JPH11101125A - Emission control device - Google Patents

Emission control device

Info

Publication number
JPH11101125A
JPH11101125A JP26537297A JP26537297A JPH11101125A JP H11101125 A JPH11101125 A JP H11101125A JP 26537297 A JP26537297 A JP 26537297A JP 26537297 A JP26537297 A JP 26537297A JP H11101125 A JPH11101125 A JP H11101125A
Authority
JP
Japan
Prior art keywords
catalyst
fuel ratio
nox
air
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26537297A
Other languages
Japanese (ja)
Other versions
JP4085448B2 (en
Inventor
Akihide Takami
明秀 高見
Keiji Yamada
啓司 山田
Hideji Iwakuni
秀治 岩国
Makoto Kyogoku
誠 京極
Kenji Okamoto
謙治 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP26537297A priority Critical patent/JP4085448B2/en
Publication of JPH11101125A publication Critical patent/JPH11101125A/en
Application granted granted Critical
Publication of JP4085448B2 publication Critical patent/JP4085448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To satisfactorily purify an emission without emitting adsorbed NOx from leans NOx catalyst, by locating ternary catalyst for oxidizing HC and CO in the emission around a theoretical air-fuel ratio in an exhaust passage of an engine, and by locating the leans NOx catalyst for adsorbing NOx in the emission on the lean side of a theoretical air-fuel ratio and emitting adsorbed NOx around a theoretical air-fuel ratio, downstream of the ternary catalyst. SOLUTION: Lean NOx catalyst 10 carries barium. Further, ternary catalyst 4 carries noble metal in which platinum and rhodium are contained in ceria, having a weight ratio between platinum and rhodium which is set as Pt/Rh>3. The CO purifying rate is set to be lower than that the HC purifying rate around a theoretical air-fuel ratio of the catalyst 4. An emission in which CO is rich, as a reluctant, is fed to the lean NOx catalyst 10 from the ternary catalyst 4 around a theoretical air-fuel ratio, thereby it is possible to promote emission and purification of NOx in the leans NOx catalyst 10 with the use of CO in the emission.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガス浄化装置
に関し、特にエンジンの排気通路に上流側の酸化触媒と
下流側のNOx吸着触媒とが配置されたものに関する技
術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus, and more particularly to a technical field of an exhaust gas purifying apparatus in which an upstream oxidation catalyst and a downstream NOx adsorption catalyst are disposed in an exhaust passage of an engine.

【0002】[0002]

【従来の技術】近年、自動車用エンジンとして燃料消費
率の低いリーン燃焼エンジンが注目されており、このエ
ンジンについては、空燃比をリーンとして燃料を酸素過
剰雰囲気中で燃焼させるため、排気ガス中にNOxが多
量に発生し、このNOxの浄化を行う排気ガス浄化装置
が要求される。
2. Description of the Related Art In recent years, attention has been paid to a lean-burn engine having a low fuel consumption rate as an automobile engine. In this engine, fuel is burned in an oxygen-excess atmosphere with a lean air-fuel ratio. A large amount of NOx is generated, and an exhaust gas purifying device for purifying this NOx is required.

【0003】この種の排気ガス浄化装置として、従来、
特開平6―336916号公報に示されるように、エン
ジンの排気通路の上流側に三元触媒を、またこの三元触
媒よりも下流側の排気通路に、白金及びバリウムが担持
されていて排気ガス中のNOxを吸着するNOx吸収材
をそれぞれ配置したものが提案されている。
[0003] As this kind of exhaust gas purifying device, conventionally,
As disclosed in JP-A-6-336916, a three-way catalyst is provided upstream of an exhaust passage of an engine, and platinum and barium are carried in an exhaust passage downstream of the three-way catalyst. There has been proposed a structure in which NOx absorbents for adsorbing NOx in the respective components are arranged.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記従来例
の排気ガス浄化装置の触媒配置構造を利用し、排気通路
の上流側にHC及びCOを酸化するための酸化触媒を、
また下流側にNOxを吸着するためのNOx吸着触媒を
それぞれ配置した場合、空燃比が理論空燃比よりもリー
ン側にあるときには、下流側のNOx吸着触媒でNOx
を吸着させる一方、その後に空燃比が理論空燃比近傍に
なると、酸化触媒で排気ガス中のHC及びCOを酸化さ
せるとともに、上記NOx吸着触媒に吸着されているN
Oxを浄化して放出させることで、排気ガス中のHC及
びCOのみならず、リーン状態でのNOxをも良好に浄
化することができる。
By the way, using the catalyst arrangement structure of the above-mentioned conventional exhaust gas purifying apparatus, an oxidation catalyst for oxidizing HC and CO is provided upstream of the exhaust passage.
When NOx adsorbing catalysts for adsorbing NOx are arranged on the downstream side, and when the air-fuel ratio is leaner than the stoichiometric air-fuel ratio, NOx adsorbing catalyst on the downstream side NOx adsorbing catalyst is used.
Then, when the air-fuel ratio becomes close to the stoichiometric air-fuel ratio, HC and CO in the exhaust gas are oxidized by the oxidation catalyst, and N2 adsorbed on the NOx adsorption catalyst is adsorbed.
By purifying and releasing Ox, not only HC and CO in the exhaust gas but also NOx in a lean state can be satisfactorily purified.

【0005】しかし、その場合、実際には、下流側のN
Ox浄化触媒から、吸着しているNOxを浄化しながら
放出させることが困難であり、その解決策が必要であ
る。
However, in that case, actually, N
It is difficult to release the adsorbed NOx from the Ox purification catalyst while purifying the NOx, and a solution is needed.

【0006】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、上記のように排気通路の上流側に配
置される酸化触媒の構成を改良することにより、下流側
のNOx吸着触媒からのNOxの放出が良好に行われる
ようにすることにある。
[0006] The present invention has been made in view of the above-mentioned point, and an object of the present invention is to improve the configuration of an oxidation catalyst disposed on the upstream side of an exhaust passage as described above, so that NOx adsorption on the downstream side is improved. It is an object of the present invention to ensure that NOx is released from the catalyst.

【0007】[0007]

【課題を解決するための手段】上記の目的の達成のた
め、この発明では、上流側の酸化触媒でのCOの浄化率
をHCよりも低くして、COを還元剤として積極的に下
流側のNOx吸着触媒に流し、そのCOによってNOx
吸着触媒の吸着NOxの放出ないし浄化を促進させるよ
うにした。
In order to achieve the above object, according to the present invention, the purification rate of CO in the upstream oxidation catalyst is made lower than that of HC, and CO is used as a reducing agent in the downstream oxidation catalyst. Through the NOx adsorption catalyst, and the CO
The release or purification of the adsorbed NOx of the adsorption catalyst is promoted.

【0008】具体的には、請求項1の発明では、エンジ
ンの排気通路に配置され、理論空燃比近傍の空燃比で排
気ガス中のHC及びCOを酸化する酸化触媒と、該酸化
触媒よりも下流側の排気通路に配置され、理論空燃比よ
りもリーン側の空燃比で排気ガス中のNOxを吸着する
一方、理論空燃比近傍の空燃比で、上記吸着NOxを放
出するNOx吸着触媒とを備えた排気ガス浄化装置が対
象であり、その酸化触媒の理論空燃比近傍でのCO浄化
率がHC浄化率よりも低く設定されているものとする。
More specifically, according to the first aspect of the present invention, an oxidation catalyst disposed in the exhaust passage of the engine to oxidize HC and CO in exhaust gas at an air-fuel ratio near the stoichiometric air-fuel ratio, A NOx adsorption catalyst that is disposed in the exhaust passage on the downstream side and adsorbs NOx in the exhaust gas at an air-fuel ratio leaner than the stoichiometric air-fuel ratio and releases the adsorbed NOx at an air-fuel ratio near the stoichiometric air-fuel ratio is used. It is assumed that the exhaust gas purifying apparatus provided is a target and the CO purification rate near the stoichiometric air-fuel ratio of the oxidation catalyst is set lower than the HC purification rate.

【0009】上記の構成により、空燃比が理論空燃比よ
りもリーン側にあるときに、エンジンの排気通路の下流
側に配置されているNOx吸着触媒により排気ガス中の
NOxが吸着される。この後、空燃比が理論空燃比近傍
になると、排気通路の上流側に配置されている酸化触媒
により、排気ガス中のHC及びCOが酸化されるととも
に、上記NOx吸着触媒に吸着されているNOxが浄化
されて放出される。このことで、排気ガス中のHC及び
COと、特にリーン状態で発生するNOxとを浄化する
ことができる。
With the above configuration, when the air-fuel ratio is leaner than the stoichiometric air-fuel ratio, NOx in the exhaust gas is adsorbed by the NOx adsorption catalyst arranged downstream of the exhaust passage of the engine. Thereafter, when the air-fuel ratio becomes close to the stoichiometric air-fuel ratio, HC and CO in the exhaust gas are oxidized by the oxidation catalyst disposed on the upstream side of the exhaust passage, and the NOx adsorbed by the NOx adsorption catalyst is also absorbed. Is purified and released. This makes it possible to purify HC and CO in the exhaust gas, and in particular, NOx generated in a lean state.

【0010】この場合、上記酸化触媒の理論空燃比近傍
でのCO浄化率がHC浄化率よりも低く設定されている
ので、上記理論空燃比近傍で酸化触媒がHC及びCOを
酸化するとき、そのCOの浄化率の低下により、還元剤
としてのCOのリッチの排気ガスが酸化触媒から下流側
のNOx吸着触媒に供給される。この排気ガス中のCO
により、例えばNOx吸着触媒ではNOxがNO2 とな
って放出される反応と、そのNO2 がさらにN2 及びO
2 に分解される反応とが生じ、このことによってNOx
吸着触媒でのNOxの放出及び浄化を効果的に促進する
ことができる。
In this case, since the CO purification rate of the oxidation catalyst near the stoichiometric air-fuel ratio is set lower than the HC purification rate, when the oxidation catalyst oxidizes HC and CO near the stoichiometric air-fuel ratio, Due to the decrease in the CO purification rate, exhaust gas rich in CO as a reducing agent is supplied from the oxidation catalyst to the NOx adsorption catalyst on the downstream side. CO in this exhaust gas
Thus, for example, in a NOx adsorption catalyst, a reaction in which NOx is released as NO 2 is released, and the NO 2 is further reduced to N 2 and O 2.
2 which results in NOx
NOx release and purification at the adsorption catalyst can be effectively promoted.

【0011】尚、上記とは逆に、酸化触媒でのHCを還
元剤としてその浄化率をCOよりも低く設定し、HCリ
ッチの排気ガスをNOx吸着触媒に供給するようにした
場合、そのHCはNOx吸着触媒において吸着NOxに
直接反応しないので、吸着NOxの浄化及び放出が不十
分であり、大幅なNOx浄化率は期待できない。
Contrary to the above, when HC in the oxidation catalyst is used as a reducing agent and its purification rate is set lower than CO, and HC-rich exhaust gas is supplied to the NOx adsorption catalyst, Does not directly react with the adsorbed NOx in the NOx adsorbing catalyst, the purification and release of the adsorbed NOx are insufficient, and a large NOx purification rate cannot be expected.

【0012】また、上記NOx吸着触媒は、リーンで排
気ガス中のSOx(硫黄酸化物)を吸着してNOxの吸
着量が減少しがちであるが、上記のように空燃比が理論
空燃比近傍或いはそれよりもリッチ側の場合にCO量が
多いと、上記SOxを比較的低温で放出させることがで
き、よってNOx吸着触媒のSOx被毒を防止すること
ができる。
The NOx adsorbing catalyst tends to adsorb SOx (sulfur oxide) in the exhaust gas lean and tends to reduce the adsorbed amount of NOx. However, as described above, the air-fuel ratio is close to the stoichiometric air-fuel ratio. Alternatively, if the amount of CO is large on the rich side, the SOx can be released at a relatively low temperature, and thus the SOx poisoning of the NOx adsorption catalyst can be prevented.

【0013】請求項2の発明では、空燃比のリーン側へ
の増大に伴って酸化触媒のCO浄化率が所定値以上に増
加する空燃比を、HC浄化率が上記所定値以上に増加す
る空燃比よりもリーン側に設定する。こうすると、酸化
触媒において、理論空燃比近傍でのCO浄化率をHC浄
化率よりも低く設定する構成を具体化できる。
According to the second aspect of the present invention, the air-fuel ratio at which the CO purification rate of the oxidation catalyst increases to a predetermined value or more as the air-fuel ratio increases toward the lean side increases the air-fuel ratio at which the HC purification rate increases to the predetermined value or more. Set leaner than fuel ratio. This makes it possible to realize a configuration in which the CO purification rate in the vicinity of the stoichiometric air-fuel ratio is set lower than the HC purification rate in the oxidation catalyst.

【0014】請求項3の発明では、酸化触媒は、セリア
に貴金属が担持されているものとする。このことによ
り、上記酸化触媒でのCO浄化率をHC浄化率よりも低
くするための触媒構造が容易に得られる。
According to the third aspect of the present invention, the oxidation catalyst has a noble metal supported on ceria. Thus, a catalyst structure for making the CO purification rate of the oxidation catalyst lower than the HC purification rate can be easily obtained.

【0015】請求項4の発明では、上記酸化触媒に貴金
属として白金及びロジウムを担持し、その白金及びロジ
ウムの重量比をPt/Rh<3(3よりも小)とする。
このことでも、酸化触媒でのCO浄化率をHC浄化率よ
りも低くするための触媒構造が容易に得られる。この場
合、白金及びロジウムの重量比をPt/Rh≧3(3以
上)とすると、CO浄化率を下げる効果が得られないの
で、Pt/Rh<3とする。
In the invention of claim 4, platinum and rhodium are supported on the oxidation catalyst as noble metals, and the weight ratio of platinum and rhodium is set to Pt / Rh <3 (smaller than 3).
Also in this case, a catalyst structure for making the CO purification rate of the oxidation catalyst lower than the HC purification rate can be easily obtained. In this case, if the weight ratio of platinum and rhodium is Pt / Rh ≧ 3 (3 or more), the effect of lowering the CO purification rate cannot be obtained, so that Pt / Rh <3.

【0016】請求項5の発明では、上記NOx吸着触媒
は、アルカリ金属又はアルカリ土類金属の少なくとも1
種の金属を担持しているものとする。また、請求項6の
発明では、上記アルカリ金属又はアルカリ土類金属の少
なくとも1種の金属はバリウムとする。このことで、リ
ーン空燃比でNOxを吸着し、かつ理論空燃比近傍で酸
化触媒からのCOと反応し易いNOx吸着触媒が容易に
得られる。
According to a fifth aspect of the present invention, the NOx adsorbing catalyst comprises at least one of an alkali metal and an alkaline earth metal.
It is assumed that a certain metal is supported. In the invention of claim 6, at least one of the alkali metals or alkaline earth metals is barium. Thus, a NOx adsorption catalyst that adsorbs NOx at a lean air-fuel ratio and easily reacts with CO from the oxidation catalyst in the vicinity of the stoichiometric air-fuel ratio can be easily obtained.

【0017】[0017]

【発明の実施の形態】図4は本発明の実施形態に係る排
気ガス浄化装置を示し、1は例えばシリンダ内の燃焼室
(図示せず)に燃料を直接噴射供給する直噴リーン燃焼
エンジン、2は燃焼室内の排気ガスを排出する排気通路
で、この排気通路2には三元触媒4と、該三元触媒4よ
りも下流側に位置するリーンNOx触媒10とが配置さ
れており、これら2つの触媒4,10により、エンジン
1の理論空燃比燃焼運転時(例えば加速時、或いは定常
運転中に所定期間毎に行われるNOx放出制御時)にお
ける排気ガス中のHC、CO、NOx等の大気汚染物質
を浄化するとともに、さらにリーン燃焼運転時(例えば
アイドル時や定速運転時)のNOxをも有効に浄化す
る。尚、上記リーン雰囲気での酸素濃度は4〜5%から
20%であり、空燃比はA/F=18以上の条件で使用
される。
FIG. 4 shows an exhaust gas purifying apparatus according to an embodiment of the present invention, wherein 1 is a direct injection lean combustion engine for directly supplying fuel to a combustion chamber (not shown) in a cylinder, for example. Reference numeral 2 denotes an exhaust passage for discharging exhaust gas in the combustion chamber. In the exhaust passage 2, a three-way catalyst 4 and a lean NOx catalyst 10 located downstream of the three-way catalyst 4 are arranged. By the two catalysts 4 and 10, HC, CO, NOx and the like in the exhaust gas during the stoichiometric air-fuel ratio combustion operation of the engine 1 (for example, at the time of acceleration or at the time of NOx emission control performed every predetermined period during steady operation). In addition to purifying air pollutants, it also effectively purifies NOx during lean combustion operation (for example, during idling or constant speed operation). The oxygen concentration in the lean atmosphere is 4 to 5% to 20%, and the air-fuel ratio is used under the condition of A / F = 18 or more.

【0018】具体的には、上記リーンNOx触媒10
は、理論空燃比よりもリーン側の空燃比で排気ガス中の
NOxを吸着する一方、理論空燃比近傍の空燃比で、上
記吸着NOxを浄化して放出するNOx吸着触媒として
機能する。このリーンNOx触媒10は、図3に示す如
く、コージェライトからなるハニカム状担体11を備
え、この担体11上に内側触媒層12(ベースコート)
と、その上の外側触媒層13(オーバーコート)との2
層の触媒層がコートされている。
Specifically, the lean NOx catalyst 10
Functions as a NOx adsorption catalyst that adsorbs NOx in exhaust gas at an air-fuel ratio leaner than the stoichiometric air-fuel ratio and purifies and releases the adsorbed NOx at an air-fuel ratio near the stoichiometric air-fuel ratio. As shown in FIG. 3, the lean NOx catalyst 10 includes a honeycomb carrier 11 made of cordierite, and an inner catalyst layer 12 (base coat) is formed on the carrier 11.
And the outer catalyst layer 13 (overcoat) thereon
Layer of catalyst layer is coated.

【0019】上記内側触媒層12には、例えば触媒金属
となる貴金属としての白金Ptと、NOx吸収材として
のバリウムBaとが多孔質材料であるアルミナ及びセリ
アをサポート材として担持されている。
The inner catalyst layer 12 carries, for example, platinum Pt as a noble metal as a catalyst metal and barium Ba as a NOx absorbent as a support material using alumina and ceria as porous materials.

【0020】一方、外側触媒層13には、貴金属として
の白金及びロジウムとバリウムとが多孔質材料であるゼ
オライトをサポート材として担持されている。
On the other hand, in the outer catalyst layer 13, platinum, rhodium and barium as noble metals are supported as a support material of zeolite which is a porous material.

【0021】尚、不純物は1%以下とする。また、上記
バリウムに代えてナトリウムNa、カリウムK、ストロ
ンチウムSr、カルシウムCa等を用いてもよく、或い
はそれらやバリウムのうちの2つ又は3つを組み合わせ
てもよい。要はアルカリ金属又はアルカリ土類金属のう
ちの少なくとも1種類の金属であればよい。
Incidentally, the impurity is set to 1% or less. Further, sodium Na, potassium K, strontium Sr, calcium Ca, or the like may be used instead of barium, or two or three of barium and barium may be used in combination. In short, it is sufficient if at least one kind of metal among alkali metals or alkaline earth metals is used.

【0022】また、内側触媒層12のサポート材はアル
ミナ及びセリアに代えてゼオライトを、また外側触媒層
13のサポート材はゼオライトに代えてアルミナ又はセ
リアをそれぞれ用いてもよく、要はアルミナ、セリア及
びゼオライトうちの2つ又は3つを組み合わせればよ
い。
The support material of the inner catalyst layer 12 may be zeolite instead of alumina and ceria, and the support material of the outer catalyst layer 13 may be alumina or ceria instead of zeolite. And two or three of the zeolites may be combined.

