JPH11101952A - Element for optical isolator and its manufacture - Google Patents

Element for optical isolator and its manufacture

Info

Publication number
JPH11101952A
JPH11101952A JP26239197A JP26239197A JPH11101952A JP H11101952 A JPH11101952 A JP H11101952A JP 26239197 A JP26239197 A JP 26239197A JP 26239197 A JP26239197 A JP 26239197A JP H11101952 A JPH11101952 A JP H11101952A
Authority
JP
Japan
Prior art keywords
optical isolator
optical
faraday rotator
substrate
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26239197A
Other languages
Japanese (ja)
Other versions
JP3688865B2 (en
Inventor
Yukiko Furukata
由紀子 古堅
Gakushi Shoda
学史 庄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP26239197A priority Critical patent/JP3688865B2/en
Publication of JPH11101952A publication Critical patent/JPH11101952A/en
Application granted granted Critical
Publication of JP3688865B2 publication Critical patent/JP3688865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture a small sized element for an optical isolator, which is excellent in the reliability of moisture resistance and light resistance, in an easy manufacturing process. SOLUTION: The element 1 for the optical isolator, which is in a nearly rectangular parallelepiped form, is constituted by laminating a Farady rotator 2 and a pair of polarizers 3, 4, which oppose each other via this Farady rotator 2, via joining members 5. The element 1 for the optical isolator, in which there is no possibility that the joining members 5 may be deteriorated even if used for a long period of time or in a high output laser beam, can be provided because the element 1 for the optical isolator is constituted of the polarizers 3, 4 and a pair of the joining members 5 opposing to the polarizers 3, 4. The joining members 5 are constituted of low-melting glass.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光源から出射され
た光を各種光学素子や光ファイバの導入した際に生じる
戻り光を除去するために用いられる光アイソレータ用素
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for an optical isolator used for removing return light generated when light emitted from a light source is introduced into various optical elements or optical fibers.

【0002】[0002]

【従来技術】従来、レーザー光源等の光源から出射した
光は各種光学素子や光ファイバに入射されるが、該入射
光の一部は、該各種光学素子や光ファイバの端面や内部
で反射されたり散乱されたりする。そしてこの反射、散
乱された光の内の一部は戻り光として前記光源に戻ろう
とするが、この戻り光を防止するために光アイソレータ
が用いられる。従来、この種の光アイソレータは、2枚
の偏光子の間に平板状のファラデー回転子を設置し、こ
れら3つの部品を筒状の磁石内に部品ホルダを介して収
納し、構成されていた。ここで通常、ファラデー回転子
は飽和磁界内において所定の波長の光の偏光面を45°
回転する厚みに設定され、また2つの偏光子はそれぞれ
の透過偏光方向が45°回転方向にずれるように回転調
整されている。上記構造の光アイソレータにおいては、
ファラデー回転子と2つの偏光子が別部品で各素子にホ
ルダが必要であり、そのため部品点数が多くなり組立工
数が多くなり小型化できないばかりか、各製品ごとに微
小光学素子の組立調整が必要で、作業が煩雑となるもの
であった。そこで本出願人は、図3に示すように、上記
偏光子3、4、ファラデー回転子2を光学接着剤22で
接着して積層一体化することによって、部品点数を減ら
し、生産性を高くした光アイソレータ用素子21を用い
た光アイソレータ20を提案した(特開平4−3389
16号公報参照)。また、各光学素子を接着した場合、
高湿度の環境下では接着剤の剥離が発生するため、側面
に金属薄膜や樹脂等をコーティングしたシール材を備え
ることも提案している。この光アイソレータ用素子21
を作製する場合には、大型の偏光子基板とファラデー回
転子基板を交互に光学接着剤で一体化し、これをカット
して多数個の光アイソレータ用素子21を得るといった
方法を用いることにより、作業性や生産量を高くし、さ
らにホルダ等の部品点数を削減することができるという
利点がある。
2. Description of the Related Art Conventionally, light emitted from a light source such as a laser light source is incident on various optical elements and optical fibers, and a part of the incident light is reflected on the end faces and inside of the various optical elements and optical fibers. Or scattered. Some of the reflected and scattered light tends to return to the light source as return light, and an optical isolator is used to prevent the return light. Conventionally, this type of optical isolator has a configuration in which a flat Faraday rotator is installed between two polarizers, and these three components are housed in a cylindrical magnet via a component holder. . Here, usually, the Faraday rotator changes the plane of polarization of light of a predetermined wavelength in a saturation magnetic field by 45 °.
The thickness is set to a rotating thickness, and the two polarizers are rotationally adjusted so that their transmission polarization directions are shifted by 45 ° in the rotation direction. In the optical isolator having the above structure,
The Faraday rotator and the two polarizers are separate parts, and each element requires a holder, which increases the number of parts and the number of assembly steps, making it impossible to reduce the size. Therefore, the operation becomes complicated. Therefore, as shown in FIG. 3, the present applicant bonded the polarizers 3 and 4 and the Faraday rotator 2 with an optical adhesive 22 and laminated and integrated them, thereby reducing the number of parts and increasing the productivity. An optical isolator 20 using an optical isolator element 21 has been proposed (JP-A-4-3389).
No. 16). When each optical element is bonded,
Since the adhesive is peeled off in a high-humidity environment, it has been proposed to provide a sealing material having a side surface coated with a metal thin film or a resin. This optical isolator element 21
In the case of manufacturing, a large polarizer substrate and a Faraday rotator substrate are alternately integrated with an optical adhesive, and this is cut to obtain a large number of optical isolator elements 21. There is an advantage that the performance and production amount can be increased, and the number of parts such as holders can be reduced.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上述のよ
うにファラデー回転子の両面に板状の偏光子を光学接着
剤により接着し一体化した光アイソレータ用素子におい
ては、以下のような課題があった。
However, as described above, the element for an optical isolator in which a plate-like polarizer is adhered to both surfaces of a Faraday rotator with an optical adhesive and integrated has the following problems. .

