JPH11102022A - Method for correcting optical path of liquid crystal projector - Google Patents

Method for correcting optical path of liquid crystal projector

Info

Publication number
JPH11102022A
JPH11102022A JP9261419A JP26141997A JPH11102022A JP H11102022 A JPH11102022 A JP H11102022A JP 9261419 A JP9261419 A JP 9261419A JP 26141997 A JP26141997 A JP 26141997A JP H11102022 A JPH11102022 A JP H11102022A
Authority
JP
Japan
Prior art keywords
light
optical path
chassis
mirror
total reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9261419A
Other languages
Japanese (ja)
Other versions
JP3253570B2 (en
Inventor
Koichi Fujiwara
弘一 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26141997A priority Critical patent/JP3253570B2/en
Publication of JPH11102022A publication Critical patent/JPH11102022A/en
Application granted granted Critical
Publication of JP3253570B2 publication Critical patent/JP3253570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To correctly condense each light beam at a prism body by correcting the deviation of an optical path caused by the distortion of a chassis. SOLUTION: A liquid crystal projector possesses a light source 35, the chassis 3 housing total reflection mirrors 75, 76, 77 and 78 and dichroic mirrors 45 and 46 so as to make them inclined to the optical path and a fitting protrusion 8 which is positioned on the side of the light source 35 of respective total reflection mirrors 75 and 76 along the optical path in the inside of the chassis 3 and in which an adjustment mirror 5 reflecting light from the light source 35 is fitted, and the chassis 3 is molded of a synthetic resin. The adjustment mirror 5 is firstly fitted in the fitting protrusion 8 on the side of the light source 35, and initial adjustment of the light from the light source 35 to a position so as to follow a normal optical path is executed based on the light reflected by the adjustment mirror 5. Next, the adjustment mirror 5 is pulled out, and is fitted in the fitting protrusion 8 positioned on the side of the advancing direction of a one-stage optical path, so that the deviation of the total reflection mirrors 75, 76, 77 and 78 and the dichroic mirrors 45 and 46 from a normal position is detected from the deviation between incident light and outgoing light at the optical path entrance of the chassis 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内部に光を反射す
る全反射ミラー及び特定の色の光を反射するダイクロイ
ックミラーを具えた液晶プロジェクタの光路修正方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for correcting an optical path of a liquid crystal projector having a total reflection mirror for reflecting light therein and a dichroic mirror for reflecting light of a specific color.

【0002】[0002]

【従来の技術】従来より、図8に示すように、光の3原
色であるR、G、Bに対応した3枚の液晶パネル(7)
(7a)(7b)を具え、これらを光源(35)からの強い光で照
射して、液晶パネルを通過した光束を合成して、画像を
映し出す液晶プロジェクタが提案されている(特開平9
−61782号参照)。キャビネット(6)内には、全て
の色の光を反射する全反射ミラー(75)(76)、各色を波長
により分光するダイクロイックミラー(45)(46)及び合成
用ダイクロイックミラー(31)(32)が光路方向に対し傾い
て配備されている。青色光Bは光源(35)寄りのダイクロ
イックミラー(45)により分光され、全反射ミラー(75)に
より反射されてBに対応した液晶パネル(7b)を照射
し、2つの合成用ダイクロイックミラー(31)(32)を通っ
て投写レンズ(67)に入射する。同様に、緑色光Gはダイ
クロイックミラー(46)に分光されてGに対応した液晶パ
ネル(7)を照射して、2つの合成用ダイクロイックミラ
ー(31)(32)を通る。赤色光RはRに対応した液晶パネル
(7a)を照射した後に、全反射ミラー(76)、合成用ダイ
クロイックミラー(32)を通って、B、G、Rは夫々投写
レンズ(67)に入射する。投写レンズ(67)からの画像は周
知の如く、スクリーン(68)に照射される。
2. Description of the Related Art Conventionally, as shown in FIG. 8, three liquid crystal panels (7) corresponding to the three primary colors of light, R, G and B, are used.
A liquid crystal projector comprising (7a) and (7b), irradiating them with intense light from a light source (35), and combining the luminous flux passing through a liquid crystal panel to project an image has been proposed (Japanese Patent Application Laid-Open No. Hei 9 (1998)).
-61782). Inside the cabinet (6), total reflection mirrors (75) and (76) for reflecting light of all colors, dichroic mirrors (45) and (46) for separating each color by wavelength, and dichroic mirrors for synthesis (31) and (32) ) Are arranged obliquely with respect to the optical path direction. The blue light B is split by the dichroic mirror (45) near the light source (35), reflected by the total reflection mirror (75), irradiates the liquid crystal panel (7b) corresponding to B, and the two combining dichroic mirrors (31). ) (32) and enters the projection lens (67). Similarly, the green light G is split by the dichroic mirror (46), irradiates the liquid crystal panel (7) corresponding to G, and passes through the two combining dichroic mirrors (31) and (32). Red light R is a liquid crystal panel corresponding to R
After irradiating (7a), B, G, and R respectively enter the projection lens (67) through the total reflection mirror (76) and the dichroic mirror for synthesis (32). The image from the projection lens (67) is applied to a screen (68) as is well known.