【0023】これに対し、上記上流側の三元触媒4は、
理論空燃比近傍の空燃比で排気ガス中のHC及びCOを
酸化する酸化触媒としての機能する(尚、理論空燃比よ
りもリーン側の空燃比でもHC及びCOを浄化する)も
ので、図2に示すように、例えばコージェライトからな
るハニカム状担体5上に内側触媒層6(ベースコート)
と外側触媒層7(オーバーコート)との2層がコートさ
れている。上記内側触媒層6には、例えばアルミナ及び
セリアをサポート材としてパラジウムPdが担持されて
いる。
On the other hand, the upstream three-way catalyst 4 is
It functions as an oxidation catalyst that oxidizes HC and CO in exhaust gas at an air-fuel ratio near the stoichiometric air-fuel ratio (note that HC and CO are also purified at an air-fuel ratio leaner than the stoichiometric air-fuel ratio). As shown in FIG. 1, an inner catalyst layer 6 (base coat) is formed on a honeycomb-shaped carrier 5 made of, for example, cordierite.
And the outer catalyst layer 7 (overcoat). The inner catalyst layer 6 supports palladium Pd using, for example, alumina and ceria as support materials.

【0024】一方、外側触媒層7には、貴金属である白
金及びロジウムがセリアをサポート材として担持されて
いる。この白金及びロジウムの重量比はPt/Rh<3
(3よりも小)であり、Pt/Rh=3/2〜1/5で
あることが望ましい。すなわち、白金及びロジウムの重
量比をPt/Rh≧3(3以上)とすると、CO浄化率
を下げる効果が得られないので、Pt/Rh<3とす
る。また、Pt/Rh=0、つまり白金が担持されてい
なくてロジウムのみの場合、三元触媒4の製造時に触媒
層6,7の焼成の段階で劣化が始まるので、好ましくな
い。また、三元触媒4の内外触媒層6,7全体に耐熱性
向上のために3g/L程度のバリウムを加えてもよい。
On the other hand, noble metals platinum and rhodium are supported on the outer catalyst layer 7 using ceria as a support material. The weight ratio of platinum and rhodium is Pt / Rh <3.
(Smaller than 3), and it is preferable that Pt / Rh = 3/2 to 1/5. That is, if the weight ratio of platinum and rhodium is Pt / Rh ≧ 3 (3 or more), the effect of lowering the CO purification rate cannot be obtained, so that Pt / Rh <3. Further, when Pt / Rh = 0, that is, when only platinum is not supported and only rhodium is used, deterioration starts at the stage of firing the catalyst layers 6 and 7 at the time of manufacturing the three-way catalyst 4, which is not preferable. Further, barium of about 3 g / L may be added to the entire inner and outer catalyst layers 6 and 7 of the three-way catalyst 4 in order to improve heat resistance.

【0025】そして、この外側触媒層7でセリアにより
白金及びロジウムを担持していること、並びに白金及び
ロジウムの重量比をPt/Rh<3にしたことにより、
図1に示すように、空燃比のリーン側への増大に伴って
三元触媒4のCO浄化率が所定値(例えば80%)以上
に増加する空燃比A1は、HC浄化率が上記所定値(同
80%)以上に増加する空燃比A2よりもリーン側(A
1>A2)に設定されており、このことで三元触媒4の
理論空燃比近傍でのCO浄化率がHC浄化率よりも低く
設定されている。すなわち、例えばHCの浄化率が80
%以上となる空燃比がA/F=14.6(=A2)であ
ると、COの浄化率が80%以上となる空燃比は上記A
/F=14.6よりも大きいA/F=14.62(=A
1)となるように、HCの80%浄化率に対しCOの8
0%浄化率が空燃比でA/F=0.02以上リーン側に
設定されている。尚、上記CO浄化率が所定値以上とな
る空燃比の上限値は、CO浄化率が大きく低下しないよ
うに設定されるが、A/F=14.75以上になること
はない。
Since platinum and rhodium are supported by ceria in the outer catalyst layer 7 and the weight ratio of platinum and rhodium is set to Pt / Rh <3,
As shown in FIG. 1, the air-fuel ratio A1 at which the CO purification rate of the three-way catalyst 4 increases to a predetermined value (for example, 80%) or more as the air-fuel ratio increases toward the lean side, is such that the HC purification rate is the predetermined value. (80%) and leaner than the air-fuel ratio A2 (A
1> A2), so that the CO purification rate of the three-way catalyst 4 near the stoichiometric air-fuel ratio is set lower than the HC purification rate. That is, for example, when the purification rate of HC is 80
% Is A / F = 14.6 (= A2), the air-fuel ratio at which the CO purification rate is 80% or more is A
A / F = 14.62 greater than /F=14.6 (= A
In order to satisfy 1), 8% of CO for 80% purification rate of HC
The 0% purification rate is set to A / F = 0.02 or more on the lean side in the air-fuel ratio. Note that the upper limit of the air-fuel ratio at which the CO purification rate is equal to or higher than a predetermined value is set so that the CO purification rate does not significantly decrease. However, A / F does not exceed 14.75.

【0026】上記各触媒4,10を製造する場合、例え
ば内側触媒層6,12は含浸法により形成し、また外側
触媒層7,13はスプレードライ法を利用するのが望ま
しい。すなわち、三元触媒4にあっては、バインダと、
貴金属としてのパラジウムを担持したアルミナ及びセリ
アのパウダーとを混ぜ合わせてスラリーを調製し、この
スラリーを担体5にウォッシュコートして乾燥焼成し、
担体5上に内側触媒層6を形成する。また、上記スプレ
ードライ法は噴霧乾固法とも呼ばれる方法であり、セリ
アのパウダーと錯体としての白金溶液及びロジウム溶液
と水とを混ぜてスラリーを調製し、このスラリーを加熱
雰囲気中に噴霧して乾燥焼成し、オーバーコートパウダ
ーを生成する。そして、このオーバーコートパウダーを
バインダとを混合してスラリーを調製し、このスラリー
を、上記内側触媒層6の上から担体5に対しウォッシュ
コートして乾燥及び焼成し、外側触媒層7を形成する。
When the above catalysts 4 and 10 are manufactured, for example, the inner catalyst layers 6 and 12 are preferably formed by an impregnation method, and the outer catalyst layers 7 and 13 are preferably used by a spray dry method. That is, in the three-way catalyst 4, the binder and
A slurry is prepared by mixing alumina and ceria powder supporting palladium as a noble metal, and this slurry is wash-coated on a carrier 5 and dried and fired,
The inner catalyst layer 6 is formed on the carrier 5. The spray drying method is a method also called a spray drying method, in which a slurry is prepared by mixing a powder of ceria, a platinum solution as a complex and a rhodium solution and water, and spraying the slurry in a heated atmosphere. Dry and bake to produce overcoat powder. Then, the overcoat powder is mixed with a binder to prepare a slurry. The slurry is wash-coated on the carrier 5 from above the inner catalyst layer 6, dried and fired to form the outer catalyst layer 7. .