【0004】開口部(光が透過する部分)を光学接着
剤で固定しているため耐湿性に劣り、特に高温高湿条件
下での使用が制限される。
Since the opening (portion through which light is transmitted) is fixed with an optical adhesive, it has poor moisture resistance, and its use under high-temperature, high-humidity conditions is particularly limited.

【0005】開口部を光学接着剤で固定しているた
め、長時間あるいは高出力のレーザー光中の使用では接
着層の変質の可能性があり、信頼性に問題がある。
[0005] Since the opening is fixed with an optical adhesive, there is a possibility that the adhesive layer may be deteriorated when used for a long time or in a high-output laser beam, and there is a problem in reliability.

【0006】光学接着剤から発生するアウトガスによ
り他の部品に悪影響を及ぼす可能性がある。特に半導体
レーザーパッケージ内への設置は、該アウトガスが半導
体レーザーチップの発光特性に悪影響を及ぼすため、該
パッケージ内への設置が不可能で、装置の大型化につな
がる。本発明は上述の点に鑑みてなされたものでありそ
の目的は、耐湿性、耐光性に優れ、さらにアウトガスの
発生が無く半導体レーザーパッケージ内に設置可能な、
信頼性の高い光アイソレータ用素子を提供することにあ
る。更に、部品点数、組立工数が少なく、量産性の高い
光アイソレータ用素子の製造方法を提供することにあ
る。
[0006] Outgas generated from the optical adhesive may adversely affect other components. In particular, installation in a semiconductor laser package cannot be installed in the package because the outgas adversely affects the emission characteristics of the semiconductor laser chip, leading to an increase in the size of the device. The present invention has been made in view of the above points, and its purpose is to provide excellent moisture resistance and light resistance, and can be installed in a semiconductor laser package without generating outgas.
An object of the present invention is to provide a highly reliable optical isolator element. It is still another object of the present invention to provide a method for manufacturing an optical isolator element having a small number of parts and a small number of assembling steps and high productivity.

【0007】[0007]

【課題を解決するための手段】本発明はこれらの課題を
解決するためのものであり、中心軸方向に印加された磁
界の方向に対応して光の偏波方向を回転させるファラデ
ー回転子と、前記ファラデー回転子を介して互いに対向
した一対の偏光子とが接合部材を介して積層されている
光アイソレータ用素子において、前記光アイソレータ用
素子は略直方体の形状であって、前記偏光子と偏光子と
は対向する一対の接合部材から構成される側壁部によっ
て接合され、さらに前記一対の側壁部の壁面間に前記フ
ァラデー回転子が接合されている光アイソレータ用素子
を提供する。
SUMMARY OF THE INVENTION The present invention has been made to solve these problems, and has a Faraday rotator for rotating the polarization direction of light in accordance with the direction of a magnetic field applied in the direction of a central axis. In an optical isolator element in which a pair of polarizers facing each other via the Faraday rotator are stacked via a bonding member, the optical isolator element has a substantially rectangular parallelepiped shape, and the polarizer and Provided is an optical isolator element in which the Faraday rotator is joined to a polarizer by a side wall portion formed of a pair of joining members facing each other, and the Faraday rotator is joined between wall surfaces of the pair of side wall portions.

【0008】このように本発明の光アイソレータ用素子
は、光路上で空間をもって光学素子を配置したため、開
口部に光学接着剤等が存在しない。そのため、高温高湿
条件や、高出力、長時間のレーザー光中での使用におい
ても特性の劣化がない。また各光学素子が接合材により
一体化されているため、光アイソレータを構成するホル
ダ等の部品点数を削減することができ、光アイソレータ
の小型化が実現する。また光アイソレータ用素子は対向
する2つの側面のみで接合されており、他の側面は接合
されていないために、光アイソレータ用素子作製時に付
着した内部光学素子表面の汚れを洗浄することができ、
従って低い挿入損失が得られる。また、完全に4つの側
面を接合した場合は外部の温度、気圧変化により内部空
気が膨張、収縮し、光アイソレータ用素子が歪み、その
ため特性劣化や、接合部、あるいは光学素子の破損の危
険があるが、本発明によれば未接合部(開放端)から空
気の出入りがあるため破損の問題がない。また大型の基
板で光学調整、接合を行い、その後多数個を切り出す工
程のため、均一で、優れた特性の光アイソレータ用素子
が、容易に多数個作製することができ、組立工数の削減
が可能で、量産性に優れる。また接合材に低融点ガラス
あるいは半田等の無機材料をもちいるため、光アイソレ
ータ用素子からは有機系のアウトガスが発生しない。そ
のため、半導体レーザーパッケージ内に光アイソレータ
用素子を設置することができ、装置の小型化および、特
性の安定化が実現する。
As described above, in the optical isolator element of the present invention, since the optical element is arranged with a space on the optical path, there is no optical adhesive or the like in the opening. Therefore, there is no deterioration in the characteristics even under the condition of high temperature and high humidity, high output, and use in laser light for a long time. Further, since each optical element is integrated by a bonding material, the number of components such as a holder constituting the optical isolator can be reduced, and the size of the optical isolator can be reduced. In addition, since the optical isolator element is bonded only on two opposing side surfaces, and the other side surface is not bonded, it is possible to clean dirt on the surface of the internal optical element adhered at the time of manufacturing the optical isolator element,
Therefore, a low insertion loss is obtained. In addition, when the four sides are completely joined, the internal air expands and contracts due to changes in the external temperature and atmospheric pressure, and the element for the optical isolator is distorted. Therefore, there is a risk of deterioration in characteristics and damage to the joint or the optical element. However, according to the present invention, there is no problem of breakage because air flows in and out from an unjoined portion (open end). In addition, since optical adjustment and bonding are performed on a large-sized substrate, and then a large number of pieces are cut out, a large number of elements for optical isolators with uniform and excellent characteristics can be easily manufactured, and the number of assembly steps can be reduced. And is excellent in mass productivity. In addition, since an inorganic material such as low-melting glass or solder is used for the bonding material, no organic outgas is generated from the optical isolator element. Therefore, the element for the optical isolator can be installed in the semiconductor laser package, and the miniaturization of the device and the stabilization of the characteristics are realized.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例について図
面を用いて説明する。図1は本発明にかかる光アイソレ
ータ用素子1の構成を示す斜視図である。同図に示すよ
うにこの光アイソレータ用素子1は、平板状のファラデ
ー回転子2と、その両面に空間を持って配置された平板
状の偏光子3,4と、接合剤である低融点ガラス5から
構成されている。各光学素子(ファラデー回転子2と偏
光子3,4)は、光が透過する面である開口部A以外の
部分で、光路上で空間tを持って、対向する2つの側面
をそれぞれ接合されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a configuration of an optical isolator element 1 according to the present invention. As shown in FIG. 1, the optical isolator element 1 includes a flat Faraday rotator 2, flat flat polarizers 3 and 4 disposed on both sides of the flat Faraday rotator 2, and a low-melting glass as a bonding agent. 5 is comprised. Each of the optical elements (the Faraday rotator 2 and the polarizers 3 and 4) is bonded to two opposing side surfaces with a space t on the optical path at a portion other than the opening A which is a surface through which light is transmitted. ing.