【0003】上記液晶プロジェクタの構成は広く用いら
れているが、近年該液晶プロジェクタについて小型化が
求められ、液晶パネル及びダイクロイックミラーについ
ても小型化の必要がある。しかし、ダイクロイックミラ
ーは平板状であるから、小型化、薄型化すると、反りや
すくなる。従って、光が何枚ものダイクロイックミラー
を通過するうちに、各R、G、Bが正確な光路を辿ら
ず、投写レンズ(67)に光が正確に合成されない虞れがあ
る。この点に鑑みて、図10に示す液晶プロジェクタが
提案されている。図10は液晶プロジェクタの全体側面
図である。液晶プロジェクタの天面を覆うキャビネット
(6)内には、3枚の液晶パネルを保持する箱形のシャー
シ(3)が設けられ、該シャーシ(3)の前端部に設けられ
た投写レンズ(67)の胴筒は、キャビネット(6)の前面を
貫通して外側に突出する。シャーシ(3)は一般的に合成
樹脂の成形により設けられ、大量生産に対応している。
[0003] The configuration of the liquid crystal projector is widely used, but in recent years, the size of the liquid crystal projector has been required to be reduced, and the liquid crystal panel and the dichroic mirror also need to be reduced in size. However, since the dichroic mirror has a flat plate shape, it tends to be warped when it is reduced in size and thickness. Therefore, while the light passes through a number of dichroic mirrors, each of the R, G, and B may not follow an accurate optical path, and the light may not be accurately combined with the projection lens (67). In view of this point, a liquid crystal projector shown in FIG. 10 has been proposed. FIG. 10 is an overall side view of the liquid crystal projector. Cabinet that covers the top of the LCD projector
A box-shaped chassis (3) for holding three liquid crystal panels is provided in (6), and a barrel of a projection lens (67) provided at a front end of the chassis (3) includes a cabinet ( 6) penetrates the front surface and projects outward. The chassis (3) is generally provided by molding a synthetic resin, and is compatible with mass production.

【0004】図9は、シャーシ(3)の平面図である。シ
ャーシ(3)内には、投写レンズ(67)の光軸を挟んで、R
とBに対応した液晶パネル(7a)(7b)が互いに対向して
配備され、両液晶パネル(7a)(7b)の間にプリズム体(3
0)が配備される。プリズム体(30)は内部に反射面(31)(3
2)を互いに直交させて具え、該プリズム体(30)の側方に
て投写レンズ(67)の反対側には、Gに対応した液晶パネ
ル(7)が設けられている。プリズム体(30)は4つの三角
柱型プリズムの頂点を突き合わせて成り、反射面(31)(3
2)はコーティングして成る。シャーシ(3)への光路入口
には、光源(35)が配備され、光路上には全反射ミラー(7
5)(76)(77)(78)、ダイクロイックミラー(45)(46)が図8
の液晶プロジェクタと同様に光路方向に傾いて配備され
ている。ダイクロイックミラー(45)はRを通過させ、ダ
イクロイックミラー(46)はGを反射し、Bを通過させ
る。光源(35)の奥部には、集光用のコンデンサレンズ(7
9)が配備されている。
FIG. 9 is a plan view of the chassis (3). In the chassis (3), with the optical axis of the projection lens (67)
And liquid crystal panels (7a) and (7b) corresponding to B are provided facing each other, and a prism body (3) is provided between the liquid crystal panels (7a) and (7b).
0) is deployed. The prism body (30) has a reflective surface (31) (3
2) are provided orthogonal to each other, and a liquid crystal panel (7) corresponding to G is provided on the side of the prism body (30) opposite to the projection lens (67). The prism body (30) is formed by abutting the vertices of four triangular prisms, and the reflecting surfaces (31) (3)
2) is made by coating. A light source (35) is provided at an optical path entrance to the chassis (3), and a total reflection mirror (7) is provided on the optical path.
5) (76) (77) (78), dichroic mirrors (45) (46)
Like the liquid crystal projector of the above, it is arranged to be inclined in the optical path direction. The dichroic mirror (45) passes R, and the dichroic mirror (46) reflects G and passes B. At the back of the light source (35), a condenser lens (7
9) is deployed.

【0005】光源(35)からの光は、全反射ミラー(75)に
より反射された後に、Rがダイクロイックミラー(45)を
通過し、GとBがダイクロイックミラー(45)により反射
される。Rは全反射ミラー(76)により反射されてRに対
応した液晶パネル(7a)を照射する。液晶パネル(7a)を
照射したRは、プリズム体(30)内の反射面(32)により、
投写レンズ(67)に向けて照射される。Gはダイクロイッ
クミラー(46)に反射されてプリズム体(30)に入射し、該
入射光はそのままプリズム体(30)を通過し、投写レンズ
(67)に入射する。Bは全反射ミラー(77)(78)により反射
された後に、プリズム体(30)内の反射面(31)に反射され
て投写レンズ(67)に入射する。従って、図8に示す液晶
プロジェクタに比して、光は光路を正しく辿ることがで
きる。
After the light from the light source (35) is reflected by the total reflection mirror (75), R passes through the dichroic mirror (45), and G and B are reflected by the dichroic mirror (45). R is reflected by the total reflection mirror (76) and irradiates the liquid crystal panel (7a) corresponding to R. R irradiating the liquid crystal panel (7a) is reflected by the reflecting surface (32) in the prism body (30).
The light is emitted toward the projection lens (67). G is reflected by the dichroic mirror (46) and enters the prism body (30), and the incident light passes through the prism body (30) as it is, and
(67). B is reflected by the reflection surface (31) in the prism body (30) after being reflected by the total reflection mirrors (77) and (78), and is incident on the projection lens (67). Therefore, light can follow the optical path correctly as compared with the liquid crystal projector shown in FIG.

【0006】[0006]

【発明が解決しようとする課題】シャーシ(3)は合成樹
脂の成形により設けられているから、歪みや変形を生じ
ることがある。従って、全反射ミラー(75)(76)(77)(78)
の取付け角度が正規の角度からずれることがある。この
結果、プリズム体(30)にR、G、Bの各光が正確に集光
せず、スクリーン(68)上の画像に照明ムラの生じる虞れ
がある。本発明は、シャーシの歪みによる光路のズレを
補正し、プリズム体に正確に各光を集光させることを目
的とする。
Since the chassis (3) is provided by molding a synthetic resin, distortion and deformation may occur. Therefore, total reflection mirror (75) (76) (77) (78)
The mounting angle may deviate from the regular angle. As a result, the R, G, and B lights are not accurately collected on the prism body (30), and there is a possibility that illumination unevenness may occur in an image on the screen (68). SUMMARY OF THE INVENTION It is an object of the present invention to correct a deviation of an optical path due to a distortion of a chassis and accurately condense each light on a prism body.

【0007】[0007]

【課題を解決する為の手段】本発明に係わる方法は、光
源(35)と、光源(35)からの光を反射する全反射ミラー(7
5)(76)(77)(78)及び光の3原色R、G、Bの何れか一の
光の通過を許すダイクロイックミラー(45)(46)を光路に
対して傾けて収納したシャーシ(3)と、シャーシ(3)内
にて光路に沿って各全反射ミラー(75)(76)(77)(78)の光
源(35)寄りに位置し、光源(35)からの光を反射する調整
ミラー(5)が嵌まる嵌合突起(8)とを具え、該シャーシ
(3)は合成樹脂の射出成形により形成された液晶プロジ
ェクタを設け、先ず最も光源(35)寄りの嵌合突起(8)に
調整ミラー(5)を嵌めて、該調整ミラー(5)により反射
された光に基づいて、光源(35)からの光が正規の光路を
辿る位置に補正する初期調整を行ない、該調整ミラー
(5)を引き抜き、引き抜かれた嵌合突起(8)よりも光路
進行方向側に位置する嵌合突起(8)に調整ミラー(5)を
嵌めて、シャーシ(3)の光路入り口に於ける入射光と出
射光のずれにより、全反射ミラー(75)(76)(77)(78)及び
ダイクロイックミラー(45)(46)の正規の位置からのずれ
量を検出し、該ずれ量に合わせて、シャーシ(3)の全反
射ミラー(75)(76)(77)(78)及びダイクロイックミラー(4
5)(46)の取付箇所を修正する。
A method according to the present invention comprises a light source (35) and a total reflection mirror (7) for reflecting light from the light source (35).
5) A chassis in which dichroic mirrors (45) and (46) permitting the passage of any one of the three primary colors R, G, and B of the light (76), (77), (78) are inclined with respect to the optical path ( 3) and located near the light source (35) of each total reflection mirror (75) (76) (77) (78) along the optical path in the chassis (3), and reflects the light from the light source (35) And a fitting projection (8) into which an adjusting mirror (5) is fitted.
In (3), a liquid crystal projector formed by injection molding of a synthetic resin is provided. First, the adjusting mirror (5) is fitted to the fitting projection (8) closest to the light source (35), and reflected by the adjusting mirror (5). Based on the adjusted light, an initial adjustment for correcting the light from the light source (35) to a position where the light follows a regular optical path is performed.
(5) is pulled out, the adjusting mirror (5) is fitted into the fitting projection (8) located on the optical path traveling direction side with respect to the pulled-out fitting projection (8), and the adjustment mirror (5) is inserted at the optical path entrance of the chassis (3). The amount of deviation of the total reflection mirrors (75) (76) (77) (78) and the dichroic mirrors (45) (46) from the correct positions is detected based on the deviation between the incident light and the outgoing light, and adjusted according to the deviation amount. The total reflection mirrors (75) (76) (77) (78) and the dichroic mirrors (4
5) Modify the mounting location of (46).

【0008】[0008]

【作用及び効果】本発明にあっては、一旦調整ミラー
(5)を嵌合突起(8)に嵌め、シャーシ(3)の光路入り口
に於ける入射光と出射光のずれにより、該調整ミラー
(5)に対応する全反射ミラー(75)(76)(77)(78)及びダイ
クロイックミラー(45)(46)の正規の位置からのずれ量を
検出する。即ち、各全反射ミラー(75)(76)(77)(78)及び
ダイクロイックミラー(45)(46)毎に正規の位置からのず
れ量を求めて、シャーシ(3)を修正するので、全反射ミ
ラー(75)(76)(77)(78)及びダイクロイックミラー(45)(4
6)に反射され、又は通過した光は正確な光路を辿ること
ができる。
According to the present invention, once the adjusting mirror
(5) is fitted to the fitting projection (8), and the adjustment mirror is adjusted by a shift between the incident light and the outgoing light at the optical path entrance of the chassis (3).
The amount of deviation of the total reflection mirrors (75), (76), (77), (78) and the dichroic mirrors (45), (46) corresponding to (5) from the normal positions is detected. That is, the amount of deviation from the regular position is calculated for each of the total reflection mirrors (75) (76) (77) (78) and the dichroic mirrors (45) (46), and the chassis (3) is corrected. Reflective mirror (75) (76) (77) (78) and dichroic mirror (45) (4
The light reflected or passed through 6) can follow an accurate optical path.

【0009】[0009]

【発明の実施の形態】以下、本発明の一例を図を用いて
詳述する。従来と同一構成については、同一符号を用い
て、詳細な説明を省略する。図1は、液晶プロジェクタ
を上下逆にして底面を示す斜視図である。液晶プロジェ
クタは受け基台(60)にキャビネット(6)を被せてなり、
該キャビネット(6)からは、周知の如く、投写レンズ(6
7)が突出している。以下の記載では、投写レンズ(67)が
設けられている方を前方、反対側を後方と呼ぶ。受け基
台(60)の下面前端部には、手回し可能な調整具(65)(65)
が螺合し、液晶プロジェクタが机上に載置された図2に
示す状態にて、調整具(65)(65)の回し角度を調節すれ
ば、液晶プロジェクタの仰ぎ角度が変わり、スクリーン
(68)上への照射状態を変えることができる。図1に示す
ように、受け基台(60)の下面後端部からは3つの細長い
突起(66)(66)(66)が突出し、該突起(66)(66)(66)は液晶
プロジェクタの後端を向いて膨らんだ円弧上に配備され
ている。液晶プロジェクタは前記調整具(65)(65)と突起
(66)の先端面にて支持される。尚、突起(66)(66)(66)は
一体に繋げられてもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an example of the present invention will be described in detail with reference to the drawings. The same components as those of the related art are denoted by the same reference numerals, and detailed description thereof is omitted. FIG. 1 is a perspective view showing the bottom surface of the liquid crystal projector upside down. The LCD projector consists of a receiving base (60) and a cabinet (6).
As is well known, a projection lens (6) is provided from the cabinet (6).
7) is protruding. In the following description, the side provided with the projection lens (67) is referred to as the front, and the opposite side is referred to as the rear. At the front end of the lower surface of the receiving base (60), a hand-turnable adjustment tool (65) (65)
When the turning angle of the adjusters (65) and (65) is adjusted in the state shown in FIG. 2 in which the liquid crystal projector is placed on a desk,
(68) The irradiation state on the top can be changed. As shown in FIG. 1, three elongated projections (66), (66), (66) protrude from the rear end of the lower surface of the receiving base (60), and the projections (66), (66), (66) are a liquid crystal projector. It is arranged on a bulging arc facing the rear end. The liquid crystal projector has the protrusions (65) and (65)
It is supported on the tip surface of (66). Incidentally, the projections (66), (66), (66) may be connected integrally.

【0010】図3は、キャビネット(6)の全体斜視図で
ある。キャビネット(6)内には、従来と同様に、箱形の
シャーシ(3)が設けられ、該シャーシ(3)の前端部に取
り付けられた投写レンズ(67)はキャビネット(6)の前端
部を貫通して外部に突出している。シャーシ(3)は金型
(25)(図7参照)を用いた合成樹脂の射出成形により設け
られる。図3に於いては、シャーシ(3)内の部品の記載
は省略する。キャビネット(6)の天面には、開口(61)が
開設され、該開口(61)に蓋体(9)が着脱自在に取り付け
られる。
FIG. 3 is an overall perspective view of the cabinet (6). Inside the cabinet (6), a box-shaped chassis (3) is provided as before, and a projection lens (67) attached to the front end of the chassis (3) connects the front end of the cabinet (6). It penetrates and projects outside. Chassis (3) is mold
This is provided by injection molding of a synthetic resin using (25) (see FIG. 7). In FIG. 3, the description of the components in the chassis (3) is omitted. An opening (61) is formed on the top surface of the cabinet (6), and a lid (9) is detachably attached to the opening (61).

【0011】図4は、シャーシ(3)の平面図である。全
反射ミラー(75)(76)(77)(78)、ダイクロイックミラー(4
5)(46)及びプリズム体(30)の配置は、図9に示す従来の
液晶プロジェクタと同じであり、全反射ミラー(75)(76)
(77)(78)はシャーシ(3)の側面内側に取り付けられる。
プリズム体(30)内の反射面(31)(32)を通して、R、G、
Bの液晶パネルを透過した光は正確に合成される。ま
た、コンデンサレンズ(79)の前方、ダイクロイックミラ
ー(45)と全反射ミラー(76)の間、ダイクロイックミラー
(46)と全反射ミラー(77)の間及び該全反射ミラー(77)と
全反射ミラー(78)の間には、後記する調整ミラー(5)を
取り付ける為の嵌合突起(8)がシャーシ(3)の側面に設
けられている。嵌合突起(8)は中央部に凹み(80)を形成
し、該凹み(80)に板状の調整ミラー(5)の側縁が嵌ま
る。嵌合突起(8)の凹み(80)は、シャーシ(3)形成後に
切削加工等を施して極めて正確な幅及び位置に仕上げら
れる。従って、凹み(80)と調整ミラー(5)の取付けガタ
は殆どなく、凹み(80)の光路に対する相対位置は殆ど変
化しない。また、各液晶パネル(7)(7a)(7b)の背面側
にも、嵌合突起(8)が設けられるが、図4では説明の便
宜上、記載を省略する。
FIG. 4 is a plan view of the chassis (3). Total reflection mirror (75) (76) (77) (78), dichroic mirror (4
5) (46) and the arrangement of the prism body (30) are the same as those of the conventional liquid crystal projector shown in FIG. 9, and the total reflection mirror (75) (76)
(77) and (78) are attached inside the side surface of the chassis (3).
Through the reflecting surfaces (31) and (32) in the prism body (30), R, G,
Light transmitted through the B liquid crystal panel is accurately combined. In front of the condenser lens (79), between the dichroic mirror (45) and the total reflection mirror (76), the dichroic mirror
Between the (46) and the total reflection mirror (77) and between the total reflection mirror (77) and the total reflection mirror (78), a fitting projection (8) for attaching an adjustment mirror (5) described later is provided. It is provided on the side surface of the chassis (3). The fitting projection (8) forms a recess (80) at the center, and the side edge of the plate-shaped adjusting mirror (5) fits into the recess (80). The concave portion (80) of the fitting projection (8) is finished to an extremely accurate width and position by performing cutting or the like after forming the chassis (3). Therefore, there is almost no play in mounting the concave portion (80) and the adjusting mirror (5), and the relative position of the concave portion (80) with respect to the optical path hardly changes. Also, a fitting projection (8) is provided on the back side of each of the liquid crystal panels (7), (7a), (7b), but is omitted in FIG. 4 for convenience of explanation.

【0012】図4にあっては、液晶パネル(7)(7a)(7
b)を一点鎖線にて示す。各液晶パネル(7)(7a)(7b)
は、高画素数に対応しているから、各液晶パネルを通過
したR、G、Bの各光を、正確に合成しないと、スクリ
ーン(68)上に正しい画像を写すことができない。然る
に、シャーシ(3)は合成樹脂の射出成形により設けられ
るから、成形後に反りや歪みを生じ、全反射ミラー(75)
(76)(77)(78)、ダイクロイックミラー(45)(46)が光路に
対し正確な角度で取り付けられない虞れがある。この点
に鑑みて、本例にあっては、シャーシ(3)を形成した後
に、嵌合突起(8)に調整ミラー(5)を取り付けて、各全
反射ミラー(75)(76)(77)(78)、ダイクロイックミラー(4
5)(46)の取付け角度のズレ量を検出し、シャーシ(3)を
補正する。以下に詳細な手順を示す。
In FIG. 4, the liquid crystal panels (7), (7a), (7)
b) is indicated by a dashed line. Each liquid crystal panel (7) (7a) (7b)
Corresponds to a high number of pixels, and unless the R, G, and B lights passing through each liquid crystal panel are accurately combined, a correct image cannot be projected on the screen (68). However, since the chassis (3) is provided by injection molding of a synthetic resin, warping or distortion occurs after molding, and the total reflection mirror (75) is formed.
(76) (77) (78) and the dichroic mirrors (45) (46) may not be mounted at an accurate angle to the optical path. In view of this point, in this example, after the chassis (3) is formed, the adjusting mirror (5) is attached to the fitting projection (8), and the total reflection mirrors (75), (76), (77) are formed. ) (78), dichroic mirror (4
5) The amount of deviation of the mounting angle of (46) is detected, and the chassis (3) is corrected. The detailed procedure is shown below.

【0013】まず全反射ミラー(75)の取付け角度の検出
を行なう。図5(a)に示すように、シャーシ(3)上にて
コンデンサレンズ(79)の取付け位置の入射側に位置する
嵌合突起(8)に調整ミラー(5)を嵌めるとともに、全反
射ミラー(75)をシャーシ(3)に取り付ける。調整ミラー
(5)は受けた光を全て反射する全反射ミラーであり、そ
の厚みは凹み(80)の幅に等しい。この後、光源(35a)を
シャーシ(3)の光路入口に設置し、光を照射する。尚、
この場合、設置する光源(35a)はレーザー光源であり、
液晶プロジェクタ使用時に用いるランプ光源ではない。
仮に光源(35a)が正規の取付け位置からずれて設置され
ていれば、光は図5(a)に示すようにずれて反射するか
ら、この反射角から光源(35a)のズレ量が判る。これに
より本来のランプ光源(35)の取付け位置を補正する初期
調整を行なう。
First, the mounting angle of the total reflection mirror (75) is detected. As shown in FIG. 5 (a), on the chassis (3), the adjusting mirror (5) is fitted to the fitting projection (8) located on the incident side of the mounting position of the condenser lens (79), and the total reflection mirror is mounted. (75) is attached to the chassis (3). Adjustable mirror
(5) is a total reflection mirror for reflecting all the received light, and its thickness is equal to the width of the recess (80). Thereafter, the light source (35a) is set at the entrance of the optical path of the chassis (3), and the light is irradiated. still,
In this case, the light source (35a) to be installed is a laser light source,
It is not a lamp light source used when using a liquid crystal projector.
If the light source (35a) is shifted from the proper mounting position, the light is reflected with a shift as shown in FIG. 5 (a), and the amount of deviation of the light source (35a) can be determined from the angle of reflection. Thereby, initial adjustment for correcting the original mounting position of the lamp light source (35) is performed.

【0014】次に、図5(b)に示すように、コンデンサ
レンズ(79)の前方に位置する嵌合突起(8)から調整ミラ
ー(5)を引き抜き、ダイクロイックミラー(45)と全反射
ミラー(76)の間の嵌合突起(8)に調整ミラー(5)の側縁
を嵌める。ダイクロイックミラー(45)は未だ取り付けら
れていない。前記の如く、ダイクロイックミラー(45)と
全反射ミラー(76)の間の嵌合突起(8)は精度良く仕上げ
られており、光軸との相対位置がずれている虞れは少な
い。レーザー光源(35a)を再び照射する。仮に、全反射
ミラー(75)が正規の位置からずれて取り付けられている
と、光は一点鎖線にて示すようにずれて反射する。光源
(35)の位置は前記の如く予め正規の位置に調整されてい
るから、この入射光と出射光のずれは全反射ミラー(75)
の取付けずれに起因することが判る。また、入射光と出
射光のずれ角θは全反射ミラー(75)の取付ずれ角の2倍
に相当することが判る。従って、ずれ角θから全反射ミ
ラー(75)が取り付けられているシャーシ(3)の側面を補
正すべき角度量が求まる。シャーシ(3)は合成樹脂の射
出成形により設けられているから、求めた角度量に合わ
せて金型(25)を修正すればよい。
Next, as shown in FIG. 5 (b), the adjusting mirror (5) is pulled out from the fitting projection (8) located in front of the condenser lens (79), and the dichroic mirror (45) and the total reflection mirror are extracted. The side edge of the adjustment mirror (5) is fitted to the fitting projection (8) between (76). The dichroic mirror (45) has not been installed yet. As described above, the fitting projection (8) between the dichroic mirror (45) and the total reflection mirror (76) is finished with high accuracy, and there is little possibility that the relative position with respect to the optical axis is shifted. The laser light source (35a) is irradiated again. If the total reflection mirror (75) is mounted at a position shifted from the normal position, the light is reflected with a shift as indicated by a chain line. light source
Since the position of (35) is previously adjusted to the regular position as described above, the deviation between the incident light and the outgoing light is a total reflection mirror (75).
It can be seen that this is caused by misalignment. Also, it can be seen that the shift angle θ between the incident light and the output light is twice as large as the mounting shift angle of the total reflection mirror (75). Therefore, the amount of angle to be corrected for the side surface of the chassis (3) on which the total reflection mirror (75) is mounted is obtained from the shift angle θ. Since the chassis (3) is provided by injection molding of a synthetic resin, the mold (25) may be modified in accordance with the obtained angle amount.

【0015】次に、ダイクロイックミラー(45)の取付け
角度の検出を行なう。ダイクロイックミラー(45)と全反
射ミラー(76)の間の嵌合突起(8)に嵌められた調整ミラ
ー(5)を引き抜き、図6に示すように、ダイクロイック
ミラー(46)と全反射ミラー(77)の取付位置間に設けられ
た嵌合突起(8)に調整ミラー(5)を嵌める。レーザー光
源(35a)を照射すると、光は全反射ミラー(75)に反射さ
れて、ダイクロイックミラー(45)によりRが通過し、G
とBが反射される。然るに、調整ミラー(5)によりGと
Bが反射され、GとBは再びダイクロイックミラー(45)
及び全反射ミラー(75)に反射されて、光源(35a)に戻
る。光源(35a)に戻った出射光と入射光のずれ量δは、
全反射ミラー(75)及びダイクロイックミラー(45)の取付
ずれ量を加えたものになり、前記より全反射ミラー(75)
の取付ずれ量が検出されているから、これによりダイク
ロイックミラー(45)の取付ずれ量が判る。以上上記の操
作を繰り返すと、全反射ミラー(75)(76)(77)(78)、ダイ
クロイックミラー(45)(46)の取付ずれ量が判り、これに
合わせて金型を修正すれば、液晶プロジェクタに用いる
ランプ光源(35)からの光が正規の光路を辿るシャーシ
(3)が製作できる。
Next, the mounting angle of the dichroic mirror (45) is detected. The adjustment mirror (5) fitted in the fitting projection (8) between the dichroic mirror (45) and the total reflection mirror (76) is pulled out, and as shown in FIG. 6, the dichroic mirror (46) and the total reflection mirror ( The adjustment mirror (5) is fitted to the fitting projection (8) provided between the mounting positions of (77). When the laser light source (35a) is irradiated, the light is reflected by the total reflection mirror (75), R passes through the dichroic mirror (45), and G
And B are reflected. However, G and B are reflected by the adjusting mirror (5), and G and B are again returned to the dichroic mirror (45).
And it is reflected by the total reflection mirror (75) and returns to the light source (35a). The shift amount δ between the outgoing light and the incident light returned to the light source (35a) is
The total displacement mirror (75) and the dichroic mirror (45) are added with the amount of misalignment.
Since the mounting displacement of the dichroic mirror (45) is detected, the mounting displacement of the dichroic mirror (45) can be determined. By repeating the above operation, the amount of misalignment of the total reflection mirror (75) (76) (77) (78) and the dichroic mirror (45) (46) is known, and if the mold is corrected according to this, Chassis where the light from the lamp light source (35) used for the liquid crystal projector follows the regular optical path
(3) can be manufactured.

【0016】ここで金型(25)は、図7に示すように、固
定型(2)と可動型(20)を突き合わせてなる一般的なもの
であり、固定型(2)に開設されたゲート(21)から両型
(2)(20)間の空間(22)に溶融湯を流し込む。冷却後、可
動型(20)を下げると、成形品が作成される。上記金型(2
5)の修正とは、シャーシ(3)の側壁となる可動型(20)内
の空間部分(22)を修正し、全反射ミラー(75)(76)(77)(7
8)及びダイクロイックミラー(45)(46)が正規の位置に取
り付くシャーシ(3)に直すことを指す。
Here, as shown in FIG. 7, the mold (25) is a general one in which a fixed mold (2) and a movable mold (20) are abutted, and is opened in the fixed mold (2). Both types from gate (21)
(2) Pour the molten metal into the space (22) between the (20). After cooling, when the movable mold (20) is lowered, a molded product is created. The above mold (2
The modification of (5) means that the space (22) in the movable mold (20) serving as the side wall of the chassis (3) is modified, and the total reflection mirror (75) (76) (77) (7)
8) and dichroic mirrors (45), (46) refer to the chassis (3) which is mounted in a proper position.

【0017】尚、ダイクロイックミラー(45)の取付け角
度の検出を行なうには、以下の方法もある。図6に示す
ように、全反射ミラー(75)が取り付けられたシャーシ
(3)の側壁に透孔(36)を開設し、全反射ミラー(75)を取
り付けずに、レーザー光源(35a)を該側壁の外側に設置
する。ダイクロイックミラー(46)と全反射ミラー(77)の
取付位置間に設けられた嵌合突起(8)に調整ミラー(5)
を嵌め、ダイクロイックミラー(45)の取付けずれを求め
ても良い。この場合、光源(35)は図6に実線で示す光源
(35a)の位置から正しく90度ずれている、即ち一点鎖
線で示す位置に正確に設定される必要がある。
The following method can be used to detect the mounting angle of the dichroic mirror (45). As shown in FIG. 6, a chassis with a total reflection mirror (75) attached
The through hole (36) is opened in the side wall of (3), and the laser light source (35a) is installed outside the side wall without attaching the total reflection mirror (75). The adjusting mirror (5) is fitted to the fitting projection (8) provided between the mounting positions of the dichroic mirror (46) and the total reflection mirror (77).
May be fitted to determine the mounting displacement of the dichroic mirror (45). In this case, the light source (35) is a light source indicated by a solid line in FIG.
It is necessary to set the position correctly shifted by 90 degrees from the position of (35a), that is, the position shown by the dashed line.

【0018】本例に係わる方法にあっては、一旦調整ミ
ラー(5)を嵌合突起(8)に嵌め、シャーシ(3)の光路入
り口に於ける入射光と出射光のずれにより、該調整ミラ
ー(5)に対応する全反射ミラー(75)(76)(77)(78)及びダ
イクロイックミラー(45)(46)の正規の位置からのずれ量
を検出する。即ち、各全反射ミラー(75)(76)(77)(78)及
びダイクロイックミラー(45)(46)毎に正規の位置からの
ずれ量を求めて、シャーシ(3)を修正するので、全反射
ミラー(75)(76)(77)(78)及びダイクロイックミラー(45)
(46)に反射され、又は通過した光は正確な光路を辿るこ
とができる。尚、嵌合突起(8)の凹部(80)が切削加工等
により仕上げられているから、全反射ミラー(75)(76)(7
7)(78)及びダイクロイックミラー(45)(46)の取付箇所も
切削加工等により仕上げればよいとも考えられる。しか
し、本例にあっては、切削加工等の箇所を減らし、金型
(25)の修正にて、ランプ光源(35)からの光を正確に辿ら
せる点に特徴がある。
In the method according to the present embodiment, the adjusting mirror (5) is once fitted to the fitting projection (8), and the adjustment is performed by a shift between the incident light and the outgoing light at the optical path entrance of the chassis (3). The amount of deviation of the total reflection mirrors (75) (76) (77) (78) and the dichroic mirrors (45) (46) corresponding to the mirror (5) from their normal positions is detected. That is, the amount of deviation from the regular position is calculated for each of the total reflection mirrors (75) (76) (77) (78) and the dichroic mirrors (45) (46), and the chassis (3) is corrected. Reflective mirror (75) (76) (77) (78) and dichroic mirror (45)
The light reflected or passed by (46) can follow an accurate optical path. Since the concave portion (80) of the fitting projection (8) is finished by cutting or the like, the total reflection mirrors (75), (76), (7)
It is conceivable that the attachment points of 7) (78) and the dichroic mirrors (45), (46) may be finished by cutting or the like. However, in this example, the number of cutting processes etc.
The feature of the modification of (25) is that the light from the lamp light source (35) is accurately traced.

【0019】上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能であることは
勿論である。
The description of the above embodiments is for the purpose of illustrating the present invention and should not be construed as limiting the invention described in the appended claims or reducing the scope thereof. Further, the configuration of each part of the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made within the technical scope described in the claims.

【図面の簡単な説明】[Brief description of the drawings]

【図1】液晶プロジェクタを上下逆にして底面を示す斜
視図である。
FIG. 1 is a perspective view illustrating a bottom surface of a liquid crystal projector when the projector is turned upside down.

【図2】液晶プロジェクタの照射状態を示す側面図であ
る。
FIG. 2 is a side view showing an irradiation state of the liquid crystal projector.

【図3】液晶プロジェクタと蓋体の分解斜視図である。FIG. 3 is an exploded perspective view of a liquid crystal projector and a lid.

【図4】シャーシの平面図である。FIG. 4 is a plan view of the chassis.

【図5】シャーシの要部平面図であり、(a)は初期調整
を、(b)はシャーシの光路入口寄りの全反射ミラーの調
整を示す。
5A and 5B are plan views of a main part of the chassis, in which FIG. 5A shows an initial adjustment, and FIG. 5B shows an adjustment of a total reflection mirror near an optical path entrance of the chassis.

【図6】シャーシの要部平面図であり、シャーシの光路
入口寄りのダイクロイックミラーの調整を示す。
FIG. 6 is a plan view of a main part of the chassis, showing adjustment of a dichroic mirror near an optical path entrance of the chassis.

【図7】金型の断面側面図である。FIG. 7 is a sectional side view of a mold.

【図8】従来の液晶プロジェクタの側面図である。FIG. 8 is a side view of a conventional liquid crystal projector.

【図9】図10の液晶プロジェクタのシャーシの正面図
である。
FIG. 9 is a front view of a chassis of the liquid crystal projector of FIG.

【図10】別の従来の液晶プロジェクタの側面図であ
る。
FIG. 10 is a side view of another conventional liquid crystal projector.

【符号の説明】[Explanation of symbols]

(3) シャーシ (5) 調整ミラー (8) 嵌合突起 (25) 金型 (35) 光源 (45) ダイクロイックミラー (46) ダイクロイックミラー (75) 全反射ミラー (76) 全反射ミラー (77) 全反射ミラー (78) 全反射ミラー (3) Chassis (5) Adjustment mirror (8) Mating protrusion (25) Mold (35) Light source (45) Dichroic mirror (46) Dichroic mirror (75) Total reflection mirror (76) Total reflection mirror (77) All Reflection mirror (78) Total reflection mirror

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光源(35)と、光源(35)からの光を反射す
る全反射ミラー(75)(76)及び光の3原色R、G、Bの何
れか一の光の通過を許すダイクロイックミラー(45)(46)
を光路に対して傾けて収納したシャーシ(3)と、シャー
シ(3)内にて光路に沿って各全反射ミラー(75)(76)の光
源(35)寄りに位置し、光源(35)からの光を反射する調整
ミラー(5)が嵌まる嵌合突起(8)とを具え、該シャーシ
(3)は合成樹脂の射出成形により形成された液晶プロジ
ェクタを設け、 先ず最も光源(35)寄りの嵌合突起(8)に調整ミラー(5)
を嵌めて、該調整ミラー(5)により反射された光に基づ
いて、光源(35)からの光が正規の光路を辿る位置に補正
する初期調整を行ない、 該調整ミラー(5)を引き抜き、引き抜かれた嵌合突起
(8)よりも光路進行方向側に位置する嵌合突起(8)に調
整ミラー(5)を嵌めて、シャーシ(3)の光路入り口に於
ける入射光と出射光のずれにより、全反射ミラー(75)(7
6)(77)(78)及びダイクロイックミラー(45)(46)の正規の
位置からのずれ量を検出し、該ずれ量に合わせて、シャ
ーシ(3)の全反射ミラー(75)(76)(77)(78)及びダイクロ
イックミラー(45)(46)の取付箇所を修正する液晶プロジ
ェクタの光路修正方法。
1. A light source (35), a total reflection mirror (75) (76) for reflecting light from the light source (35), and a light of any one of the three primary colors R, G and B. Dichroic mirrors (45) (46)
And a chassis (3) in which the light is tilted with respect to the optical path, and the total reflection mirrors (75) and (76) are located near the light source (35) along the optical path in the chassis (3). A fitting projection (8) into which an adjusting mirror (5) for reflecting light from
In (3), a liquid crystal projector formed by injection molding of a synthetic resin is provided. First, an adjusting mirror (5) is provided on the fitting projection (8) closest to the light source (35).
And based on the light reflected by the adjusting mirror (5), perform initial adjustment to correct the light from the light source (35) to a position where the light follows a regular optical path, and pull out the adjusting mirror (5). Pulled-out mating protrusion
The adjusting mirror (5) is fitted to the fitting projection (8) located on the optical path advancing direction side of (8), and a total reflection mirror is formed by a shift between the incident light and the outgoing light at the optical path entrance of the chassis (3). (75) (7
6) (77) (78) and the amount of deviation of the dichroic mirrors (45) and (46) from their normal positions are detected, and in accordance with the amount of deviation, the total reflection mirrors (75) and (76) of the chassis (3) are detected. (77) (78) An optical path correcting method for a liquid crystal projector for correcting a mounting position of a dichroic mirror (45) (46).
【請求項2】 シャーシ(3)は合成樹脂の金型(25)への
射出成形により設けられ、シャーシ(3)の全反射ミラー
(75)(76)(77)(78)及びダイクロイックミラー(45)(46)の
取付箇所の修正は、該取付箇所に対応する金型(25)の箇
所を修正することにより行なう請求項1に記載の液晶プ
ロジェクタの光路修正方法。
2. The chassis (3) is provided by injection molding of a synthetic resin into a mold (25), and a total reflection mirror of the chassis (3) is provided.
(1) The correction of the mounting position of the (75), (76), (77), (78) and the dichroic mirror (45), (46) is performed by correcting the position of the mold (25) corresponding to the mounting position. 3. The method for correcting an optical path of a liquid crystal projector according to claim 1.
JP26141997A 1997-09-26 1997-09-26 Optical path correction method for liquid crystal projector Expired - Fee Related JP3253570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26141997A JP3253570B2 (en) 1997-09-26 1997-09-26 Optical path correction method for liquid crystal projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26141997A JP3253570B2 (en) 1997-09-26 1997-09-26 Optical path correction method for liquid crystal projector

Publications (2)

Publication Number Publication Date
JPH11102022A true JPH11102022A (en) 1999-04-13
JP3253570B2 JP3253570B2 (en) 2002-02-04

Family

ID=17361619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26141997A Expired - Fee Related JP3253570B2 (en) 1997-09-26 1997-09-26 Optical path correction method for liquid crystal projector

Country Status (1)

Country Link
JP (1) JP3253570B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1310086C (en) * 2002-12-24 2007-04-11 精工爱普生株式会社 Case for optical element, optical device and projector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1310086C (en) * 2002-12-24 2007-04-11 精工爱普生株式会社 Case for optical element, optical device and projector

Also Published As

Publication number Publication date
JP3253570B2 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
KR100225445B1 (en) Projection-type liquid crystalline projector
US20060176453A1 (en) Projector
US20060285082A1 (en) Rear projection display device
US20020018187A1 (en) Projector
US6676267B2 (en) Mirror support structure
CN100523997C (en) Projection type image display apparatus
JP3163056B2 (en) Projection device
JP3253570B2 (en) Optical path correction method for liquid crystal projector
US7443595B2 (en) Optical system for projector and imaging method thereof
JP3363829B2 (en) Integrator lens position adjustment mechanism and projector using the position adjustment mechanism
US20060227304A1 (en) Optical assembly for a projection system
US8118432B2 (en) Lens array element and projection type display device
JPH11133504A (en) Projection optical device
KR100863860B1 (en) Device for adjustment to mirror of illumination system optical engine LCD
KR100426699B1 (en) Control apparatus for fly eye lens
JP3357843B2 (en) Projection device
JPH02195382A (en) Liquid crystal video projector system
JP4457703B2 (en) Projection display
JPH1172844A (en) Liquid crystal projector, projection type liquid crystal display device, lamp unit used therein, lamp constituting body and lamp, method for assembling lamp unit, jig for adjusting optical axis of lamp unit and connector device
KR200156536Y1 (en) Projector of rear projection tv
JPH09120046A (en) Projection type display device
JP2004271700A (en) Housing for optical device, optical device, and projector
JP2004012971A (en) Manufacture method for reflection mirror and reflection mirror, light source device, and display device
JP2004347646A (en) Lens barrel for projector device and projector device
JPH1146077A (en) Cabinet for liquid crystal projector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees