JPH11103116A - Blue laser oscillation device - Google Patents

Blue laser oscillation device

Info

Publication number
JPH11103116A
JPH11103116A JP26310297A JP26310297A JPH11103116A JP H11103116 A JPH11103116 A JP H11103116A JP 26310297 A JP26310297 A JP 26310297A JP 26310297 A JP26310297 A JP 26310297A JP H11103116 A JPH11103116 A JP H11103116A
Authority
JP
Japan
Prior art keywords
harmonic
crystal
wavelength
excitation light
nonlinear optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26310297A
Other languages
Japanese (ja)
Inventor
Koji Ume
晃二 梅
Kyoichi Hatakeyama
教一 畠山
Eiko Tanaka
詠子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON LASER KK
FIT Co Ltd Japan
Original Assignee
NIPPON LASER KK
FIT Co Ltd Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON LASER KK, FIT Co Ltd Japan filed Critical NIPPON LASER KK
Priority to JP26310297A priority Critical patent/JPH11103116A/en
Publication of JPH11103116A publication Critical patent/JPH11103116A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably output blue light, having a wavelength of 0.44-0.45 μm with high conversion efficiency and high outputting level. SOLUTION: This blue laser oscillator excites a coherent light by generating a second harmonic and a sum frequency having a wavelength of 0.44-0.45 μm. There are employed, as an excitation light source, a solid-state laser from various kinds Nd:YLF, Nd:YAG or Nd:YAP for oscillating a laser beam having a wavelength of 1.313-1.3414 μm, and an RTA crystal and a Ce:KTP crystal, which, respectively serves as nonlinear optical elements 2, 3 for generating the second harmonic and a third harmonic. Each of the RTA crystal and the Ce:KTP crystal not only has a large phase matching allowable angle but also a superior outputting characteristic with respect to the excitation light. Accordingly, by using these crystals as the nonlinear optical elements 2, 3, and by appropriately setting phase matching requirements the blue coherent light of high conversion efficiency and a stable output can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、第2高調波及び和周波
発生により、特に0.44−0.45μmの波長でコヒ
ーレント光を励起する青色レーザー発振器に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blue laser oscillator which excites coherent light at a wavelength of 0.44-0.45 .mu.m by generating a second harmonic and a sum frequency.

【0002】[0002]

【従来の技術】従来、非線形光学論系に基づいて、非線
形光学素子(結晶)にコヒーレントな励起光(基本波)
を入力することにより、異なる波長のコヒーレント光を
出力せしめる発振器が知られている。この発振器は、一
般に励起光源と非線形光学素子と、その両側に配置され
た一対の反射鏡とから概略構成されており、上記励起光
と出力光である第2及び第3高調波との間には、次式
〔数1〕、〔数2〕に示す関係が成り立っている。
2. Description of the Related Art Conventionally, a coherent pump light (fundamental wave) is applied to a nonlinear optical element (crystal) based on a nonlinear optical theory system.
An oscillator that outputs coherent light beams having different wavelengths by inputting an input signal is known. This oscillator is generally composed of an excitation light source, a nonlinear optical element, and a pair of reflecting mirrors arranged on both sides thereof, and is provided between the excitation light and the second and third harmonics as output light. Has the relationship shown in the following equations [Equation 1] and [Equation 2].

【0003】[0003]

【数1】1/λ1 +1/λ2 =1/λ 1 / λ 1 + 1 / λ 2 = 1 / λ 3

【0004】[0004]

【数2】n/λ1 +n2 /λ2 =n3 /λ3 但し、λ1 は基本波(励起光)の波長、λ2 は第2高調
波の波長、λ3 は第3高調波の波長、n1 は基本波(励
起光)の屈折率、n2 は第2高調波の屈折率、n3 は第
3高調波の屈折率である。
## EQU2 ## where n 1 / λ 1 + n 2 / λ 2 = n 3 / λ 3 where λ 1 is the wavelength of the fundamental wave (excitation light), λ 2 is the wavelength of the second harmonic, and λ 3 is the third harmonic. The wavelength of the wave, n 1 is the refractive index of the fundamental wave (excitation light), n 2 is the refractive index of the second harmonic, and n 3 is the refractive index of the third harmonic.