【0010】接合は低融点ガラスの溶融固化によりおこ
なう。ここでファラデー回転子2はビスマス置換ガーネ
ット結晶等で構成されており、その厚みは、該ファラデ
ー回転子2に光軸L方向の飽和磁界を印可した場合に該
ファラデー回転子2に入射する光の偏光面が45゜光軸
まわりに回転するに必要な厚みに構成されている。光ア
イソレータとして使用の際にはファラデー回転子2に磁
界を印可させるため、光アイソレータ用素子1を磁石内
に配置する必要があるが、本実施例では、磁石及び、光
アイソレータ用素子1を保持するホルダ等の構成は省略
する。また、自己バイアス型のファラデー回転子を用い
れば、磁石なしで光アイソレータを構成することが出
来、さらなる小型化が実現する。
The joining is performed by melting and solidifying the low melting point glass. Here, the Faraday rotator 2 is made of a bismuth-substituted garnet crystal or the like, and the thickness of the Faraday rotator 2 is the thickness of light incident on the Faraday rotator 2 when a saturation magnetic field in the optical axis L direction is applied to the Faraday rotator 2. The polarizing plane is configured to have a thickness necessary to rotate around the optical axis by 45 °. When used as an optical isolator, in order to apply a magnetic field to the Faraday rotator 2, it is necessary to arrange the optical isolator element 1 in a magnet. In the present embodiment, the magnet and the optical isolator element 1 are held. The configuration of the holder and the like is omitted. Also, if a self-biased Faraday rotator is used, an optical isolator can be configured without a magnet, and further miniaturization can be realized.

【0011】2枚の偏光子3,4は光軸L方向に入射す
る光の内の1方向の偏光成分を吸収する機能を有する吸
収型偏光子、あるいは分離する機能を複屈折性偏光子で
構成されている。ここで両偏光子のそれぞれの透過偏光
方向は、相対的に45゜光軸まわりにずらされている。
これら各光学素子の光路上の空間tは、低融点ガラス5
のサイズと焼成温度、焼成時間によって精度よく設定す
ることができる。従って本発明の光アイソレータ用素子
1は、各光学素子間の開口部Aに、空気層以外の物質が
存在しないため、長時間あるいは高出力のレーザー光中
での使用でも接着層の変質による特性低下の可能性はな
く、信頼性に優れた光アイソレータ用素子が提供でき
る。
The two polarizers 3 and 4 are absorption polarizers having a function of absorbing a polarization component in one direction of light incident in the direction of the optical axis L, or a birefringent polarizer having a function of separating light. It is configured. Here, the transmission polarization directions of both polarizers are relatively shifted about the optical axis by 45 °.
The space t on the optical path of each of these optical elements is a low melting glass 5
Can be set accurately by the size, firing temperature, and firing time. Therefore, since the optical isolator element 1 of the present invention has no substance other than the air layer in the opening A between the optical elements, even if used for a long time or in a high-power laser beam, the characteristic due to the deterioration of the adhesive layer is obtained. It is possible to provide an optical isolator element with high reliability without a possibility of reduction.

