JPH11102872A - Reaction furnace - Google Patents

Reaction furnace

Info

Publication number
JPH11102872A
JPH11102872A JP27947897A JP27947897A JPH11102872A JP H11102872 A JPH11102872 A JP H11102872A JP 27947897 A JP27947897 A JP 27947897A JP 27947897 A JP27947897 A JP 27947897A JP H11102872 A JPH11102872 A JP H11102872A
Authority
JP
Japan
Prior art keywords
flange
reaction tube
ring
reaction
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27947897A
Other languages
Japanese (ja)
Inventor
Mitsuaki Tanabe
光朗 田辺
Yasuhiro Inokuchi
泰啓 井ノ口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP27947897A priority Critical patent/JPH11102872A/en
Publication of JPH11102872A publication Critical patent/JPH11102872A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a reaction furnace with which the durability of an O-ring can be improved and the airtightness of its reaction chamber can be maintained easily. SOLUTION: A flange 3 of a reaction tube 1 is provided airtightly on an introducing part 5 through an O-ring, the flange part 3 is pinched by a gas inlet part 5 and a reaction tube pressing flange 11, and the reaction tube pressing flange 11 is energized by an elastic body 17 to the direction of the gas inlet part 5. The reaction tube pressing flange 11 is always fixed close to the flange part 3 by the repulsive force of the elastic body 17, the thermal resistivity between both of them is decreased, the greater part of the heat transmitted to the flange part from the heated cylindrical body is conducted to the reaction tube pressing flange 11, the heat is also radiated to outside, and the quantity of heat transferred to the O-ring is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は被処理基板に対して
拡散、化学気相成長等の各種処理を行う為の半導体製造
装置の反応炉に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor for a semiconductor manufacturing apparatus for performing various processes such as diffusion and chemical vapor deposition on a substrate to be processed.

【0002】[0002]

【従来の技術】ウェーハ或はガラス基板等の被処理基板
に種々の薄膜を生成し、或はエッチング等を行い、被処
理基板表面に多数の半導体素子を形成する半導体製造装
置の一連の処理工程の一つに反応炉で加熱を行う工程が
ある。
2. Description of the Related Art A series of processing steps of a semiconductor manufacturing apparatus for forming various thin films on a substrate to be processed such as a wafer or a glass substrate or performing etching or the like to form a large number of semiconductor elements on the surface of the substrate to be processed. One of them is a step of heating in a reaction furnace.

【0003】斯かる加熱には反応炉の反応室内を減圧し
て行う場合と常圧で行う場合があるが、いずれの場合に
於いても、反応室は気密に保つ必要がある為、反応室を
画成する部材間は通常、Oリングを介在させて気密に接
合している。
[0003] Such heating may be performed under reduced pressure or normal pressure in the reaction chamber of the reaction furnace. In any case, the reaction chamber must be kept airtight. Are usually hermetically joined via an O-ring.

【0004】然し、Oリングは耐熱性に問題がある為、
反応炉に於いてOリングを冷却する手段が考慮され、O
リングの熱による劣化、焼損を防止している。
However, since the O-ring has a problem in heat resistance,
Considering the means for cooling the O-ring in the reactor,
It prevents deterioration and burning of the ring due to heat.

【0005】以下、図4、図5に於いて、従来の半導体
製造装置、特に枚葉式半導体製造装置に於ける反応炉を
説明する。
Referring to FIGS. 4 and 5, a description will be given of a conventional semiconductor manufacturing apparatus, particularly a reactor in a single-wafer semiconductor manufacturing apparatus.

【0006】図中、1は石英製の反応管であり、該反応
管1は偏平な角筒状の筒体2と該筒体2の両端に形成さ
れたフランジ部3で構成されている。該フランジ部3に
はOリング4を介在させガス導入部5が気密に設けら
れ、反応室6が画成されている。
In FIG. 1, reference numeral 1 denotes a reaction tube made of quartz. The reaction tube 1 comprises a flat rectangular tubular body 2 and flange portions 3 formed at both ends of the tubular body 2. A gas inlet 5 is hermetically provided in the flange 3 with an O-ring 4 interposed therebetween to define a reaction chamber 6.

【0007】前記ガス導入部5には熱伝導率の高い材質
の反応管押えフランジ7が所要数のボルト8により固着
され、前記フランジ部3は前記ガス導入部5と前記反応
管押えフランジ7により挾持されている。
A reaction tube holding flange 7 made of a material having a high thermal conductivity is fixed to the gas introduction portion 5 by a required number of bolts 8. The flange portion 3 is formed by the gas introduction portion 5 and the reaction tube holding flange 7. It is pinched.

【0008】以下、前記反応室6内を減圧して処理する
場合を説明する。
Hereinafter, a case in which the inside of the reaction chamber 6 is processed under reduced pressure will be described.

【0009】前記反応室6に外部に設けられた図示しな
いウェーハ移載機により1枚又は複数枚のウェーハ(図
示せず)が装入される。
One or more wafers (not shown) are loaded into the reaction chamber 6 by a wafer transfer device (not shown) provided outside.

【0010】前記反応室6内が真空引きされた後、該反
応室6内に前記ガス導入部5により反応ガスが導入され
る。前記反応管1の周囲に設けられた図示しない加熱装
置により前記筒体2を介して前記反応室6が加熱され、
該反応室6内の前記ウェーハ(図示せず)に成膜処理が
施される。
After the inside of the reaction chamber 6 is evacuated, a reaction gas is introduced into the reaction chamber 6 by the gas introduction unit 5. The reaction chamber 6 is heated via the tubular body 2 by a heating device (not shown) provided around the reaction tube 1,
A film forming process is performed on the wafer (not shown) in the reaction chamber 6.

【0011】[0011]

【発明が解決しようとする課題】上記した従来の反応炉
では、前記反応室6内を常圧にして処理する場合には、
前記ボルトの締付けにより前記フランジ部3と反応管押
えフランジ7が密着し、両者間の熱抵抗が小さくなる
が、前記反応室6内を減圧して処理する場合、外部と前
記反応室6内の圧力差により前記ガス導入部5と前記フ
ランジ部3とが近接方向に変位し、該フランジ部3と反
応管押えフランジ7との面圧が低下し、或は前記フラン
ジ部3と反応管押えフランジ7との間にクリアランスが
発生し、両者間の熱抵抗が大きくなると共に前記Oリン
グ4が押潰され該Oリング4と前記フランジ部3との接
触面積が増加し、両者間の熱抵抗は小さくなる。従っ
て、前記反応室6内が常圧の場合には、加熱された前記
筒体2から前記フランジ部3へ伝導した熱の多くは前記
反応管押えフランジ7へ移動し、前記Oリング4の熱劣
化を防止できるが、前記反応室6内が減圧された場合に
は、加熱された前記筒体2から前記フランジ部3を介し
て前記反応管押えフランジ7への熱移動量が低減し、前
記Oリング4へ伝達する熱量が増加し、該Oリング4に
熱劣化が生じやすくなるという問題があった。
In the conventional reactor described above, when the inside of the reaction chamber 6 is processed under normal pressure,
The tightening of the bolts causes the flange portion 3 and the reaction tube holding flange 7 to come into close contact with each other, thereby reducing the thermal resistance between them. However, when the inside of the reaction chamber 6 is treated under reduced pressure, the outside and the inside Due to the pressure difference, the gas introduction section 5 and the flange section 3 are displaced in the approaching direction, and the surface pressure between the flange section 3 and the reaction tube holding flange 7 is reduced, or the flange section 3 and the reaction tube holding flange are reduced. 7, the thermal resistance between the two increases, and the O-ring 4 is crushed, so that the contact area between the O-ring 4 and the flange 3 increases, and the thermal resistance between the two increases. Become smaller. Therefore, when the inside of the reaction chamber 6 is at normal pressure, much of the heat conducted from the heated cylindrical body 2 to the flange portion 3 moves to the reaction tube holding flange 7 and the heat of the O-ring 4 Although the deterioration can be prevented, when the pressure in the reaction chamber 6 is reduced, the amount of heat transfer from the heated cylindrical body 2 to the reaction tube holding flange 7 via the flange portion 3 is reduced, There is a problem that the amount of heat transmitted to the O-ring 4 increases, and the O-ring 4 is likely to be thermally deteriorated.

【0012】又、前記反応管押えフランジ7を前記ガス
導入部5に前記ボルト8で固着し、前記フランジ部3を
前記ガス導入部5に気密に設け、反応室の気密性を保っ
ている為、前記ボルト8の締付けトルクの管理を厳格に
行う必要があり、反応室の気密性を維持するのが容易で
はなかった。
Further, the reaction tube holding flange 7 is fixed to the gas introduction portion 5 with the bolt 8, and the flange portion 3 is provided in the gas introduction portion 5 in an airtight manner to maintain the airtightness of the reaction chamber. It is necessary to strictly control the tightening torque of the bolt 8, and it is not easy to maintain the airtightness of the reaction chamber.

【0013】本発明は斯かる実情に鑑み、Oリングの耐
久性の向上を図ると共に反応室の気密性を容易に維持可
能な反応炉を提供しようとするものである。
The present invention has been made in view of the above circumstances, and has as its object to provide a reactor capable of improving the durability of an O-ring and easily maintaining the airtightness of a reaction chamber.

【0014】[0014]

【課題を解決するための手段】本発明は、反応管のフラ
ンジ部がOリングを介在させてガス導入部に気密に設け
られ、前記フランジ部が前記ガス導入部と反応管押えフ
ランジにより挾持され、該反応管押えフランジが弾性体
により前記ガス導入部の方向に付勢された反応炉に係
り、前記弾性体の反発力により前記反応管押えフランジ
は常に前記フランジ部と密着し、両者間の熱抵抗が減少
し、加熱された前記筒体から前記フランジ部へ伝導した
熱の大部分が前記反応管押えフランジへ伝導し、外部へ
放熱すると共に前記Oリングへの伝達熱量が減少する。
According to the present invention, a flange portion of a reaction tube is hermetically provided at a gas introduction portion via an O-ring, and the flange portion is held between the gas introduction portion and a reaction tube holding flange. The reaction tube holding flange is related to a reaction furnace in which the flange is urged in the direction of the gas introduction portion by an elastic body, and the reaction tube holding flange is always in close contact with the flange portion due to the repulsive force of the elastic body. The thermal resistance is reduced, and most of the heat conducted from the heated cylinder to the flange portion is conducted to the reaction tube holding flange, radiating heat to the outside and reducing the amount of heat transmitted to the O-ring.

【0015】[0015]

【発明の実施の形態】以下、図1〜図3を参照しつつ本
発明の実施の形態を説明する。尚、図1〜図3中、図4
及び図5と同等のものには同符号を付し説明は省略す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 to 3, FIG.
5 are denoted by the same reference numerals, and description thereof is omitted.

【0016】反応管1のフランジ部3にOリング4を介
在させてガス導入部5が気密に設けられ、反応室6が画
成されている。
A gas inlet 5 is provided in the flange 3 of the reaction tube 1 with an O-ring 4 interposed therebetween in an airtight manner, and a reaction chamber 6 is defined.

【0017】前記ガス導入部5には熱伝導率の高い材
質、例えばアルミニウム合金製で環状の反応管押えフラ
ンジ11が所要数のボルト8により固着され、前記フラ
ンジ部3は前記ガス導入部5と前記反応管押えフランジ
11により挾持されている。
An annular reaction tube holding flange 11 made of a material having a high thermal conductivity, for example, an aluminum alloy, is fixed to the gas introducing portion 5 with a required number of bolts 8. The flange portion 3 is connected to the gas introducing portion 5. It is held by the reaction tube holding flange 11.

【0018】該反応管押えフランジ11は外周部分12
と該外周部分12の肉厚より薄い肉厚の内周部分13で
構成され、該内周部分13は前記フランジ部3と密着し
ている。
The reaction tube holding flange 11 has an outer peripheral portion 12.
And an inner peripheral portion 13 having a thickness smaller than that of the outer peripheral portion 12. The inner peripheral portion 13 is in close contact with the flange portion 3.

【0019】前記外周部分12には座刳穴14が穿設さ
れ、該座刳穴14の底を前記ボルト8が遊貫している。
前記座刳穴14の底と前記ボルト8の頭部16の間には
スプリング17が圧縮状態で嵌設され、該スプリング1
7により前記反応管押えフランジ11は前記ガス導入部
5の方向に付勢されている。
A borehole 14 is formed in the outer peripheral portion 12, and the bolt 8 passes through the bottom of the borehole 14.
A spring 17 is fitted between the bottom of the counterbore 14 and the head 16 of the bolt 8 in a compressed state.
7, the reaction tube holding flange 11 is urged in the direction of the gas introduction section 5.

【0020】前記内周部分13の内部には全周に亘り、
環状に冷却水路18が穿設され、該冷却水路18には図
示しない冷却水供給管及び冷却水排出管が接続され、前
記冷却水路18内を冷却水が循環可能となっている。
The inside of the inner peripheral portion 13 extends over the entire circumference,
A cooling water passage 18 is formed in an annular shape, and a cooling water supply pipe and a cooling water discharge pipe (not shown) are connected to the cooling water path 18 so that the cooling water can circulate in the cooling water path 18.

【0021】以下、作動を説明する。The operation will be described below.

【0022】前記反応室6内に1枚又は複数枚のウェー
ハ(図示せず)が装入され、前記スプリング17の反発
力により前記フランジ部3は前記Oリング4を押潰し、
該Oリング4の初期潰し量が確保され、前記反応室6内
は気密に保たれる。該反応室6内が真空引きされた後、
前記ガス導入部5より反応ガスが導入される。
One or a plurality of wafers (not shown) are loaded into the reaction chamber 6, and the flange portion 3 crushes the O-ring 4 by the repulsive force of the spring 17,
The initial crushing amount of the O-ring 4 is secured, and the inside of the reaction chamber 6 is kept airtight. After the inside of the reaction chamber 6 is evacuated,
A reaction gas is introduced from the gas introduction unit 5.

【0023】外部と前記反応室6内の圧力差により前記
ガス導入部5は前記フランジ部3に対して近接方向に移
動し、前記Oリング4が押潰され、前記反応室6は気密
に保たれる。前記スプリング17の反発力により、前記
Oリング4の初期潰し量が確保されると共に、前記反応
管押えフランジ11の前記内周部分13は前記フランジ
部3に密着する。
Due to the pressure difference between the outside and the inside of the reaction chamber 6, the gas introduction part 5 moves in the direction of approach to the flange part 3, the O-ring 4 is crushed, and the reaction chamber 6 is kept airtight. Dripping. Due to the repulsive force of the spring 17, the initial crushing amount of the O-ring 4 is ensured, and the inner peripheral portion 13 of the reaction tube holding flange 11 comes into close contact with the flange portion 3.

【0024】前記冷却水路18内に前記冷却水供給管
(図示せず)より冷却水が供給されると共に図示しない
加熱装置により前記筒体2を介して前記反応室6が加熱
され、該反応室6内の前記ウェーハ(図示せず)に成膜
処理が施される。
Cooling water is supplied into the cooling water passage 18 from the cooling water supply pipe (not shown), and the reaction chamber 6 is heated via the cylindrical body 2 by a heating device (not shown). A film forming process is performed on the wafer (not shown) in 6.

【0025】加熱された前記筒体2から前記フランジ部
3へ伝導した熱は前記内周部分13へ伝導されると共に
Oリング4へ伝達される。
The heat conducted from the heated cylinder 2 to the flange 3 is conducted to the inner peripheral portion 13 and to the O-ring 4.

【0026】前記内周部分13は前記Oリング4より前
記フランジ部3との接触面積が大きい為、熱抵抗が小さ
い。更に、前記内周部分13は前記冷却水路18内の冷
却水により冷却され、前記内周部分13とフランジ部3
の温度差は前記Oリング4とフランジ部3の温度差より
大きい。従って、該フランジ部3と前記内周部分13間
の熱伝達率は前記フランジ部3と前記Oリング4間の熱
伝達率より大きく、大部分の熱は前記内周部分13へ伝
達し、該内周部分13表面より外部へ放熱し、又、冷却
水が前記フランジ部3から抜熱し、前記Oリング4への
伝導熱量は減少する。
Since the inner peripheral portion 13 has a larger contact area with the flange portion 3 than the O-ring 4, the thermal resistance is small. Further, the inner peripheral portion 13 is cooled by the cooling water in the cooling water passage 18, and the inner peripheral portion 13 and the flange portion 3 are cooled.
Is larger than the temperature difference between the O-ring 4 and the flange 3. Therefore, the heat transfer coefficient between the flange portion 3 and the inner peripheral portion 13 is larger than the heat transfer coefficient between the flange portion 3 and the O-ring 4, and most of the heat is transmitted to the inner peripheral portion 13. The heat is radiated to the outside from the surface of the inner peripheral portion 13, and the cooling water is removed from the flange 3, so that the amount of heat transferred to the O-ring 4 is reduced.

【0027】尚、上記実施の形態に於いて、前記フラン
ジ部3と内周部分13は直に密着しているが、図3に示
す様に、前記フランジ部3と内周部分13との間に放熱
用シリコンゴム19等、熱伝導率が高く、柔軟性のある
部材を挾設してもよい。この場合、前記フランジ部3と
内周部分13の密着率が増し、接触熱抵抗を更に減少さ
せることができる為、前記フランジ部3から内周部分1
3への熱伝導量が増加し、前記Oリング4への熱伝達量
は減少する。
In the above embodiment, the flange portion 3 and the inner peripheral portion 13 are in close contact with each other, but as shown in FIG. Alternatively, a flexible member having high thermal conductivity, such as a silicone rubber 19 for heat radiation, may be interposed. In this case, the adhesion ratio between the flange portion 3 and the inner peripheral portion 13 increases, and the contact thermal resistance can be further reduced.
3 increases, and the amount of heat transfer to the O-ring 4 decreases.

【0028】又、上記実施の形態に於いて、前記スプリ
ング17は前記座刳穴14内に設けたが、該座刳穴14
を省略し、前記スプリング17が前記反応管押えフラン
ジ11の外部に露出する様にしてもよい。更に、前記ス
プリング17の代わりに合成ゴム等他の弾性体を設けて
もよい。更に又、前記反応管押えフランジ11はアルミ
ニウム合金製としているが、銅又は銅合金等他の熱伝導
率の高い材質であってもよい。
In the above-described embodiment, the spring 17 is provided in the counterbore 14.
May be omitted, and the spring 17 may be exposed outside the reaction tube holding flange 11. Further, instead of the spring 17, another elastic body such as synthetic rubber may be provided. Further, the reaction tube holding flange 11 is made of an aluminum alloy, but may be made of another material having high thermal conductivity such as copper or a copper alloy.

【0029】[0029]

【発明の効果】以上述べた如く本発明によれば、反応室
内の圧力状態に拘らず、弾性体の反発力により常にフラ
ンジ部と反応管押えフランジとの密着状態が維持され、
両者間の熱抵抗が小さくなり、加熱された筒体から前記
フランジ部へ伝導した熱量の大部分は前記反応管押えフ
ランジへ伝導し、Oリングへの伝達熱量は減少するの
で、Oリングの熱劣化を防止でき、Oリングの耐久性の
向上が図れると共に安全性が向上する。
As described above, according to the present invention, the contact between the flange portion and the reaction tube holding flange is always maintained by the repulsive force of the elastic body regardless of the pressure state in the reaction chamber,
The thermal resistance between the two becomes small, most of the heat transferred from the heated cylinder to the flange portion is transferred to the reaction tube holding flange, and the amount of heat transferred to the O-ring is reduced. Deterioration can be prevented, durability of the O-ring can be improved, and safety can be improved.

【0030】又、ボルトの締付けトルクの厳格な管理を
しなくても弾性体の反発力により前記フランジ部とガス
導入部との間の気密性を維持できる為、反応室の気密性
の維持が容易となる等種々の優れた効果を発揮する。
Further, the airtightness between the flange portion and the gas introduction portion can be maintained by the repulsive force of the elastic body without strict control of the bolt tightening torque, so that the airtightness of the reaction chamber can be maintained. It exhibits various excellent effects such as being easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】該実施の形態に於いて、反応室内を真空引きし
た状態を示す断面図である。
FIG. 2 is a cross-sectional view showing a state where a reaction chamber is evacuated in the embodiment.

【図3】該実施の形態に於いて、フランジ部と内周部分
との間に放熱用シリコンゴムを挾設した状態を示す断面
図である。
FIG. 3 is a cross-sectional view showing a state where a heat-dissipating silicone rubber is sandwiched between a flange portion and an inner peripheral portion in the embodiment.

【図4】従来例を示す断面図である。FIG. 4 is a sectional view showing a conventional example.

【図5】従来例に於いて、反応室内を真空引きした状態
を示す断面図である。
FIG. 5 is a cross-sectional view showing a state where a reaction chamber is evacuated in a conventional example.

【符号の説明】[Explanation of symbols]

3 フランジ部 4 Oリング 8 ボルト 11 反応管押えフランジ 14 座刳穴 17 スプリング 3 Flange part 4 O-ring 8 Bolt 11 Reaction tube holding flange 14 Counterboring hole 17 Spring

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 反応管のフランジ部がOリングを介在さ
せてガス導入部に気密に設けられ、前記フランジ部が前
記ガス導入部と反応管押えフランジにより挾持され、該
反応管押えフランジが弾性体により前記ガス導入部の方
向に付勢されたことを特徴とする反応炉。
A flange portion of a reaction tube is hermetically provided at a gas introduction portion with an O-ring interposed therebetween, and the flange portion is held between the gas introduction portion and a reaction tube holding flange, and the reaction tube holding flange is elastic. A reaction furnace characterized by being urged by a body in the direction of the gas inlet.
JP27947897A 1997-09-26 1997-09-26 Reaction furnace Pending JPH11102872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27947897A JPH11102872A (en) 1997-09-26 1997-09-26 Reaction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27947897A JPH11102872A (en) 1997-09-26 1997-09-26 Reaction furnace

Publications (1)

Publication Number Publication Date
JPH11102872A true JPH11102872A (en) 1999-04-13

Family

ID=17611615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27947897A Pending JPH11102872A (en) 1997-09-26 1997-09-26 Reaction furnace

Country Status (1)

Country Link
JP (1) JPH11102872A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308079A (en) * 2000-02-14 2001-11-02 Tokyo Electron Ltd Plasma processing apparatus and plasma processing method
JP2007173340A (en) * 2005-12-20 2007-07-05 Hitachi Kokusai Electric Inc Substrate processing apparatus
KR101248928B1 (en) * 2006-07-14 2013-03-29 주성엔지니어링(주) Substrate processing apparatus improving temperature gradient between chamber and exhaust line

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308079A (en) * 2000-02-14 2001-11-02 Tokyo Electron Ltd Plasma processing apparatus and plasma processing method
JP2007173340A (en) * 2005-12-20 2007-07-05 Hitachi Kokusai Electric Inc Substrate processing apparatus
KR101248928B1 (en) * 2006-07-14 2013-03-29 주성엔지니어링(주) Substrate processing apparatus improving temperature gradient between chamber and exhaust line

Similar Documents

Publication Publication Date Title
JP3165938B2 (en) Gas treatment equipment
US6066836A (en) High temperature resistive heater for a process chamber
US7732739B2 (en) Substrate heat treatment apparatus and substrate transfer tray used in substrate heat treatment
WO2004090960A1 (en) Loading table and heat treating apparatus having the loading table
JP2010109346A (en) Mounting table structure and treatment device
JP2007335425A (en) Mounting table structure and heat treatment equipment
US6887803B2 (en) Gas-assisted rapid thermal processing
KR20030097861A (en) Assembly comprising heat distributing plate and edge support
JP4222086B2 (en) Heat treatment equipment
KR100353499B1 (en) Inflatable elastomeric element for rapid thermal processing(rtp) system
JP4260404B2 (en) Deposition equipment
US6120610A (en) Plasma etch system
US6508062B2 (en) Thermal exchanger for a wafer chuck
JP3181364B2 (en) Plasma processing equipment
JPH11102872A (en) Reaction furnace
JP3045259B2 (en) Plasma equipment
JP2002045683A (en) Substrate processing device
WO2020081600A1 (en) Load lock body portions, load lock apparatus, and methods for manufacturing the same
JP2002334819A (en) Thermal processing unit
JP2003178991A (en) Apparatus and method for insulating seal in process chamber
KR102251770B1 (en) High temperature faceplate with hybrid material design
KR100929536B1 (en) Furnace Semiconductor Equipment
JP2022018881A (en) Stage for vacuum processing apparatus
JP2003234397A (en) Holding apparatus for body to be treated
JPH09115835A (en) Wafer treatment system