【0005】かかる構成のレーザー発振装置において、
励起光源にはNd:YLF(Nd3+:LiYF4 )、N
d:YAG(Nd3+:Y3 Al5 12)、Nd:YAP
(Nd3+:YAlO3 )等の各種固体レーザーを用い、
波長0.44−0.45μmの第3高調波発生を行うも
のとしては、非線形光学素子としてLiIO3 結晶を用
いて構成されたものが知られている。
[0005] In the laser oscillation device having such a configuration,
Nd: YLF (Nd 3+ : LiYF 4 ), N
d: YAG (Nd 3+ : Y 3 Al 5 O 12 ), Nd: YAP
Using various solid-state lasers such as (Nd 3+ : YAlO 3 )
As a device that generates a third harmonic having a wavelength of 0.44 to 0.45 μm, a device formed using a LiIO 3 crystal as a nonlinear optical element is known.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記の波長
0.44−0.45μmの第3高調波を発生せしめる従
来のレーザー発振器には以下に述べる問題があった。
However, the conventional laser oscillator that generates the third harmonic having a wavelength of 0.44 to 0.45 μm has the following problems.

【0007】即ち、非線形光学素子としてLiIO3
晶を用いたものは、位相整合角θが、タイプ−1(第1
種の整合)の第2、第3高調波発生として、それぞれ2
4.3°、35.4°と小さいため、有効非線形光学定
数DeffTYPE-1(LiIO3 )も1.8Pm/V、
2.5Pm/Vと小さく、位相整合許容角Δθ(FWH
M半値幅)も、第2高調波発生ではΔθext ・L=0.
9mrad・cm、第3高調波発生ではΔθext ・L=
0.5mrad・cmと極めて小さい。ここで、Δθ
ext は結晶の外部角、Lは結晶の長さである。
That is, a device using a LiIO 3 crystal as a nonlinear optical element has a phase matching angle θ of type -1 (first type).
2nd and 3rd harmonic generation of
Since the angle is as small as 4.3 ° and 35.4 °, the effective nonlinear optical constant Deff TYPE-1 (LiIO 3 ) is also 1.8 Pm / V,
2.5Pm / V, the phase matching allowable angle Δθ (FWH
M half-width) is also Δθ ext · L = 0.
9 mrad · cm, and Δθ ext · L =
It is extremely small at 0.5 mrad · cm. Where Δθ
ext is the external angle of the crystal, and L is the length of the crystal.

【0008】従ってこの場合、屈折率の温度依存性が殆
どないという利点はあるものの、高い変換効率で安定し
た出力光を得ることは出来なかった。
Therefore, in this case, although there is an advantage that the refractive index has almost no temperature dependency, stable output light with high conversion efficiency cannot be obtained.

【0009】本発明は、上記課題を解決するためになさ
れたものであり、その目的とするところは、高変換効率
且つ高出力で、波長0.44−0.45μmの青色光を
安定に出力せしめ得る青色レーザー発振器を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to stably output blue light having a wavelength of 0.44 to 0.45 μm with high conversion efficiency and high output. An object of the present invention is to provide a blue laser oscillator that can be used.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成すべく
本発明者等は種々の検討を試みた結果、第2高調波発生
素子としてRbTiAsO4 結晶、第3高調波発生素子
としてCe:KTiOPO4 結晶を用いることにより、
変換効率、出力特性のいずれも向上することを見い出し
たものである。
The inventors of the present invention have made various studies to achieve the above object. As a result, the second harmonic generation element was made of RbTiAsO 4 crystal, and the third harmonic generation element was made of Ce: KTiOPO. By using 4 crystals,
It has been found that both the conversion efficiency and the output characteristics are improved.

【0011】即ち、本発明の青色レーザー発振器は、励
起光源として1.313−1.3414μmの波長のレ
ーザー光を発振するNd:YLF、Nd:YAG又はN
d:YAPの各種固体レーザーを用い、第2高調波、第
3高調波発生の非線形光学素子としてRTA結晶及びC
e:KTP結晶を用いて成るものである。
That is, the blue laser oscillator of the present invention oscillates a laser beam having a wavelength of 1.313-1.3414 μm as an excitation light source, such as Nd: YLF, Nd: YAG or Nd: YLF.
d: Using various solid-state lasers of YAP, RTA crystal and C as nonlinear optical elements for generating second and third harmonics
e: It is formed using a KTP crystal.

【0012】RTA結晶及びCe:KTP結晶は位相整
合許容角が大きく、しかも励起光に対する出力特性が優
れている。従って、これを非線形光学素子として用い、
位相整合条件を適宜設定することにより、高い変換効率
で安定した出力の青色コヒーレント光が得られる。
The RTA crystal and the Ce: KTP crystal have a large allowable angle of phase matching and have excellent output characteristics with respect to pump light. Therefore, using this as a nonlinear optical element,
By appropriately setting the phase matching conditions, blue coherent light with a stable output and high conversion efficiency can be obtained.

【0013】[0013]

【実施の形態】以下、図示した実施の形態に基づき本発
明を詳細に説明する。図1は本発明の青色レーザー発振
装置の実施の形態を示す図、図2は第2高調波及び和周
波発生である。図中、1は励起光源、2は非線形光学素
子(第2高調波発生)、3は非線形光学素子(第3高調
波発生)、4は完全反射鏡(基本波及び第2高調波でR
=100%、第3高調波でR≧90%)、5は部分反射
鏡(基本波及び第2高調波でR=100%、第3高調波
でR≦30%)、λ1 は励起光の波長、λ2 は第2高調
波の波長、λ3 は第3高調波の波長を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on the illustrated embodiments. FIG. 1 is a diagram showing an embodiment of a blue laser oscillation device according to the present invention, and FIG. 2 shows generation of a second harmonic and a sum frequency. In the figure, 1 is an excitation light source, 2 is a non-linear optical element (second harmonic generation), 3 is a non-linear optical element (third harmonic generation), 4 is a perfect reflecting mirror (R is a fundamental wave and a second harmonic).
= 100%, R ≧ 90% at the third harmonic), 5 is a partially reflecting mirror (R = 100% at the fundamental and second harmonics, R ≦ 30% at the third harmonic), λ 1 is pump light , Λ 2 indicates the wavelength of the second harmonic, and λ 3 indicates the wavelength of the third harmonic.

【0014】本発明の青色レーザー発振装置は、図1に
示すように励起光を出射する励起光源1と、励起光源上
に配置された第2、第3高調波発生の非線形光学素子2
及び3と、同じく励起光の光軸上で励起光源1と非線形
光学素子3の出射側にそれぞれ配置された完全反射鏡4
と部分反射鏡5とから構成されている。
As shown in FIG. 1, a blue laser oscillation device according to the present invention comprises an excitation light source 1 for emitting excitation light, and a second and third harmonic generating nonlinear optical element 2 disposed on the excitation light source.
And 3, complete reflection mirrors 4 respectively disposed on the exit side of the excitation light source 1 and the nonlinear optical element 3 on the optical axis of the excitation light.
And a partial reflecting mirror 5.

【0015】励起光源1には、波長1.313−1.3
414μmのレーザ光を出力する各種固体レーザーを用
いるが、各種固体レーザーとしては、1.313及び
1.321μmの波長でレーザー発振するNd:YLF
(Nd3+:LiYF4 )、1.3188及び1.338
2μmの波長でレーザー発振するNd:YAG(N
3+:Y3 Al5 12)、又は1.3414μmの波長
でレーザー発振するNd:YAP(Nd3+:YAl
3 )等が用いられる。この励起光源1から出射された
励起光λ1 は、完全反射鏡4及び部分反射鏡5を介して
非線形光学素子2及び3に入射するようになっている。
The excitation light source 1 has a wavelength of 1.313-1.3.
Various solid-state lasers that output laser light of 414 μm are used. As the various solid-state lasers, Nd: YLF that oscillates at wavelengths of 1.313 and 1.321 μm
(Nd 3+ : LiYF 4 ), 1.3188 and 1.338
Nd: YAG (N
d 3+ : Y 3 Al 5 O 12 ) or Nd: YAP (Nd 3+ : YAl) which oscillates at a wavelength of 1.3414 μm.
O 3 ) and the like are used. The excitation light λ 1 emitted from the excitation light source 1 is incident on the nonlinear optical elements 2 and 3 via the complete reflection mirror 4 and the partial reflection mirror 5.

【0016】第2高調波、第3高調波発生の非線形光学
素子2、3は、タイプ−2(第2種の整合、70°≦θ
≦75°、φ=0°、但し、φはx軸からy軸方向へ測
定した極座標の角度、θは角度φで引かれたxy面内の
線分へのz軸からの極座標の角度である。)で切り出し
たRbTiAsO4 結晶(以下、「RTA結晶」とい
う)、及びタイプ−2(第2種の整合、80°≦θ≦9
0°、φ=0°、但し、θ、φは上記と同一の極座標の
角度)で切り出したCe:KTiOPO4 結晶(以下、
「Ce:KTP結晶」という)が用いられている。これ
らRTA結晶及びCe:KTP結晶は、抵抗過熱炉を用
いた周知のフラックス法により形成したが、非線形光学
定数d32が、RTA結晶ではd32=3.7pm/V、C
e:KTP結晶ではd32=3.4pm/Vと大きく、し
かも位相整合許容角Δθが、RTA結晶ではΔθext
L=0.5mrad・cm、Ce:KTP結晶ではΔθ
ext・L=17mrad・cmと大きく、前記LiIO
3 結晶の約2.5−35倍の大きさとなるものである。
又、励起光における破壊しきい値が、100ns、1k
Hzのパルスで約500MW/cm2 と高く、更に、潮
解性が無く、位相整合条件が温度に対して、RTA結晶
ではΔT・L=32°C・cm、Ce:KTP結晶では
ΔT・L=28°C・cmと非常に大きく反射防止膜の
コートも簡単に出来るという特性を有している。
The nonlinear optical elements 2 and 3 for generating the second harmonic and the third harmonic are of the type-2 (second type of matching, 70 ° ≦ θ).
≦ 75 °, φ = 0 °, where φ is the angle of the polar coordinate measured from the x-axis to the y-axis, and θ is the angle of the polar coordinate from the z-axis to a line segment in the xy plane drawn by the angle φ. is there. ) And RbTiAsO 4 crystal (hereinafter referred to as “RTA crystal”), and type-2 (second type matching, 80 ° ≦ θ ≦ 9)
0 °, φ = 0 °, where θ and φ are the same polar coordinate angles as described above) and cut out from a Ce: KTiOPO 4 crystal (hereinafter, referred to as “C: KTiOPO 4 crystal”).
“Ce: KTP crystal”) is used. These RTA crystal and Ce: KTP crystal were formed by a well-known flux method using a resistance heating furnace, but the nonlinear optical constant d 32 was found to be d 32 = 3.7 pm / V for RTA crystal and C 32
e: as large as d 32 = 3.4pm / V in KTP crystal, moreover phase matching acceptance angle [Delta] [theta] is, [Delta] [theta] ext · the RTA crystals
L = 0.5 mrad · cm, Δθ for Ce: KTP crystal
ext · L = 17 mrad · cm
It is about 2.5-35 times the size of three crystals.
Further, the destruction threshold of the excitation light is 100 ns, 1 k
Hz pulse is as high as about 500 MW / cm 2 , there is no deliquescence, and the phase matching condition is temperature, ΔT · L = 32 ° C · cm for RTA crystal, ΔT · L = for Ce: KTP crystal It is very large at 28 ° C.cm, and has the property of easily being coated with an antireflection film.

【0017】励起光源1及び非線形光学素子3の出射側
に配置された完全反射鏡4及び部分反射鏡5は、共に励
起光源1により出射される基本波であるレーザー光の波
長及び第2高調波の波長で高い反射率を有している。完
全反射鏡4は、第3高調波の波長で90%以上の反射率
Rを有し、部分反射鏡5は、第3高調波の波長で70%
の透過率を有するダイクロイック反射鏡より成ってい
る。
The complete reflection mirror 4 and the partial reflection mirror 5 arranged on the exit side of the excitation light source 1 and the nonlinear optical element 3 are both a wavelength of a laser beam which is a fundamental wave emitted by the excitation light source 1 and a second harmonic. Has a high reflectance at the wavelength of The perfect reflecting mirror 4 has a reflectance R of 90% or more at the wavelength of the third harmonic, and the partial reflecting mirror 5 has a reflectance R of 70% at the wavelength of the third harmonic.
And a dichroic reflecting mirror having a transmittance of

【0018】かかる構成において、励起光源1から図で
右方に出射された基本波λ1 の励起光は、図2に示すよ
うに非線形光学素子2で第2高調波λ2 に変換され、非
線形光学素子3で和周波発生により第3高調波λ3 に変
換され、部分反射鏡5により出射される。位相整合せず
に変換されなかった基本波λ1 及び第2高調波λ2 は、
部分反射鏡5により反射されて再度非線形光学素子3で
第3高調波λ3 に変換される。また励起光源1から左方
に出射される励起光λ1 は、完全反射鏡4により反射さ
れて、上記のプロセスを行って第3高調波λ3 に変換さ
れる。
In this configuration, the excitation light of the fundamental wave λ 1 emitted to the right in the figure from the excitation light source 1 is converted into the second harmonic λ 2 by the nonlinear optical element 2 as shown in FIG. The light is converted into a third harmonic λ 3 by generation of a sum frequency in the optical element 3, and emitted by the partial reflecting mirror 5. The fundamental wave λ 1 and the second harmonic λ 2 which are not converted without phase matching are
The light is reflected by the partial reflecting mirror 5 and converted again into the third harmonic λ 3 by the nonlinear optical element 3. Excitation light λ 1 emitted to the left from the excitation light source 1 is reflected by the perfect reflecting mirror 4 and converted into a third harmonic λ 3 by performing the above-described process.

【0019】従って、例えば励起光源1として波長λ1
=1.3188μm及び1.3382μmで発振するN
d:YAGレーザーを用い、これにより励起光を出射し
ながら非線形光学素子2、3を図示したy軸を中心に所
定の出力光波長に応じて適宜角度調整すると、コヒーレ
ントな青色レザー光を安定して得ることができる。
Therefore, for example, the wavelength λ 1
= N oscillating at 1.3188 μm and 1.3382 μm
d: A coherent blue laser beam is stabilized by using a YAG laser and adjusting the angles of the nonlinear optical elements 2 and 3 around the y-axis as shown in the drawing according to a predetermined output light wavelength while emitting excitation light. Can be obtained.

【0020】[0020]

【発明の効果】以上の説明から明らかなように、本発明
によれば、励起光源として、1.313〜1.3414
μmの波長でレーザー発振するNd:YLF、Nd:Y
AG、又はNd:YAPの各種固体レーザーを用い、非
線形光学素子として、RTA結晶及びCe:KTP結晶
を用いて、青色レーザー発振装置を構成するので、青色
コヒーレント光を安定した出力で効率よく得ることがで
きる。
As is apparent from the above description, according to the present invention, the excitation light source ranges from 1.313 to 1.3414.
Nd: YLF, Nd: Y oscillating at a wavelength of μm
Since a blue laser oscillator is configured using various solid-state lasers of AG or Nd: YAP, and using an RTA crystal and a Ce: KTP crystal as nonlinear optical elements, it is possible to efficiently obtain blue coherent light with a stable output. Can be.

【0021】図2に示すように青色レーザー発振装置に
おいて、励起光源としてNd:YAGレーザーを用い、
θ=75°、φ=0°に切り出して成る長さ0.5cm
のRTA結晶及びθ=87°±1、φ=0°に切り出し
て成る長さ0.8cmのCe:KTP結晶を用いて適宜
位相整合角に調整することにより、発振しきい値の約2
倍の入力で、平均出力200mWの青色レーザー光を2
kHzで得られた。また、図2に示すようにRTA結晶
の長さをL=1cm、Ce:KTP結晶の長さをL=
0.8cmとした場合、光変換効率は約4倍に上がる計
算となる。
As shown in FIG. 2, in a blue laser oscillator, an Nd: YAG laser is used as an excitation light source.
0.5cm length cut out at θ = 75 °, φ = 0 °
By adjusting the phase matching angle appropriately using an RTA crystal of 0.8 cm and a 0.8 cm long Ce: KTP crystal cut to θ = 87 ° ± 1 and φ = 0 °, an oscillation threshold of about 2
Blue laser light with an average output of 200 mW
kHz. Further, as shown in FIG. 2, the length of the RTA crystal is L = 1 cm, and the length of the Ce: KTP crystal is L =
When it is set to 0.8 cm, the light conversion efficiency is calculated to increase about four times.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の青色レーザー発振装置の実施の形態
を示す図である。
FIG. 1 is a diagram showing an embodiment of a blue laser oscillation device according to the present invention.

【図2】 非線形光学素子の実施例を示す図である。FIG. 2 is a diagram showing an embodiment of a nonlinear optical element.

【符号の説明】[Explanation of symbols]

1…励起光源、2…非線形光学素子(第2高調波発
生)、3…非線形光学素子(第3高調波発生)、4…完
全反射鏡(基本波及び第2高調波でR=100%、第3
高調波でR≧90%)、5…部分反射鏡(基本波及び第
2高調波でR=100%、第3高調波でR≦30%)
DESCRIPTION OF SYMBOLS 1 ... Excitation light source, 2 ... Nonlinear optical element (2nd harmonic generation), 3 ... Nonlinear optical element (3rd harmonic generation), 4 ... Completely reflecting mirror (R = 100% in a fundamental wave and a 2nd harmonic, Third
Partial mirror (R = 100% for fundamental wave and second harmonic, R ≦ 30% for third harmonic)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 畠山 教一 埼玉県草加市栄町2丁目5番23号 103 (72)発明者 田中 詠子 東京都港区白金2丁目5番51号 高岡方 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor K. Hatakeyama 2-5-23, Sakaemachi, Soka-shi, Saitama 103 (72) Inventor Eiko Tanaka 2-5-51, Shirokane 2-chome, Minato-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第2高調波及び和周波発生により、0.
44−0.45μmの波長でコヒーレント光を励起する
青色レーザー発振器であって、励起光源として、1.3
13及び0.321μmの波長でレーザー発振するN
d:YLF(Nd3+:LiYF4 )、1.3188及び
1.3382μmの波長でレーザー発振するNd:YA
G(Nd3+:Y3 Al5 12)、又は1.3414μm
の波長でレーザー発振するNd:YAP(Nd3+:YA
lO3 )の各種固体レーザーを用い、第2高調波、第3
高調波発生の非線形光学素子として、RbTiOAsO
4 (RTA)結晶及びCe:KTiOPO4 (Ce:K
TP)結晶を用いたことを特徴とする青色レーザー発振
装置。
1. Due to the second harmonic and sum frequency generation, 0.1.
A blue laser oscillator for exciting coherent light at a wavelength of 44-0.45 μm, wherein 1.3 is used as an excitation light source.
N at 13 and 0.321 μm
d: YLF (Nd 3+ : LiYF 4 ), Nd: YA which oscillates at a wavelength of 1.3188 and 1.3382 μm.
G (Nd 3+ : Y 3 Al 5 O 12 ) or 1.3414 μm
Nd: YAP (Nd 3+ : YA)
using various solid-state laser of lO 3), second harmonic, third
RbTiOAsO as a nonlinear optical element for generating harmonics
4 (RTA) crystal and Ce: KTiOPO 4 (Ce: K
TP) A blue laser oscillation device characterized by using a crystal.
JP26310297A 1997-09-29 1997-09-29 Blue laser oscillation device Pending JPH11103116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26310297A JPH11103116A (en) 1997-09-29 1997-09-29 Blue laser oscillation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26310297A JPH11103116A (en) 1997-09-29 1997-09-29 Blue laser oscillation device

Publications (1)

Publication Number Publication Date
JPH11103116A true JPH11103116A (en) 1999-04-13

Family

ID=17384860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26310297A Pending JPH11103116A (en) 1997-09-29 1997-09-29 Blue laser oscillation device

Country Status (1)

Country Link
JP (1) JPH11103116A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809271B1 (en) 2007-04-17 2008-02-29 삼성전기주식회사 Wavelength converted laser apparatus
CN104319618A (en) * 2014-11-12 2015-01-28 核工业理化工程研究院 355 nm ultraviolet solid laser
CN112993735A (en) * 2019-12-14 2021-06-18 中国科学院大连化学物理研究所 High-efficiency blue laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809271B1 (en) 2007-04-17 2008-02-29 삼성전기주식회사 Wavelength converted laser apparatus
CN104319618A (en) * 2014-11-12 2015-01-28 核工业理化工程研究院 355 nm ultraviolet solid laser
CN112993735A (en) * 2019-12-14 2021-06-18 中国科学院大连化学物理研究所 High-efficiency blue laser

Similar Documents

Publication Publication Date Title
JP4489440B2 (en) Generation of fourth harmonic with enhanced intracavity resonance using uncoated Brewster surface
US5274650A (en) Solid state laser
JP4231829B2 (en) Internal cavity sum frequency mixing laser
JPH05210135A (en) Optical wavelength conversion device
JPH06283794A (en) Laser-diode-pumped solid laser
KR100863199B1 (en) Laser Apparatus and Method for Harmonic Beam Generation
JP3330487B2 (en) Laser equipment
JPH06130328A (en) Polarization control element and solid laser device
JPH11103116A (en) Blue laser oscillation device
JPH1041573A (en) Laser oscillator
JPH06132595A (en) Secondary higher harmonic light emitter
JP2000338530A (en) Wavelength conversion device for laser light and method for its conversion
JPH11101995A (en) Wavelength conversion laser
JP2892329B2 (en) Wavelength conversion laser device
JPH04318988A (en) Laser diode pumped solid state laser
JP3199836B2 (en) Wavelength conversion laser device
JPH11121842A (en) Eyesafe laser beam generator
JP2663197B2 (en) Laser diode pumped solid state laser
JPH09232665A (en) Output stabilizing second harmonics light source
JP2754101B2 (en) Laser diode pumped solid state laser
JPH08102564A (en) Wavelength converting laser device
JPH08227085A (en) Laser device
JPH06164048A (en) Harmonic generation apparatus
JPH06350173A (en) Polarized beam and longitudinal mode control element and solid-state laser device
JPH0758380A (en) Solid laser device