【0012】同じく高温高湿条件でも、優れた信頼性を
示す。また、接合材に低融点ガラスあるいは半田等の無
機材料をもちいるため、光アイソレータ用素子1からは
有機系のアウトガスが発生しない。一般にGaAs等か
らなる半導体レーザーチップはわずかな残留酸素によっ
てその表面に酸化膜が形成され、発振効率の低下が見ら
れる。そこで、半導体レーザーチップを設置するパッケ
ージは、窒素ガス等の不活性ガスで気密封止され、当
然、封止パッケージ内にはアウトガスの発生する部品の
設置は不可能である。ここで、アウトガスは主に有機系
の接合材より発生し、接合材として低融点ガラスや半田
の無機材料を用いた本発明の光アイソレータ用素子は、
前述したようにアウトガスの発生がほとんど無く、また
小型であるため、半導体レーザーチップやレンズと同様
に、パッケージ内に設置が可能となる。従って、高性能
で非常に小型の半導体レーザーモジュールが提供でき
る。
[0012] Similarly, even under high temperature and high humidity conditions, excellent reliability is exhibited. Further, since an inorganic material such as low-melting glass or solder is used for the bonding material, no organic outgas is generated from the optical isolator element 1. In general, an oxide film is formed on the surface of a semiconductor laser chip made of GaAs or the like due to a slight amount of residual oxygen, and a decrease in oscillation efficiency is observed. Therefore, the package on which the semiconductor laser chip is installed is hermetically sealed with an inert gas such as nitrogen gas. Naturally, it is impossible to install components that generate outgas in the sealed package. Here, the outgas is mainly generated from an organic bonding material, and the optical isolator element of the present invention using a low melting point glass or an inorganic material of solder as the bonding material is:
As described above, since there is almost no outgassing and the size is small, it can be installed in a package like a semiconductor laser chip or a lens. Therefore, a very high performance and very small semiconductor laser module can be provided.

【0013】さらに本発明の光アイソレータ用素子は完
全に封着せず、開放された側面を有するので、内部の光
学素子の洗浄が可能である。洗浄はたとえばエタノール
等のアルコール溶液による超音波洗浄や、エアダスター
による洗浄等が可能である。また、外部雰囲気の温度や
気圧変化が発生した場合でも、前記開放端により光アイ
ソレータ用素子内部の空気の膨張や収縮がなく、従って
歪みによる特性の劣化や、破損がなくなる。ここで、使
用する低融点ガラスは、各光学素子の耐熱温度である約
450℃以下で溶融するようなガラス材で構成されてい
る。
Further, since the optical isolator element of the present invention does not completely seal and has an open side surface, the internal optical element can be cleaned. The cleaning can be performed, for example, by ultrasonic cleaning using an alcohol solution such as ethanol, or cleaning using an air duster. Further, even when the temperature or the atmospheric pressure of the external atmosphere changes, the open end does not cause expansion or contraction of the air inside the optical isolator element, so that the characteristics are not deteriorated or damaged due to the distortion. Here, the low melting point glass used is made of a glass material that melts at about 450 ° C. or less, which is the heat resistant temperature of each optical element.

【0014】図2は本発明にかかる光アイソレータ用素
子1の製造手順を示す図である。まず同図(a)に示す
ように、板状の偏光子基板13、14と、複数の短冊形
状のファラデー回転子基板12と、柱状に形成された複
数の低融点ガラスプリフォーム15を準備する。次に、
図2(b)に示すように、偏光子基板13、ファラデー
回転子基板12、低融点ガラスプリフォーム15、偏光
子基板14の順に積層する。この時、ファラデー回転子
基板12と低融点ガラスプリフォーム15は偏光子基板
13と14の間で、交互に密着させて設置する。また、
ファラデー回転子基板12と偏光子13、14の間に空
気層を持たせるために、あらかじめスペーサーをおくこ
とが望ましい。
FIG. 2 is a view showing a manufacturing procedure of the element 1 for an optical isolator according to the present invention. First, as shown in FIG. 1A, plate-shaped polarizer substrates 13 and 14, a plurality of strip-shaped Faraday rotator substrates 12, and a plurality of column-shaped low-melting glass preforms 15 are prepared. . next,
As shown in FIG. 2B, a polarizer substrate 13, a Faraday rotator substrate 12, a low-melting glass preform 15, and a polarizer substrate 14 are laminated in this order. At this time, the Faraday rotator substrate 12 and the low-melting-point glass preform 15 are alternately placed between the polarizer substrates 13 and 14. Also,
In order to provide an air layer between the Faraday rotator substrate 12 and the polarizers 13 and 14, it is desirable to provide a spacer in advance.

【0015】次に、図2(c)に示すように、偏光子基
板13、複数のファラデー回転子基板12、低融点ガラ
スプリフォーム15、偏光子基板14の積層体を、低融
点ガラスプリフォーム15の溶融作業温度に設定された
高温炉6内で低融点ガラスプリフォームを溶融し、焼成
一体化する。低融点ガラスの溶融作業温度は、各光学素
子の耐熱温度を越えない温度で、およそ450℃以下の
ものを用いる。数分ほど焼成した後、常温に戻し、低融
点ガラス15の溶融固化によって3枚の光学素子基板を
一体化し、光アイソレータ用素子基板11を得る。この
時光アイソレータ用素子基板11は、低融点ガラス15
によって偏光子基板13,14と複数のファラデー回転
子基板12が接合一体化されている。
Next, as shown in FIG. 2C, a laminate of a polarizer substrate 13, a plurality of Faraday rotator substrates 12, a low-melting glass preform 15, and a polarizer substrate 14 is replaced with a low-melting glass preform. The low-melting-point glass preform is melted in a high-temperature furnace 6 set to a melting operation temperature of 15 and is fired and integrated. The melting temperature of the low-melting glass should not exceed the heat-resistant temperature of each optical element and should be approximately 450 ° C. or less. After baking for several minutes, the temperature is returned to normal temperature, and the three optical element substrates are integrated by melting and solidifying the low-melting glass 15 to obtain the element substrate 11 for an optical isolator. At this time, the optical isolator element substrate 11 is
Accordingly, the polarizer substrates 13 and 14 and the plurality of Faraday rotator substrates 12 are joined and integrated.

【0016】ここで偏光子基板13、14が、その透過
偏波方向が精度が良く規定されているいものであれば、
光学調整無しで接合する事が可能である。光アイソレー
タに高い特性が要求される場合には、偏光子基板13と
偏光子基板14を光透過パワーをモニタしながら光軸回
りの調整を行い、接合一体化することが可能である。な
お上記偏光子基板13、14とファラデー回転子基板1
2には予め反射防止コートを施しておくことが望まし
い。これは各基板と低融点ガラス層及び空気層の屈折率
の違いにより生じるフレネル反射を防止するためであ
る。次にこの一体化された光アイソレータ用素子基板1
1を、同図(d)に示すように、接合部の中心とそれに
垂直のラインを、接合幅Xを残し切断幅Wで切断し、同
図(e)に示すような光アイソレータ用素子1のサイズ
に多数個カッティングして、洗浄を行い、形状および特
性が均一な光アイソレータ用素子の製造が可能となる。
洗浄はたとえばアルコール系洗浄剤、またはアルカリ水
溶液系洗浄剤等に浸漬し、超音波洗浄を行えば、光アイ
ソレータ用素子1の内部の洗浄が可能である。
Here, if the polarizer substrates 13 and 14 are those whose transmission polarization directions are precisely defined,
It is possible to join without optical adjustment. When high characteristics are required for the optical isolator, the polarizer substrate 13 and the polarizer substrate 14 can be adjusted around the optical axis while monitoring the light transmission power, and can be joined and integrated. The polarizer substrates 13 and 14 and the Faraday rotator substrate 1
It is desirable to apply an anti-reflection coat to 2 in advance. This is to prevent Fresnel reflection caused by the difference in the refractive index between each substrate, the low melting point glass layer, and the air layer. Next, the integrated optical isolator element substrate 1
1 (d), the center of the junction and a line perpendicular to the center of the junction are cut at a cutting width W leaving a junction width X, and an optical isolator element 1 as shown in FIG. It is possible to manufacture an optical isolator element having a uniform shape and characteristics by cutting a large number of pieces and cleaning them.
For cleaning, the inside of the optical isolator element 1 can be cleaned by immersing in, for example, an alcohol-based cleaning agent or an alkaline aqueous solution-based cleaning agent and performing ultrasonic cleaning.

【0017】このように本発明の製造方法によれば組立
調整工数が少なく、短時間で同時に多数個の光アイソレ
ータ用素子の製造が可能となる。また、柱状にプリフォ
ームされた低融点ガラス用いることにより、開口部Aの
大きさ、光学素子間隔t、接合幅Xを、高精度で作製で
き、かつ再現性よく作製することが出来る。本実施例で
は低融点ガラスの柱状プリフォームを用いる方法につい
て説明したが本発明はこれに限ることなく、金属半田の
プリフォームや、あるいはプリフォームではなく直接光
学素子に接合材をスクリーン印刷してもよく、直線状で
その厚みと幅が要求通りに設定できればよい。また本実
施例では偏光子が2枚、ファラデー回転子が1枚の構成
を用いたが、本発明はこれに限ることなく、さらに多数
の偏光子、ファラデー回転子を用いて同様の製造方法で
光アイソレータ用素子を作製することも可能である。
As described above, according to the manufacturing method of the present invention, it is possible to manufacture a large number of optical isolator elements simultaneously in a short time with a small number of assembly adjustment steps. In addition, by using the low-melting glass preformed in a columnar shape, the size of the opening A, the optical element interval t, and the bonding width X can be manufactured with high precision and with good reproducibility. In the present embodiment, a method using a columnar preform of low melting point glass was described, but the present invention is not limited to this, and a bonding material is screen-printed directly on an optical element instead of a preform of metal solder, or a preform. It is sufficient if the thickness and width can be set as required in a straight line. Further, in the present embodiment, the configuration using two polarizers and one Faraday rotator was used, but the present invention is not limited to this, and the same manufacturing method is used by using a larger number of polarizers and Faraday rotators. It is also possible to manufacture an element for an optical isolator.

【0018】[0018]

【発明の効果】以上説明したように、本発明にかかる光
アイソレータ用素子及びその製造方法によれば、以下の
ような優れた効果を有する。
As described above, the optical isolator element and the method of manufacturing the same according to the present invention have the following excellent effects.

【0019】各光学素子の固定を開口部A以外の部分
で行っているので、長時間あるいは高出力のレーザー光
中の使用でも、接合材の変質の可能性が無く、信頼性に
優れる。
Since each optical element is fixed in a portion other than the opening A, there is no possibility that the bonding material is deteriorated even when used for a long time or in a high-output laser beam, and the reliability is excellent.

【0020】低融点ガラスや金属半田等の無機材料で
各光学素子を接合したので、アウトガスが発生せず、か
つ耐湿性に優れる。
Since each optical element is joined with an inorganic material such as low-melting glass or metal solder, no outgas is generated and the moisture resistance is excellent.

【0021】各光学素子を直接一体化しているため、
光アイソレータを構成するホルダ等の部品点数を削減す
ることができ、光アイソレータの小型化が実現する。
Since each optical element is directly integrated,
The number of components such as a holder constituting the optical isolator can be reduced, and the size of the optical isolator can be reduced.

【0022】接合部は、開放された側面を有するの
で、内部の光学素子の洗浄が可能である。また、外部雰
囲気の温度や気圧変化が発生した場合でも、前記開放端
により歪みによる特性の劣化や、破損がなくなる。
Since the joint has an open side surface, the internal optical element can be cleaned. Further, even when a change in the temperature or the atmospheric pressure of the external atmosphere occurs, deterioration of the characteristics due to the distortion and damage due to the distortion due to the open end are eliminated.

【0023】光アイソレータ用素子の製造方法におい
ては、大型の光学素子基板で作製することができるの
で、量産性が向上し、コストも低減できる。また、各光
学素子の接合間隔t、接合幅X、開口部A、サイズを精
度良く、再現性良く作製することができる。
In the method of manufacturing an element for an optical isolator, since it can be manufactured using a large optical element substrate, mass productivity can be improved and cost can be reduced. Further, the bonding interval t, the bonding width X, the opening A, and the size of each optical element can be manufactured with high accuracy and high reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の光アイソレータ用素子の実施例を示
す斜視図。
FIG. 1 is a perspective view showing an embodiment of an optical isolator element of the present invention.

【図2】 本発明の光アイソレータ用素子の製造方法を
示す図。
FIG. 2 is a diagram showing a method for manufacturing an optical isolator element of the present invention.

【図3】 従来の光アイソレータを示す斜視図。FIG. 3 is a perspective view showing a conventional optical isolator.

【符号の説明】[Explanation of symbols]

1 光アイソレータ用素子 2 ファラデー回転子 3,4 偏光子 5 低融点ガラス 6 高温炉 11 光アイソレータ用素子基板 12 ファラデー回転子基板 13,14 偏光子基板 15 低融点ガラスプリフォーム 20 光アイソレータ 21 光アイソレータ用素子 22 光学接着剤 23 磁石 Reference Signs List 1 element for optical isolator 2 Faraday rotator 3, 4 polarizer 5 low melting glass 6 high temperature furnace 11 element substrate for optical isolator 12 Faraday rotator substrate 13, 14 polarizer substrate 15 low melting glass preform 20 optical isolator 21 optical isolator Element 22 optical adhesive 23 magnet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】中心軸方向に印加された磁界の方向に対応
して光の偏波方向を回転させるファラデー回転子と、前
記ファラデー回転子を介して互いに対向した一対の偏光
子とが接合部材を介して積層されている光アイソレータ
用素子において、前記光アイソレータ用素子は略直方体
の形状であって、前記偏光子と偏光子とは対向する一対
の接合部材から構成される側壁部によって接合され、さ
らに前記一対の側壁部の壁面間に前記ファラデー回転子
が接合されていることを特徴とする光アイソレータ用素
子。
1. A joining member comprising: a Faraday rotator for rotating the polarization direction of light corresponding to the direction of a magnetic field applied in the direction of a central axis; and a pair of polarizers opposed to each other via the Faraday rotator. In the element for optical isolator laminated via, the element for optical isolator has a substantially rectangular parallelepiped shape, and the polarizer and the polarizer are joined by a side wall portion composed of a pair of joining members opposed to each other. An optical isolator element, wherein the Faraday rotator is further joined between wall surfaces of the pair of side wall portions.
【請求項2】前記接合部材に低融点ガラスあるいは金属
半田が用いられることを特徴とする請求項1記載の光ア
イソレータ用素子。
2. The element for an optical isolator according to claim 1, wherein a low melting point glass or metal solder is used for said joining member.
【請求項3】前記偏光子基板の一面にファラデー回転子
基板およびほぼ直線状の接合部材を交互に等間隔で配置
させる工程と、前記ファラデー回転子基板および前記接
合部材に偏光子基板を積層し前記接合部材を溶融固化さ
せる工程と、前記接合部材が溶融固化して一体となった
積層基板を所望のサイズにカッティングする工程によっ
て製造されることを特徴とする光アイソレータ用素子の
製造方法。
3. A step of alternately disposing a Faraday rotator substrate and substantially linear joining members on one surface of the polarizer substrate at equal intervals, and laminating a polarizer substrate on the Faraday rotator substrate and the joining member. A method for manufacturing an element for an optical isolator, comprising: a step of melting and solidifying the bonding member; and a step of cutting a laminated substrate into which the bonding member has been melted and solidified into a desired size.
JP26239197A 1997-09-26 1997-09-26 Method for manufacturing device for optical isolator Expired - Fee Related JP3688865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26239197A JP3688865B2 (en) 1997-09-26 1997-09-26 Method for manufacturing device for optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26239197A JP3688865B2 (en) 1997-09-26 1997-09-26 Method for manufacturing device for optical isolator

Publications (2)

Publication Number Publication Date
JPH11101952A true JPH11101952A (en) 1999-04-13
JP3688865B2 JP3688865B2 (en) 2005-08-31

Family

ID=17375123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26239197A Expired - Fee Related JP3688865B2 (en) 1997-09-26 1997-09-26 Method for manufacturing device for optical isolator

Country Status (1)

Country Link
JP (1) JP3688865B2 (en)

Also Published As

Publication number Publication date
JP3688865B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
JP3688865B2 (en) Method for manufacturing device for optical isolator
TWI808054B (en) Optical isolator
JP3570869B2 (en) Optical isolator element and method of manufacturing the same
JPH08146351A (en) Element for optical isolator and its production
JP2003255269A (en) Optical isolator
JP4443212B2 (en) Method for manufacturing optical isolator element
JPH10333095A (en) Element for optical isolator and its production
JP2004354646A (en) Optical isolator and its assembly method
JP3973975B2 (en) Optical isolator
JP2001091899A (en) Surface mounting type isolator
JP4628054B2 (en) Optical isolator
JP3645700B2 (en) Optical isolator element and manufacturing method thereof
JP3439279B2 (en) Manufacturing method of optical isolator
JP2006098493A (en) Compound optical component and optical isolator element
JP4340102B2 (en) Optical isolator
JPH0493814A (en) Production of optical isolator
JP4395365B2 (en) Optical isolator
JP2004138944A (en) Optical isolator element and its manufacture method
JP3554140B2 (en) Optical isolator element and method of manufacturing the same
JP2000105354A (en) Element for optical isolator
JP4666931B2 (en) Optical isolator
JP2001249304A (en) Optical isolator
JPH09318912A (en) Optical element chip for optical isolator and its manufacture, and optical isolator
JPH0933859A (en) Optical isolator and manufacture of its optical element
JP2005283697A (en) Optical isolator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Effective date: 20050516

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050607

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050609

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090617

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100617

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110617

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees