gas molecules that have jumped into the desolvation pipe 23 also travel rightward in the desolvation pipe 23, but have an inner diameter of D.
The direction of travel is disturbed at the point where it spreads, and the speed decreases.
For this reason, in this part, the pressure is P, which is halfway between P0 and P1.
Becomes 2. Further, the pressure inside the outlet end of the desolvation pipe 23 also becomes almost P2. That is, in this embodiment, the inside (upstream side) and the outside (downstream side) of the outlet end of the desolvation pipe 23 are used.
Is much smaller than the conventional one. For this reason, the velocity of gas molecules ejected from the outlet of the desolvation pipe 23 is low, and no Mach disk is generated. That is, the gas molecules largely spread in the first intermediate chamber 31 immediately after jumping out of the outlet of the desolvation pipe 23. Therefore, skimmer 3
Even though the passage hole 6 is disposed near the exit end of the desolvation pipe 23, the number of gas molecules jumping into the passage hole is small.

【0017】脱溶媒パイプ23中から放出されたイオン
も上記ガス流の乱れの影響を若干受けるが、殆どは図1
に示すように直進するので、スキマー36の通過孔を通
って第2中間室32へ送られる。
The ions released from the desolvation pipe 23 are also slightly affected by the turbulence of the gas flow.
As shown in (2), it is sent to the second intermediate chamber 32 through the passage hole of the skimmer 36.

【0018】なお、上記実施例は一例であって、本発明
の趣旨の範囲で適宜変更や修正を行なえることは明らか
である。
The above embodiment is merely an example, and it is apparent that changes and modifications can be appropriately made within the scope of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のLC/MSインタフェイスの一実施
例の構成図。
FIG. 1 is a configuration diagram of one embodiment of an LC / MS interface of the present invention.

【図2】 一般の液体クロマトグラフ質量分析装置の概
略構成図。
FIG. 2 is a schematic configuration diagram of a general liquid chromatograph mass spectrometer.

【図3】 従来のLC/MSインタフェイスの構成図。FIG. 3 is a configuration diagram of a conventional LC / MS interface.

【符号の説明】[Explanation of symbols]

21…霧化室 22…ニードル 23…脱溶媒パイプ 24…ネブライズ管 31…第1中間室 36…スキマー V1、V2…電圧源 Reference Signs List 21 atomizing chamber 22 needle 23 desolvation pipe 24 nebulizing pipe 31 first intermediate chamber 36 skimmer V1, V2 voltage source

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 液体クロマトグラフ質量分析装置の液体
クロマトグラフ部から与えられる液体試料をイオン化し
て質量分析部に導入するためのLC/MSインタフェイ
スにおいて、 a)液体試料を噴霧する噴霧手段を備えた、大気圧下にあ
る霧化室と、 b)該霧化室の後段に設けた真空室と、 c)前記霧化室で発生したイオンを前記真空室に輸送する
ための輸送管であって、その管内の一部が霧化室側入口
の内径及び真空室側出口の内径よりも太い内径となって
いる輸送管と、 d)該輸送管の出口から所定距離だけ離れた位置に配置し
たイオン採取手段と、 を備えたことを特徴とするLC/MSインタフェイス。
1. An LC / MS interface for ionizing a liquid sample provided from a liquid chromatograph unit of a liquid chromatograph mass spectrometer and introducing the ionized sample into a mass spectrometric unit. An atomizing chamber under atmospheric pressure, b) a vacuum chamber provided at a stage subsequent to the atomizing chamber, and c) a transport pipe for transporting ions generated in the atomizing chamber to the vacuum chamber. And a transport pipe in which a part of the pipe has a larger inner diameter than the inner diameter of the inlet on the atomization chamber side and the inner diameter of the outlet on the vacuum chamber side, and d) at a position separated by a predetermined distance from the outlet of the transport pipe. An LC / MS interface, comprising: an arranged ion sampling means.
JP9286000A 1997-09-30 1997-09-30 Lc/ms interface Pending JPH11108894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9286000A JPH11108894A (en) 1997-09-30 1997-09-30 Lc/ms interface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9286000A JPH11108894A (en) 1997-09-30 1997-09-30 Lc/ms interface

Publications (1)

Publication Number Publication Date
JPH11108894A true JPH11108894A (en) 1999-04-23

Family

ID=17698717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9286000A Pending JPH11108894A (en) 1997-09-30 1997-09-30 Lc/ms interface

Country Status (1)

Country Link
JP (1) JPH11108894A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001879A3 (en) * 2003-02-14 2005-08-11 Mds Sciex Atmospheric pressure charged particle discriminator for mass spectrometry
WO2010126781A1 (en) * 2009-05-01 2010-11-04 Thermo Finnigan Llc Ion transfer tube and mass spectrometer system
WO2013112680A1 (en) * 2012-01-26 2013-08-01 University Of The Sciences In Philadelphia Ionization at intermediate pressure for atmospheric pressure ionization mass spectrometers
CN109075015A (en) * 2016-04-22 2018-12-21 史密斯探测公司 Ion transfer tube with sheath air-flow

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001879A3 (en) * 2003-02-14 2005-08-11 Mds Sciex Atmospheric pressure charged particle discriminator for mass spectrometry
US7098452B2 (en) 2003-02-14 2006-08-29 Mds Sciex Atmospheric pressure charged particle discriminator for mass spectrometry
JP2007500927A (en) * 2003-02-14 2007-01-18 エムディーエス シエックス Atmospheric pressure charged particle sorter for mass spectrometry
US7462826B2 (en) 2003-02-14 2008-12-09 Mds Sciex Atmospheric pressure charged particle discriminator for mass spectrometry
WO2010126781A1 (en) * 2009-05-01 2010-11-04 Thermo Finnigan Llc Ion transfer tube and mass spectrometer system
US8242440B2 (en) 2009-05-01 2012-08-14 Thermo Finnigan Llc Method and apparatus for an ion transfer tube and mass spectrometer system using same
WO2013112680A1 (en) * 2012-01-26 2013-08-01 University Of The Sciences In Philadelphia Ionization at intermediate pressure for atmospheric pressure ionization mass spectrometers
US9305759B2 (en) 2012-01-26 2016-04-05 University Of The Sciences In Philadelphia Ionization at intermediate pressure for atmospheric pressure ionization mass spectrometers
CN109075015A (en) * 2016-04-22 2018-12-21 史密斯探测公司 Ion transfer tube with sheath air-flow

Similar Documents

Publication Publication Date Title
JP3079055B2 (en) Electrospray, atmospheric pressure chemical ionization mass spectrometer and ion source
US6278111B1 (en) Electrospray for chemical analysis
US4531056A (en) Method and apparatus for the mass spectrometric analysis of solutions
JP4178110B2 (en) Mass spectrometer
US6797946B2 (en) Orthogonal ion sampling for APCI mass spectrometry
US6462336B1 (en) Ion source for a mass analyzer and method of providing a source of ions for analysis
JPH0854372A (en) Device for converting solute sample into ionized molecule
JPH07288099A (en) Insulated needle device for electric spray formation
JP5589750B2 (en) Ionizer for mass spectrometer and mass spectrometer equipped with the ionizer
WO2007032088A1 (en) Mass analyzer
JP4415490B2 (en) Liquid chromatograph mass spectrometer
US20030062474A1 (en) Electrospray ion source for mass spectrometry with atmospheric pressure desolvating capabilities
JP2008053020A (en) Mass spectrometer
JPWO2018100612A1 (en) Ionizer and mass spectrometer
JPH11108894A (en) Lc/ms interface
JP3379989B2 (en) Housing for converting electrospray to ion stream
JP2000055880A (en) Liquid chromatograph mass spectrometer apparatus
JP3948096B2 (en) LC / MS interface
JP3578041B2 (en) Liquid chromatograph mass spectrometer
JP2001043826A (en) Atmospheric chemical ionization method in mass spectrograph
JPH1164289A (en) Liquid chromatograph mass analyzer
JP2012058122A (en) Liquid chromatograph mass spectrometer
JPH11108895A (en) Liquid chromatograph mass spectrometer
JPH1164288A (en) Liquid chromatograph mass analyzer
JPH03235055A (en) Mass spectrometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060110