【0027】一方、リーンNOx触媒10では、バイン
ダと、貴金属を担持しないアルミナ及びセリアのパウダ
ーとを混ぜ合わせてスラリーを調製し、このスラリーを
担体11にウォッシュコートして乾燥焼成し、担体11
上に内側触媒層12を形成する。また、ゼオライトのパ
ウダーと錯体としてのロジウム溶液と水とを混ぜてスラ
リーを調製し、このスラリーを加熱雰囲気中に噴霧して
乾燥焼成し、オーバーコートパウダーを得る(スプレー
ドライ法)。そして、このオーバーコートパウダーをバ
インダとを混合してスラリーを調製し、このスラリー
を、上記内側触媒層12の上から担体11に対しウォッ
シュコートして乾燥焼成する。そして、このようにして
2層の触媒層12,13をコートした後、その各触媒層
12,13に白金及びバリウムの混合溶液を含浸させて
白金及びバリウムを担持させる。しかる後に乾燥及び焼
成する。
On the other hand, in the lean NOx catalyst 10, a slurry is prepared by mixing a binder, alumina and ceria powder which do not carry a noble metal, and this slurry is wash-coated on a carrier 11 and dried and calcined.
An inner catalyst layer 12 is formed thereon. Further, a slurry is prepared by mixing zeolite powder, a rhodium solution as a complex, and water, and this slurry is sprayed into a heating atmosphere and dried and fired to obtain an overcoat powder (spray drying method). Then, a slurry is prepared by mixing the overcoat powder with a binder, and the slurry is wash-coated on the support 11 from above the inner catalyst layer 12 and dried and fired. Then, after coating the two catalyst layers 12 and 13 in this manner, each of the catalyst layers 12 and 13 is impregnated with a mixed solution of platinum and barium to carry platinum and barium. Thereafter, drying and baking are performed.

【0028】したがって、上記実施形態の排気ガス浄化
装置においては、エンジン1の例えばアイドル運転時や
定速運転時等でリーン燃焼運転が行われて空燃比が理論
空燃比よりもリーン側にあるときに、排気通路2の上流
側に配置される三元触媒4により排気ガス中のCO及び
HCが酸化されて浄化されるとともに、下流側に配置さ
れているリーンNOx触媒10により排気ガス中のNO
xが吸着される。
Therefore, in the exhaust gas purifying apparatus of the above-described embodiment, when the engine 1 performs lean combustion operation, for example, during idling operation or constant speed operation, and the air-fuel ratio is leaner than the stoichiometric air-fuel ratio. In addition, CO and HC in the exhaust gas are oxidized and purified by the three-way catalyst 4 arranged on the upstream side of the exhaust passage 2, and the NO in the exhaust gas is reduced by the lean NOx catalyst 10 arranged on the downstream side.
x is adsorbed.

【0029】この後、エンジン1の例えば加速運転時で
理論空燃比燃焼運転が行われて空燃比が理論空燃比近傍
になると、上記上流側の三元触媒4により同様に排気ガ
ス中のHC及びCOが酸化され、同時にNOxが還元さ
れる。
Thereafter, when the stoichiometric air-fuel ratio combustion operation is performed, for example, during the acceleration operation of the engine 1 and the air-fuel ratio becomes close to the stoichiometric air-fuel ratio, the HC in the exhaust gas is similarly reduced by the upstream three-way catalyst 4. CO is oxidized and NOx is reduced at the same time.

【0030】また、上記リーンNOx触媒10に吸着さ
れているNOxが浄化されながら放出される。そのと
き、上記三元触媒4は、その理論空燃比近傍でのCO浄
化率がHC浄化率よりも低く設定されているので、この
三元触媒4が上記の如く理論空燃比近傍でHC及びCO
を酸化する際、そのCO浄化率の低下設定により、還元
剤として働くCOのリッチの排気ガスが三元触媒4から
下流側のリーンNOx触媒10に供給される。この排気
ガス中のCOにより、リーンNOx触媒10ではNOx
がNO2 となって放出される反応と、そのNO2 がさら
にN2 及びO2 に分解される反応とが生じる。具体的に
は、例えばリーンNOx触媒10において、そのバリウ
ム粒子の表面にNOxとしてのNO3 が硝酸バリウムB
a(NO32 として吸着されているとすると、その硝
酸バリウムはCOの供給により置換反応して酸素雰囲気
下で炭酸バリウムBa(CO3 )と二酸化窒素NO2
に分解され、この二酸化窒素がリーンNOx触媒10か
ら放出される。そして、この二酸化窒素はCOの下でさ
らにN2 及びO2 に分解され、このことによってリーン
NOx触媒10でのNOxの放出及び浄化を効果的に促
進することができる。よって、排気ガス中のHC及びC
Oと、特にリーン状態で発生するNOxとを浄化するこ
とができる。
The NOx adsorbed on the lean NOx catalyst 10 is released while being purified. At that time, the three-way catalyst 4 has a CO purification rate near the stoichiometric air-fuel ratio set lower than the HC purification rate.
When the CO is oxidized, the CO-rich exhaust gas serving as a reducing agent is supplied from the three-way catalyst 4 to the downstream lean NOx catalyst 10 by setting the reduction of the CO purification rate. The CO in the exhaust gas causes NOx in the lean NOx catalyst 10
React with but which is released as NO 2, the reaction and arises that NO 2 is further decomposed into N 2 and O 2. Specifically, for example, in the lean NOx catalyst 10, NO 3 as NOx is deposited on the surface of the barium particles by barium nitrate B.
Assuming that the barium nitrate is adsorbed as a (NO 3 ) 2 , the barium nitrate is replaced by the supply of CO and is decomposed into barium carbonate Ba (CO 3 ) and nitrogen dioxide NO 2 under an oxygen atmosphere. Is released from the lean NOx catalyst 10. Then, this nitrogen dioxide is further decomposed into N 2 and O 2 under CO, whereby the release and purification of NOx in the lean NOx catalyst 10 can be effectively promoted. Therefore, HC and C in the exhaust gas
O and, in particular, NOx generated in a lean state can be purified.

【0031】そして、この実施例では、上記三元触媒4
の外側触媒層7はセリアに白金及びロジウムが担持され
ているものであり、その白金及びロジウムの重量比がP
t/Rh<3であるので、上記の如く三元触媒4でのC
O浄化率をHC浄化率よりも低くするための触媒構造が
容易に得られる。
In this embodiment, the three-way catalyst 4
Is a catalyst in which platinum and rhodium are supported on ceria, and the weight ratio of platinum and rhodium is P
Since t / Rh <3, C in the three-way catalyst 4 as described above
A catalyst structure for making the O purification rate lower than the HC purification rate can be easily obtained.

【0032】尚、上記実施例では、三元触媒4及びリー
ンNOx触媒10を共に2層コートのものとしている
が、いずれか一方又は両方を1層コートのものとしても
よい。
In the above embodiment, both the three-way catalyst 4 and the lean NOx catalyst 10 are of a two-layer coat, but one or both of them may be of a single-layer coat.

【0033】[0033]

【実施例】次に、具体的に実施した実施例について説明
する。
Next, a specific embodiment will be described.

【0034】 NOx浄化性能について (実施例)三元触媒として、パラジウム化合物、アルミ
ナ、セリア及びアルミナバインダをそれぞれ調合し、こ
れをイオン交換水と混合してスラリーを調製した。次い
で、このスラリーを6ミル400セルのハニカム構造の
コージェライト担体に対しウォッシュコートした後、1
50℃の温度で乾燥し、かつ300〜600℃の温度で
2〜4時間焼成し、内側触媒層を形成した。
NOx Purification Performance (Example) A palladium compound, alumina, ceria, and an alumina binder were prepared as a three-way catalyst, and mixed with ion-exchanged water to prepare a slurry. Next, this slurry was wash-coated on a cordierite carrier having a honeycomb structure of 6 mils 400 cells,
It was dried at a temperature of 50 ° C. and calcined at a temperature of 300 to 600 ° C. for 2 to 4 hours to form an inner catalyst layer.

【0035】一方、白金ジニトロジアミン溶液、ロジウ
ム硝酸塩溶液及びセリアを水とを混ぜてスラリーを調製
し、このスラリーをスプレードライ法により噴霧乾固
し、その後に200〜600℃で1〜24時間焼成して
オーバーコートパウダーを得た。そして、このオーバー
コートパウダーをアルミナバインダと混合した後、イオ
ン交換水を加えてスラリーを調製し、このスラリーを担
体に対しウォッシュコートした後、150℃の温度で乾
燥し、かつ300〜600℃の温度で1〜4時間焼成し
て、内側触媒層上に外側触媒層を形成した。
On the other hand, a slurry is prepared by mixing a platinum dinitrodiamine solution, a rhodium nitrate solution and ceria with water, and this slurry is spray-dried by a spray-dry method, and then calcined at 200 to 600 ° C. for 1 to 24 hours. To obtain an overcoat powder. Then, after mixing this overcoat powder with an alumina binder, a slurry is prepared by adding ion-exchanged water, the slurry is wash-coated on a carrier, dried at a temperature of 150 ° C, and dried at a temperature of 300 to 600 ° C. By firing at a temperature for 1 to 4 hours, an outer catalyst layer was formed on the inner catalyst layer.

【0036】この実施例の貴金属量は担体1リットルに
対し3.15g/Lであり、白金、パラジウム及びロジ
ウムの重量比はPt/Pd/Rh=1/17/3であっ
た。
In this example, the amount of noble metal was 3.15 g / L per liter of the carrier, and the weight ratio of platinum, palladium and rhodium was Pt / Pd / Rh = 1/17/3.

【0037】(比較例)実施例の構成のうち、触媒層の
白金、パラジウム及びロジウムの重量比をPt/Pd/
Rh=3/26/1としたもの(通常のトリメタル三元
触媒)を比較例とした。その他の構成は実施例と同じで
ある。
(Comparative Example) In the configuration of the example, the weight ratio of platinum, palladium and rhodium in the catalyst layer was Pt / Pd /
The case where Rh = 3/26/1 (ordinary trimetal three-way catalyst) was used as a comparative example. Other configurations are the same as those of the embodiment.

【0038】上記実施例及び比較例の三元触媒をそれぞ
れ排気量2000ccの直噴レシプロエンジンの排気通
路であって、リーンNOx触媒の上流側に配置し、エン
ジンをアイドル運転時及び定速運転時には空燃比をA/
F=40に、また加速時には理論空燃比にそれぞれ設定
し、減速時には燃料カットする所定のモードで運転させ
て、その三元触媒通過後のHC及びCOの浄化率と、リ
ーンNOx触媒通過後の全モード及びリーン空燃比での
各NOx浄化率とを測定した。その結果を表1に示す。
上記理論空燃比での排気ガスの組成は表2のとおりであ
る。
The three-way catalysts of the above embodiment and the comparative example are arranged in the exhaust passage of a direct injection reciprocating engine with a displacement of 2000 cc and upstream of the lean NOx catalyst. A / F
F = 40, and a stoichiometric air-fuel ratio during acceleration, and a predetermined mode in which fuel is cut during deceleration. The HC and CO purification rates after passing through the three-way catalyst and the lean NOx catalyst after passing through the lean NOx catalyst. The NOx purification rates in all modes and lean air-fuel ratios were measured. Table 1 shows the results.
Table 2 shows the composition of the exhaust gas at the stoichiometric air-fuel ratio.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】この表1から、本発明の実施例によると、
比較例に比べ、三元触媒通過後のHC浄化率は同じであ
るがCO浄化率が低下しており、このCO浄化率の低下
によってNOx浄化率、特にリーンNOx触媒によるN
Ox浄化率が上昇していることが判る。
From Table 1, according to the embodiment of the present invention,
Compared with the comparative example, the HC purification rate after passing through the three-way catalyst is the same, but the CO purification rate is decreased. The decrease in the CO purification rate causes the NOx purification rate, particularly, the N2 concentration by the lean NOx catalyst.
It can be seen that the Ox purification rate has increased.

【0042】 三元触媒での白金及びロジウムの重量
比について 上記実施例と同じ構造の三元触媒において、外側触媒層
の白金及びロジウムの重量比を変えて、そのNOx浄化
率、HC浄化率及びCO浄化率が同じ所定値以上に達す
るときの空燃比の幅(A/Fウィンドウ)の変化を測定
したところ、図5に示す結果が得られた。この図5から
明らかなように、白金及びロジウムの重量比がPt/R
h<3であれば、CO浄化率のHC浄化率に対する低下
が明確になり、とりわけPt/Rh=3/2〜1/5で
あれば顕著な効果が得られる。
Regarding the weight ratio of platinum and rhodium in the three-way catalyst In the three-way catalyst having the same structure as in the above embodiment, the weight ratio of platinum and rhodium in the outer catalyst layer was changed, and the NOx purification rate, HC purification rate and When the change in the air-fuel ratio width (A / F window) when the CO purification rate reached the same predetermined value or more was measured, the results shown in FIG. 5 were obtained. As is apparent from FIG. 5, the weight ratio of platinum and rhodium is Pt / R
When h <3, the reduction of the CO purification rate with respect to the HC purification rate becomes clear, and particularly, when Pt / Rh = 3/2 to 1/5, a remarkable effect is obtained.

【0043】 三元触媒でのCO及びHCの各浄化率
の範囲について 上記実施例と同様の三元触媒(全体の貴金属量が3.1
5g/Lで、その白金、パラジウム及びロジウムの重量
比はPt/Pd/Rh=1/17/3であり、さらに耐
熱性向上のためにバリウムが添加されているもの)につ
いて、1100℃で24時間空気により熱エージングし
た後、空燃比をA/F=14.7±0.2に維持してH
C浄化率及びCO浄化率がいずれも80%になる空燃比
を調べた。酸化触媒の入口温度は400℃である。その
結果、HC浄化率が80%になる空燃比はA/F<1
4.6であるのに対し、CO浄化率が80%になる空燃
比はA/F>14.6であった。尚、バリウムの添加が
ないものでは、CO浄化率が80%になる空燃比はA/
F>14.65であった。
Regarding the range of each purification rate of CO and HC in the three-way catalyst The same three-way catalyst as in the above embodiment (the total amount of noble metal is 3.1
5 g / L, the weight ratio of platinum, palladium and rhodium is Pt / Pd / Rh = 1/17/3, and barium is added to improve heat resistance). After heat aging with air for a period of time, the air-fuel ratio is maintained at A / F = 14.7 ± 0.2 and H
The air-fuel ratio at which both the C purification rate and the CO purification rate were 80% was examined. The inlet temperature of the oxidation catalyst is 400 ° C. As a result, the air-fuel ratio at which the HC purification rate becomes 80% is A / F <1.
In contrast to 4.6, the air-fuel ratio at which the CO purification rate was 80% was A / F> 14.6. In the case where barium was not added, the air / fuel ratio at which the CO purification rate was 80% was A / A.
F> 14.65.

【0044】また、三元触媒を1000℃で24時間空
気により熱エージングした後、同様のHC浄化率及びC
O浄化率がいずれも80%になる空燃比を調べたとこ
ろ、HC浄化率が80%になる空燃比はA/F<14.
4であるのに対し、CO浄化率が80%になる空燃比は
A/F>14.5であった。
After the three-way catalyst was thermally aged at 1000 ° C. for 24 hours with air, the same HC purification rate and C
When the air-fuel ratio at which the O purification rate becomes 80% was examined, the air-fuel ratio at which the HC purification rate became 80% was A / F <14.
In contrast to 4, the air / fuel ratio at which the CO purification rate was 80% was A / F> 14.5.

【0045】このことから、HCの浄化率が80%以上
となる空燃比がA/F=14.6であると、COの浄化
率が80%以上となる空燃比は上記A/F=14.6よ
りも大きい例えばA/F=14.62となるように、H
Cの80%浄化率に対しCOの80%浄化率が空燃比で
例えばA/F=0.02以上リーン側に設定すればよい
ことが判る。
From this, if the air-fuel ratio at which the HC purification rate is 80% or more is A / F = 14.6, the air-fuel ratio at which the CO purification rate is 80% or more is A / F = 14. H such that A / F = 14.62 larger than .6, for example.
It can be seen that the 80% purification rate of CO may be set to the air / fuel ratio, for example, A / F = 0.02 or more on the lean side with respect to the 80% purification rate of C.

【0046】[0046]

【発明の効果】以上説明したように、請求項1の発明で
は、エンジンの排気通路の上流側に、理論空燃比近傍で
排気ガス中のHC及びCOを酸化する酸化触媒を、また
下流側に、理論空燃比よりもリーン側で排気ガス中のN
Oxを吸着しかつ理論空燃比近傍で吸着NOxを浄化し
て放出するNOx吸着触媒をそれぞれ配置し、酸化触媒
の理論空燃比近傍でのCO浄化率をHC浄化率よりも低
く設定した。また、請求項2の発明では、空燃比のリー
ン側への増大に伴って酸化触媒のCO浄化率が所定値以
上に増加する空燃比を、HC浄化率が所定値以上に増加
する空燃比よりもリーン側に設定した。これらの発明に
よれば、理論空燃比近傍で酸化触媒からCOリッチの排
気ガスをNOx吸着触媒に供給して、この排気ガス中の
COにより、NOx吸着触媒でのNOxの放出及び浄化
の促進、並びにNOx吸着触媒のSOx被毒防止を図る
ことができる。
As described above, according to the first aspect of the present invention, the oxidation catalyst for oxidizing HC and CO in the exhaust gas near the stoichiometric air-fuel ratio is provided upstream of the exhaust passage of the engine, and the oxidation catalyst is provided downstream thereof. In the exhaust gas on the lean side of the stoichiometric air-fuel ratio
NOx adsorption catalysts that adsorb Ox and purify and release adsorbed NOx near the stoichiometric air-fuel ratio are arranged, and the CO purification rate of the oxidation catalyst near the stoichiometric air-fuel ratio is set lower than the HC purification rate. According to the second aspect of the present invention, the air-fuel ratio at which the CO purification rate of the oxidation catalyst increases to a predetermined value or more as the air-fuel ratio increases toward the lean side is determined by the air-fuel ratio at which the HC purification rate increases to a predetermined value or more. Was also set on the lean side. According to these inventions, the CO-rich exhaust gas is supplied from the oxidation catalyst to the NOx adsorption catalyst near the stoichiometric air-fuel ratio, and the CO in the exhaust gas promotes the release and purification of NOx by the NOx adsorption catalyst, Moreover, SOx poisoning of the NOx adsorption catalyst can be prevented.

【0047】請求項3の発明では、酸化触媒をセリアに
貴金属が担持されているものとした。また、請求項4の
発明では、酸化触媒に白金及びロジウムを担持させ、そ
の重量比をPt/Rh<3とした。これらの発明による
と、酸化触媒でのCO浄化率をHC浄化率よりも低くす
るための触媒構造が容易に得られる。
In the invention of claim 3, the noble metal is supported on ceria as the oxidation catalyst. Further, in the invention of claim 4, platinum and rhodium are supported on the oxidation catalyst, and the weight ratio is set to Pt / Rh <3. According to these inventions, a catalyst structure for making the CO purification rate of the oxidation catalyst lower than the HC purification rate can be easily obtained.

【0048】請求項5の発明では、NOx吸着触媒は、
アルカリ金属又はアルカリ土類金属の少なくとも1種の
金属を担持しているものとした。また、請求項6の発明
では、その金属をバリウムとした。これら発明によれ
ば、リーン空燃比でNOxを吸着し、かつ理論空燃比近
傍で酸化触媒からのCOと反応し易いNOx吸着触媒が
容易に得られる。
According to the fifth aspect of the present invention, the NOx adsorption catalyst comprises:
It was assumed to carry at least one kind of alkali metal or alkaline earth metal. In the invention of claim 6, the metal is barium. According to these inventions, it is possible to easily obtain a NOx adsorption catalyst that adsorbs NOx at a lean air-fuel ratio and easily reacts with CO from an oxidation catalyst near a stoichiometric air-fuel ratio.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態において理論空燃比近傍での
三元触媒のHC、CO及びNOxの浄化特性を示す図で
ある。
FIG. 1 is a graph showing HC, CO and NOx purification characteristics of a three-way catalyst near a stoichiometric air-fuel ratio in an embodiment of the present invention.

【図2】三元触媒の要部を示す断面図である。FIG. 2 is a sectional view showing a main part of a three-way catalyst.

【図3】リーンNOx触媒の要部を示す断面図である。FIG. 3 is a sectional view showing a main part of a lean NOx catalyst.

【図4】エンジンの排気通路での三元触媒及びリーンN
Ox触媒の配置構成を示す図である。
FIG. 4 shows a three-way catalyst and lean N in an exhaust passage of an engine.
FIG. 3 is a diagram illustrating an arrangement configuration of an Ox catalyst.

【図5】三元触媒での白金及びロジウムの重量比を変え
たときのA/Fウィンドウ幅の変化を示す図である。
FIG. 5 is a diagram showing a change in the A / F window width when the weight ratio of platinum and rhodium in the three-way catalyst is changed.

【符号の説明】[Explanation of symbols]

1 エンジン 2 排気通路 4 三元触媒(酸化触媒) 10 リーンNOx触媒(NOx吸着触媒) Reference Signs List 1 engine 2 exhaust passage 4 three-way catalyst (oxidation catalyst) 10 lean NOx catalyst (NOx adsorption catalyst)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 京極 誠 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 (72)発明者 岡本 謙治 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Makoto Kyogoku 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Mazda Co., Ltd. (72) Kenji Okamoto 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Mazda Co., Ltd. Inside

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 エンジンの排気通路に配置され、理論空
燃比近傍の空燃比で排気ガス中のHC及びCOを酸化す
る酸化触媒と、該酸化触媒よりも下流側の排気通路に配
置され、理論空燃比よりもリーン側の空燃比で排気ガス
中のNOxを吸着する一方、理論空燃比近傍の空燃比で
上記吸着NOxを放出するNOx吸着触媒とを備えた排
気ガス浄化装置であって、 上記酸化触媒の理論空燃比近傍でのCO浄化率がHC浄
化率よりも低く設定されていることを特徴とする排気ガ
ス浄化装置。
An oxidation catalyst disposed in an exhaust passage of an engine for oxidizing HC and CO in exhaust gas at an air-fuel ratio near a stoichiometric air-fuel ratio, and disposed in an exhaust passage downstream of the oxidation catalyst. An exhaust gas purifying apparatus comprising: a NOx adsorption catalyst that adsorbs NOx in exhaust gas at an air-fuel ratio leaner than the air-fuel ratio and releases the adsorbed NOx at an air-fuel ratio near the stoichiometric air-fuel ratio. An exhaust gas purification device, wherein the CO purification rate near the stoichiometric air-fuel ratio of the oxidation catalyst is set lower than the HC purification rate.
【請求項2】 請求項1の排気ガス浄化装置において、 空燃比のリーン側への増大に伴って酸化触媒のCO浄化
率が所定値以上に増加する空燃比は、HC浄化率が上記
所定値以上に増加する空燃比よりもリーン側に設定され
ていることを特徴とする排気ガス浄化装置。
2. The exhaust gas purifying apparatus according to claim 1, wherein the HC purification rate is such that the CO purification rate of the oxidation catalyst increases to a predetermined value or more as the air-fuel ratio increases toward the lean side. An exhaust gas purifying device characterized in that the exhaust gas purifying device is set leaner than the air-fuel ratio increasing as described above.
【請求項3】 請求項1の排気ガス浄化装置において、 酸化触媒は、セリアに貴金属が担持されているものであ
ることを特徴とする排気ガス浄化装置。
3. The exhaust gas purifying apparatus according to claim 1, wherein the oxidation catalyst comprises a noble metal supported on ceria.
【請求項4】 請求項1の排気ガス浄化装置において、 酸化触媒には白金及びロジウムが担持されており、 上記白金及びロジウムの重量比がPt/Rh<3である
ことを特徴とする排気ガス浄化装置。
4. The exhaust gas purifying apparatus according to claim 1, wherein platinum and rhodium are supported on the oxidation catalyst, and the weight ratio of platinum and rhodium is Pt / Rh <3. Purification device.
【請求項5】 請求項1〜4のいずれかの排気ガス浄化
装置において、 NOx吸着触媒は、アルカリ金属又はアルカリ土類金属
の少なくとも1種の金属を担持していることを特徴とす
る排気ガス浄化装置。
5. The exhaust gas purifying apparatus according to claim 1, wherein the NOx adsorption catalyst carries at least one kind of alkali metal or alkaline earth metal. Purification device.
【請求項6】 請求項5の排気ガス浄化装置において、 アルカリ金属又はアルカリ土類金属の少なくとも1種の
金属はバリウムであることを特徴とする排気ガス浄化装
置。
6. The exhaust gas purifying apparatus according to claim 5, wherein at least one kind of alkali metal or alkaline earth metal is barium.
JP26537297A 1997-09-30 1997-09-30 Exhaust gas purification device Expired - Fee Related JP4085448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26537297A JP4085448B2 (en) 1997-09-30 1997-09-30 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26537297A JP4085448B2 (en) 1997-09-30 1997-09-30 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JPH11101125A true JPH11101125A (en) 1999-04-13
JP4085448B2 JP4085448B2 (en) 2008-05-14

Family

ID=17416275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26537297A Expired - Fee Related JP4085448B2 (en) 1997-09-30 1997-09-30 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP4085448B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073817A (en) * 1998-08-28 2000-03-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine
GB2342056A (en) * 1998-09-18 2000-04-05 Toyota Motor Co Ltd NOx trap with oxygen storage components for an i.c.e.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073817A (en) * 1998-08-28 2000-03-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine
GB2342056A (en) * 1998-09-18 2000-04-05 Toyota Motor Co Ltd NOx trap with oxygen storage components for an i.c.e.
GB2342056B (en) * 1998-09-18 2001-04-04 Toyota Motor Co Ltd An exhaust gas purification device for an internal combustion engine
US6499294B1 (en) 1998-09-18 2002-12-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an internal combustion engine

Also Published As

Publication number Publication date
JP4085448B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
JP3859940B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3489048B2 (en) Exhaust gas purification catalyst
JP4590733B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the catalyst
JP5041567B2 (en) Contact trap with multiple zones and method of making and using the same
EP1420872B1 (en) Process for rejuvenating a spent catalyst
JP2002045701A (en) Catalyst for purifying exhaust gas
JPH10180099A (en) Catalyst for purifying waste gas and waste gas purifying system
JPH05261287A (en) Method for purifying exhaust gas and catalyst therefor
US20030039597A1 (en) Close coupled catalyst with a SOx trap and methods of making and using the same
JPH10216481A (en) Sulfur resistant nox trap highly charged with sodium or potassium
JP3685463B2 (en) Exhaust gas purification catalyst
JP3844586B2 (en) Sulfur-resistant NOx trap containing phosphotungstic acid and noble metals
JP3789231B2 (en) Exhaust gas purification catalyst
JP2002045702A (en) Catalyst for purifying exhaust gas
JP5490342B2 (en) Catalytic trap with potassium component and method of use thereof
JP2002191988A (en) Catalyst for cleaning exhaust gas
JP4222064B2 (en) Exhaust gas purification catalyst
JP4085448B2 (en) Exhaust gas purification device
JP2002168117A (en) Exhaust emission control system
JP4303799B2 (en) Method for producing lean NOx purification catalyst
JP2000157867A (en) Catalyst for exhaust gas treatment
JP2002119831A (en) Nox trap for suppressing emission of automobile
JPH1176827A (en) Apparatus for cleaning exhaust gas
JP2003343252A (en) Exhaust gas purifying system
JP2006102628A (en) Sulfur oxide absorber and its manufacturing method, and emission gas purifying facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees