JPH1099911A - Hot rolled austenitic stainless steel sheet excellent in corrosion resistance and adhesibility of scale and its manufacture - Google Patents

Hot rolled austenitic stainless steel sheet excellent in corrosion resistance and adhesibility of scale and its manufacture

Info

Publication number
JPH1099911A
JPH1099911A JP25931796A JP25931796A JPH1099911A JP H1099911 A JPH1099911 A JP H1099911A JP 25931796 A JP25931796 A JP 25931796A JP 25931796 A JP25931796 A JP 25931796A JP H1099911 A JPH1099911 A JP H1099911A
Authority
JP
Japan
Prior art keywords
scale
hot
stainless steel
rolled
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25931796A
Other languages
Japanese (ja)
Inventor
Masaaki Kono
雅昭 河野
Kazuhide Ishii
和秀 石井
Susumu Sato
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25931796A priority Critical patent/JPH1099911A/en
Publication of JPH1099911A publication Critical patent/JPH1099911A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hot rolled austenitic stainless steel sheet which is excellent, especially, in corrosion resistance in a part to be worked and, moreover, which has excellent adhesibility of scale that scale peeling at the time of working such as bending and pressing remains at a harmless level and its manufacturing method. SOLUTION: This stainless steel sheet is the hot rolled austenitic stainless steel sheet the thickness of scale on the surface of which is <=1.0μm and whose Ccr ratio (=Ccr /(CFe +Ccr )) which is determined by Fe and Cr contents CFe , Ccr in the scale is >=0.40. At the time of hot rough rolling a slab, executing descaling, executing finish rolling and coiling it into a coil shape, by preferably executing local gas purge to the over-filling part from the finishing rolls, the sheet is held in an atmosphere whose oxygen-content is <=1.0vol.%, coiled at 900 deg.C and the stainless steel sheet is manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐食性およびスケ
ール密着性に優れたオーステナイト系ステンレス熱延鋼
板およびその製造方法に関し、詳しくは、熱延時の表面
酸化スケール生成が大幅に抑制されてなり、熱延後、酸
洗等の脱スケールなしで供用されうる耐食性およびスケ
ール密着性に優れたオーステナイト系ステンレス熱延鋼
板およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot-rolled austenitic stainless steel sheet having excellent corrosion resistance and scale adhesion and a method for producing the same, and more particularly, to the formation of a surface oxide scale during hot rolling is greatly suppressed. The present invention relates to a hot-rolled austenitic stainless steel sheet having excellent corrosion resistance and scale adhesion that can be used without descaling after pickling and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】鋼帯の熱間圧延においては、一般に、加
熱炉で加熱後抽出された鋼スラブを、一次スケール除去
後、数段の圧延機からなる粗圧延設備により厚さ20〜40
mm程度のシートバーと呼ばれる半製品に粗熱延し、この
シートバーをデスケーリング装置によって二次スケール
を除去した後、数段の圧延機群からなる仕上げ圧延設備
により仕上げ熱延して鋼帯となし、この鋼帯を冷却装置
で制御冷却して所定の材質に調えた後、コイル状に巻き
取るという工程が採用される。
2. Description of the Related Art In hot rolling of a steel strip, generally, a steel slab extracted after heating in a heating furnace is removed from a primary scale, and then subjected to a rough rolling facility consisting of several stages of rolling mills to have a thickness of 20 to 40 mm.
Roughly hot-rolled to a semi-finished product called a sheet bar of about mm, and after removing the secondary scale of this sheet bar by a descaling device, finish-rolling by a finishing rolling facility consisting of several rolling mills Then, a step of controlling and cooling the steel strip with a cooling device to prepare a predetermined material, and then winding the steel strip into a coil shape is adopted.

【0003】熱間圧延の各工程は全て大気中で進められ
るため、仕上げ圧延前のスケール除去にもかかわらず熱
延鋼帯の表面には、酸化皮膜(これも単にスケールと呼
ばれる)が形成される。このスケールを有したままの熱
延鋼帯を冷間圧延すると、圧延中に剥離し鋼表面に噛み
込んで表面品質の低下を来すため、冷間圧延に先立って
酸洗等の化学的、さらにはその前にショットブラスト等
の機械的な、脱スケールを行ってスケール除去を行うの
が常であり、このスケール除去工程がコストアップ要因
の一つとなっている。
[0003] Since all the steps of hot rolling are carried out in the atmosphere, an oxide film (also simply called scale) is formed on the surface of the hot-rolled steel strip despite the removal of scale before finish rolling. You. When cold-rolling a hot-rolled steel strip having this scale, it peels off during rolling and bites into the steel surface, resulting in a reduction in surface quality. Further, before that, it is usual to remove the scale by mechanically descaling such as shot blast or the like, and this scale removal step is one of the factors for increasing the cost.

【0004】このコストアップ要因を排除するためにス
ケールの極薄化を指向する熱延方法として、熱間仕上げ
圧延機最終スタンド出側から巻取機までの鋼帯通過区間
を不活性ガスまたは還元性ガス雰囲気に管理したボック
スで覆うことにより仕上げ熱延後巻き取られるまでの鋼
帯のスケール生成を抑える方法がいくつか提案されてい
る(例えば、特開昭58-53323号公報、特開昭59-97710号
公報、特開昭61-123403 号公報等参照)。これらは、熱
間圧延時にそれ以前のスケールが除去され最終的に残る
スケールは最終圧延から巻き取りまでの間に生成したも
ので、その間を無酸化雰囲気に保持すればスケールの極
薄化が達成できるとの技術思想に立つものである。
[0004] In order to eliminate this cost increase factor, as a hot rolling method aiming at ultra-thin scale, a section passing through a steel strip from the exit side of the final stand of the hot finishing mill to the winding machine is inert gas or reduced. There have been proposed several methods for suppressing the scale formation of the steel strip until it is wound after finishing hot rolling by covering with a box controlled in a neutral gas atmosphere (for example, Japanese Patent Application Laid-Open Nos. 58-53323 and 58-53323). 59-97710, JP-A-61-123403, etc.). These are scales that have been removed before hot rolling and the remaining scale is finally formed between the final rolling and winding, and if it is kept in a non-oxidizing atmosphere during that time, the scale can be made extremely thin. It is based on the technical idea that it can be done.

【0005】しかし、この方法は最終圧延機出側から巻
取機までの長大な区間のガスシール用に大量のガスを供
給する必要があって実用化が困難であるという難点があ
り、また、酸洗を省略できるほどの薄さにまでスケール
生成を抑制することは甚だ難しい。これに対し、熱間圧
延時にそれ以前のスケールは除去されず圧下率にほぼ等
しい割合で圧延されて薄くなるという知見に基づき、比
較的圧延温度が低くそれゆえスケール生成速度の小さい
仕上げ圧延機列後段での圧下率を大きくし、その段階で
生成するスケールを薄く展延するとともに、仕上げ圧延
機出側以降を不活性ガス雰囲気下で冷却して巻き取るこ
とが提案されている(特開平4-266401号公報参照)。し
かし、これによれば、温度の低い仕上げ圧延機後段で多
大な圧下量を要し、圧延機の付加が大きく最終的に圧延
できる板厚が制限されるという問題がある。
[0005] However, this method has a disadvantage that it is necessary to supply a large amount of gas for gas sealing in a long section from the exit side of the final rolling mill to the winding machine, and it is difficult to put it into practical use. It is extremely difficult to suppress scale formation to such a thickness that acid washing can be omitted. On the other hand, based on the knowledge that the scale before hot rolling is not removed at the time of hot rolling and is rolled at a rate substantially equal to the rolling reduction, the rolling mill row having a relatively low rolling temperature and therefore a small scale generation speed is used. It has been proposed to increase the rolling reduction in the later stage, spread the scale formed in that stage thinly, and cool and wind the portion after the finish rolling mill on the outgoing side in an inert gas atmosphere (Japanese Unexamined Patent Publication No. -266401). However, according to this, there is a problem in that a large amount of rolling reduction is required in the latter stage of the finish rolling mill having a low temperature, and the addition of a rolling mill is large, thereby limiting the thickness of the finally rollable sheet.

【0006】また、熱間仕上げ圧延機のスタンド間を不
活性ガス雰囲気下に置くとともに、圧延機入側近傍で表
面スケールを除去して圧延するという方法も提案されて
いる(特開平4-66203 号公報参照)。しかし、仕上げス
タンド間全体を不活性ガス雰囲気に置くために使用する
不活性ガス量が膨大なものとなるのみならず、スタンド
間がボックスで覆われるため、例えばスタンド間張力の
かかり過ぎによる鋼帯破断等のトラブル発生時の復旧に
多大な労力と時間を要して生産性が大幅に阻害されると
いう問題がある。
[0006] A method has also been proposed in which the space between the stands of a hot finishing rolling mill is placed in an inert gas atmosphere, and the surface scale is removed near the entry side of the rolling mill and rolling is performed (Japanese Patent Laid-Open No. 4-66203). Reference). However, not only does the amount of inert gas used to place the entire space between the finishing stands in an inert gas atmosphere become enormous, but also the space between the stands is covered with a box. There is a problem that a great deal of labor and time are required for recovery in the event of occurrence of a trouble such as breakage, and the productivity is greatly impaired.

【0007】さらに、これらの従来技術はいずれも普通
鋼あるいは低炭素鋼を対象としたものであり、表面品質
や耐食性が特に重視されるステンレス鋼に関するもので
はない。ステンレス鋼では熱間圧延時に生成するスケー
ル量は低炭素鋼などと比較して若干少なめではあるが、
ほとんどの場合、そのままでは使用に供することができ
ず酸洗を行う必要がある。そして、ステンレス鋼は普通
鋼に比べて脱スケール性が悪いため、専用の酸洗設備を
誂える必要があり、さらに酸洗速度も低炭素鋼などに比
べ遅いため生産性の悪化を余儀なくされて製造コストが
高くならざるをえない。
[0007] Furthermore, all of these prior arts are directed to ordinary steel or low carbon steel, and do not relate to stainless steel in which surface quality and corrosion resistance are particularly important. In stainless steel, the amount of scale generated during hot rolling is slightly smaller than that of low carbon steel, etc.
In most cases, it cannot be used as it is, and must be pickled. Since stainless steel has poor descaling properties compared to ordinary steel, it is necessary to customize special pickling equipment.Furthermore, the pickling speed is slower than that of low carbon steel, etc. Manufacturing costs have to be high.

【0008】[0008]

【発明が解決しようとする課題】このように、熱延鋼板
の薄スケール化は従来から試みられているにもかかわら
ず、生産性やコストを満足し実用に足る技術は未だ存在
しない。さらに、ステンレス鋼に関して熱延鋼板の薄ス
ケール化のための方策を検討し、実用化たらしめた例は
見当たらない。
As described above, although attempts have been made to reduce the thickness of a hot-rolled steel sheet, there is still no technique that satisfies productivity and cost and is practical. Furthermore, no measures have been taken to reduce the thickness of hot-rolled steel sheets to stainless steel, and no practical example has been found.

【0009】ステンレス鋼は、高価なCrやNi等の金属元
素を多量に含有することに加え、普通鋼と比較して酸洗
性が悪いため専用の酸洗設備を要し、さらに酸洗速度も
遅いことから生産性も制約を受けるため、非常に高価な
材料となっている。そのため、いかに耐食性、美観等の
点で普通鋼より優れた特徴を有していても、コスト面で
その使用が制限される場合が多いのが現状である。
[0009] In addition to containing a large amount of expensive metal elements such as Cr and Ni, stainless steel has a poor pickling property as compared with ordinary steel, and requires special pickling equipment. Is also very expensive because productivity is limited due to slow speed. Therefore, even if it has characteristics superior to ordinary steel in terms of corrosion resistance, aesthetics, etc., its use is often limited in terms of cost at present.

【0010】ステンレス鋼でも表面性状があまり問題視
されない用途向けに酸洗工程を経ない熱延鋼板を提供で
きれば、コスト面での使用制限が大幅に緩和される筈で
ある。ところが現状では、焼鈍(酸洗前に一般に行われ
る)−酸洗を経ない熱延ステンレス鋼板(以下適宜「黒
皮材」という)は、曲げ加工やプレス加工を施した場
合、加工により表面のスケールが部分的に剥離し、金型
を傷つけたり粉塵となって作業環境を悪化させる等の不
都合が生じる問題がある。さらに、耐食性についても、
通常のステンレス鋼の酸洗板や冷延板に比べて劣ってお
り、特に曲げ・プレス等の加工を受けた部位の耐食性が
劣るという問題がある。
[0010] If a hot-rolled steel sheet that does not undergo an acid washing step can be provided for applications in which the surface properties of stainless steel are not regarded as a problem, use restrictions in terms of cost should be greatly eased. However, at present, annealing (generally performed before pickling) -a hot-rolled stainless steel sheet that has not been subjected to pickling (hereinafter referred to as "black scale material" as appropriate), when subjected to bending or pressing, the surface of the steel is processed by processing. There is a problem in that the scale is partially peeled off, and the mold is damaged or dust is generated, thereby deteriorating the working environment. Furthermore, regarding corrosion resistance,
It is inferior to a normal stainless steel pickled plate or cold rolled plate, and there is a problem that the corrosion resistance of a portion that has been subjected to processing such as bending or pressing is particularly poor.

【0011】上記従来技術の問題点に鑑み、本発明は、
表面酸化スケール生成が大幅に抑制されてなり、黒皮材
同士の比較において従来よりも、特に加工部の耐食性に
優れ、しかも曲げ・プレス等加工時のスケール剥離が問
題とならないレベルに停まる優れたスケール密着性を備
えたオーステナイト系ステンレス熱延鋼板およびその製
造方法を提供することを目的とする。
In view of the above-mentioned problems of the prior art, the present invention provides:
The generation of surface oxide scale is greatly suppressed, and compared with the conventional black scale materials, the corrosion resistance of the processed part is particularly excellent, and the scale peeling at the time of processing such as bending and pressing is at a level that does not pose a problem It is an object of the present invention to provide an austenitic stainless hot-rolled steel sheet having improved scale adhesion and a method for producing the same.

【0012】[0012]

【課題を解決するための手段】本発明者らはこの目的達
成に向け、ステンレス熱延鋼板、とくにオーステナイト
系ステンレス熱延鋼板の表面酸化スケール形成に及ぼす
熱延条件とくに熱間圧延雰囲気の影響を詳細に検討した
結果、酸化スケールの生成・成長には熱間圧延工程のう
ちでもとくに仕上げ圧延ロール噛み出し部の雰囲気酸素
濃度が大きく影響し、さらに、黒皮材の耐食性およびス
ケール密着性はスケール厚さとスケール組成に大きく支
配されるという新規かつ重要な知見を得た。
In order to achieve this object, the present inventors have studied the effects of hot rolling conditions, particularly the hot rolling atmosphere, on the formation of surface oxide scale on hot-rolled stainless steel sheets, especially on hot-rolled austenitic stainless steel sheets. As a result of a detailed study, the formation and growth of oxide scale is greatly affected by the oxygen concentration in the atmosphere at the start of the finish rolling roll, especially in the hot rolling process.In addition, the corrosion resistance and scale adhesion of the black scale material are affected by the scale. A new and important finding that thickness and scale composition are dominant has been obtained.

【0013】本発明はかかる知見に基づいて完成された
ものであって、表面のスケール厚さが 1.0μm 以下で該
スケール中のFe、Crの濃度をそれぞれC Fe、CCrとした
とき下記に定義されるCCr比が0.40以上であることを特
徴とする耐食性およびスケール密着性に優れたオーステ
ナイト系ステンレス熱延鋼板である。
The present invention has been completed based on such findings.
The scale thickness of the surface is 1.0 μm or less.
The concentrations of Fe and Cr in the scale Fe, CCrMade
Where C is defined belowCrThe ratio is 0.40 or more.
Austen with excellent corrosion resistance and scale adhesion
It is a hot rolled stainless steel sheet.

【0014】記 CCr比=CCr/(CFe+CCr) また、本発明は、スラブを熱間にて粗圧延し、デスケー
リングを行い、仕上げ圧延してコイル状に巻き取るにあ
たり、仕上げ圧延ロール噛み出し部を、好ましくは局所
ガスパージすることにより、酸素濃度1.0vol%以下の雰
囲気に保持し、900℃以下で巻き取ることを特徴とする
耐食性およびスケール密着性に優れたオーステナイト系
ステンレス熱延鋼板の製造方法である。
C Cr ratio = C Cr / (C Fe + C Cr ) In the present invention, the slab is hot-rolled roughly, descaled, finish-rolled, and wound into a coil to finish the slab. Austenitic stainless steel with excellent corrosion resistance and scale adhesion, characterized by maintaining the atmosphere at an oxygen concentration of 1.0 vol% or less and winding up at 900 ° C or less, preferably by local gas purging of the roll roll extruded portion. This is a method for producing a rolled steel sheet.

【0015】[0015]

【発明の実施の形態】はじめに、本発明の契機となった
研究実験について説明する。図1は、この実験に用いた
試験圧延機の(a)は模式側面図、(b)は(a)で上
圧延ロールを取り去った状態の部分的模式平面図であ
り、試験材10を加熱炉1で加熱後圧延ロール2で圧延
し、その後冷却水噴霧装置3で冷却後均熱炉4に装入し
て均熱保持することにより、仕上げ熱延工程を模すこと
ができるようになっている。試験材10は噛み込み線10A
から噛み出し線10B までの間で圧延ロール2により圧下
される。5は噛み出し部(噛み出し線10B 直近周辺)の
雰囲気制御用のガスノズル、6はこの雰囲気の酸素濃度
測定用の酸素メータ、6Aは酸素センサである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a description will be given of a research experiment which triggered the present invention. FIG. 1A is a schematic side view of the test rolling mill used in this experiment, and FIG. 1B is a partial schematic plan view of the test rolling mill with the upper rolling roll removed in FIG. After heating in the furnace 1, rolling is performed by the rolling roll 2, and then, after cooling in the cooling water spraying device 3, the material is charged into the soaking furnace 4 and maintained at a uniform temperature, so that the finishing hot rolling process can be simulated. ing. Test material 10 is biting wire 10A
Is rolled down by the rolling rolls 2 from the wire to the start line 10B. Reference numeral 5 denotes a gas nozzle for controlling the atmosphere in the protruding portion (in the vicinity of the protruding line 10B), 6 denotes an oxygen meter for measuring the oxygen concentration in this atmosphere, and 6A denotes an oxygen sensor.

【0016】この試験圧延機を用いて、熱間圧延中の雰
囲気と表面スケール生成挙動との関連を検討した。試験
材としては18wt%Cr−8.3wt %Niのオーステナイト系ス
テンレス鋼を使用し、初期厚さ10mmのものをステンレス
フォイルでくるみ、Arガスを満たして無酸化雰囲気とし
た加熱炉1に装入して1020℃で加熱した。加熱後、圧延
直前に試験材10をフォイルから取り出して圧延ロール2
に噛み込ませ、圧延温度1000℃、圧下率50%の1パス圧
延を行い、噛み出し部の雰囲気を種々変更するととも
に、圧延後の試験材(熱延板)10を冷却水噴霧装置3で
水噴射量を変更して冷却後、巻取後コイル内部雰囲気相
当の酸素濃度3.0vol%(残部N2)に雰囲気調整し各種温
度に維持した均熱炉4内に2時間保持することにより各
種巻き取り条件をシミュレートし、この過程を経た熱延
板10について、表面に生成したスケールの厚さを調査し
た。
Using this test rolling mill, the relationship between the atmosphere during hot rolling and the surface scale formation behavior was examined. Austenitic stainless steel of 18wt% Cr-8.3wt% Ni was used as a test material. An initial thickness of 10mm was wrapped with a stainless steel foil, and charged into a heating furnace 1 filled with Ar gas and made into a non-oxidizing atmosphere. And heated at 1020 ° C. After heating, just before rolling, remove the test material 10 from the foil and roll
And rolled at a rolling temperature of 1000 ° C. and a reduction of 50% in one pass to change the atmosphere of the extruded portion in various ways. The test material (hot-rolled sheet) 10 after rolling is cooled by a cooling water spray device 3. After cooling by changing the water injection amount, after winding, the atmosphere is adjusted to an oxygen concentration of 3.0 vol% (remainder N 2 ) equivalent to the atmosphere inside the coil, and maintained in a soaking furnace 4 maintained at various temperatures for 2 hours. The winding conditions were simulated, and the thickness of the scale formed on the surface of the hot-rolled sheet 10 having undergone this process was investigated.

【0017】噛み出し部の雰囲気変更は、酸素メータ6
(酸素センサ6Aは噛み出し線10B から下流側に200mm 離
れた位置に置いた)で酸素濃度をモニタしながら、ガス
ノズル5から流量を変えてN2ガスを噴出させて局所ガス
パージすることにより行った。この方法によれば、噛み
出し部の酸素濃度を0.1vol%から大気中濃度までの範囲
で任意かつ容易に制御できる。なお、酸素センサ6Aの噛
み出し線10B からの距離を50〜500mm の範囲で変化させ
ても酸素メータ6の測定値に有意差はなかったが、それ
より離れると測定値が高くなった。
The change of the atmosphere of the biting portion is performed by the oxygen meter 6.
While monitoring the (oxygen sensor 6A is placed at a distance 200mm downstream from chewing out line 10B) oxygen concentration, thereby ejecting N 2 gas by changing the flow rate from the gas nozzle 5 was carried out by local gas purge . According to this method, the oxygen concentration at the biting portion can be arbitrarily and easily controlled within a range from 0.1 vol% to the atmospheric concentration. The measured value of the oxygen meter 6 did not differ significantly when the distance of the oxygen sensor 6A from the starting line 10B was changed in the range of 50 to 500 mm, but the measured value became higher when the distance was larger than that.

【0018】熱延板のスケール厚さは、断面のSEM観
察像により測定した。例えば図2は、冷却後均熱保持温
度 750℃とした場合の噛み出し部酸素濃度とスケール厚
さとの関係を示すグラフであり、図より、スケール厚さ
が噛みだし部の雰囲気酸素濃度に大きく依存し、酸素濃
度を1.0vol%以下に抑制することによりスケール厚さを
大幅に抑制できることがわかる。
The scale thickness of the hot-rolled sheet was measured by an SEM observation image of a cross section. For example, FIG. 2 is a graph showing the relationship between the concentration of oxygen at the extraction portion and the thickness of the scale when the soaking temperature is 750 ° C. after cooling. It can be seen that the scale thickness can be significantly suppressed by suppressing the oxygen concentration to 1.0 vol% or less.

【0019】また、例えば図3は、噛み出し部酸素濃度
を1.0vol%に制御した場合の冷却後均熱保持温度とスケ
ール厚さとの関係を示すグラフであり、図より、この保
持温度が高くなるとスケール成長速度が大きくなるため
スケール厚さは厚くなるが、保持温度の影響の程度は噛
み出し部酸素濃度の影響に比較して僅かであり、噛み出
し部酸素濃度1.0vol%の場合、保持温度 900℃以下でス
ケール厚さが 1.0μm以下に抑えられることがわかる。
For example, FIG. 3 is a graph showing the relationship between the soaking temperature after cooling and the scale thickness when the oxygen concentration at the biting portion is controlled to 1.0 vol%. However, the scale growth rate increases and the scale thickness increases, but the effect of the holding temperature is slightly smaller than the effect of the oxygen concentration at the extruded portion. It can be seen that the scale thickness can be suppressed to 1.0 μm or less at a temperature of 900 ° C. or less.

【0020】なお、このようなスケール厚さの抑制現象
は次のような機構に基づくものと推察される。すなわ
ち、スケール生成・成長に対しては酸化雰囲気および温
度の他に、圧延時に導入される歪みも駆動力として作用
するが、噛み出し部酸素濃度を抑制された圧延材は、歪
み導入から回復・解放までの熱延歪みが駆動力として作
用しうる僅かな時間帯を難酸化雰囲気に護られて通過し
たことで急激なスケール生成・成長が抑制されたものと
考えられる。
Incidentally, it is assumed that such a phenomenon of suppressing the scale thickness is based on the following mechanism. In other words, in addition to the oxidizing atmosphere and temperature, the strain introduced during rolling also acts as a driving force for scale generation and growth, but the rolled material in which the oxygen concentration in the extruded portion is suppressed recovers from the introduction of strain. It is considered that the rapid generation and growth of the scale was suppressed by passing through a short time zone in which the hot rolling strain before release could act as a driving force, protected by the non-oxidizing atmosphere.

【0021】一方、これらのスケールをAES、X線回
折、TEM等により分析したところ、検出される酸化物
はいずれの熱延板においても主として(Fe,Cr)2O3および
(Fe,Cr)3O4であったが、噛み出し部酸素濃度1.0vol%以
下とした条件下ではスケール中のCr濃度が高くなる傾向
が認められた。そして、スケール中のCr濃度がある値以
上になると、後述の実験例に示すように、同じスケール
厚さの熱延板のスケール密着性および耐食性が一段と向
上することがわかった。
On the other hand, when these scales were analyzed by AES, X-ray diffraction, TEM, etc., the oxides detected were mainly (Fe, Cr) 2 O 3 and
Although it was (Fe, Cr) 3 O 4 , the Cr concentration in the scale tended to increase under the condition that the oxygen concentration in the extruded portion was 1.0 vol% or less. When the Cr concentration in the scale became a certain value or more, it was found that the scale adhesion and the corrosion resistance of the hot-rolled sheet having the same scale thickness were further improved as shown in the experimental examples described later.

【0022】なお、スケール中のCr濃度が前記のように
高くなるのは、酸化能力の低い条件下では、Feよりも低
い酸化物生成エネルギーを有するCrの酸化割合が増加す
るためと考えられる。本発明者らは、こうした研究実験
で得られた上記知見に基づき、オーステナイト系ステン
レス熱延鋼板の表面スケールを、従来の熱間圧延設備の
大幅な改造を伴うことなく、効果的に抑制できる技術を
発明するに至り、さらに、オーステナイト系ステンレス
熱延鋼板のスケール厚さ・スケール組成とスケール密着
性・耐食性との関係を鋭意検討した結果、両者には密接
な関係があることを見出して本発明を完成した。
It is considered that the reason why the Cr concentration in the scale is increased as described above is that the oxidation rate of Cr having an oxide generation energy lower than that of Fe increases under conditions of low oxidation ability. The present inventors have developed a technology that can effectively suppress the surface scale of an austenitic stainless steel hot-rolled steel sheet without significantly modifying a conventional hot-rolling facility, based on the above findings obtained in such research experiments. As a result of intensive studies on the relationship between the scale thickness and scale composition of the austenitic stainless steel hot-rolled steel sheet and the scale adhesion and corrosion resistance, it was found that there is a close relationship between the two and the present invention. Was completed.

【0023】次に、本発明の要件限定理由を説明する。 (1) スケール厚さ 1.0μm 以下:オーステナイト系ステ
ンレス熱延鋼板(黒皮材)の耐食性は、母地合金組成に
よるところが大きいが、表面スケールの組成および厚さ
によっても大きく変わることがわかった。すなわち、ス
ケール組成を代表させたCCr比が後述の好適範囲にある
ときスケール厚さが薄くなると耐食性が向上し、その効
果は 1.0μm 以下で顕著となる。
Next, the reasons for limiting the requirements of the present invention will be described. (1) Scale thickness 1.0 μm or less: The corrosion resistance of austenitic stainless steel hot-rolled steel sheet (black scale material) largely depends on the base alloy composition, but it is also found that the corrosion resistance greatly changes depending on the composition and thickness of the surface scale. That is, when the C Cr ratio, which is representative of the scale composition, is in a preferred range described below, the corrosion resistance is improved when the scale thickness is reduced, and the effect becomes remarkable at 1.0 μm or less.

【0024】また、黒皮材のスケール密着性(加工時難
剥離性)も、CCr比およびスケール厚さに大きく左右さ
れ、CCr比が後述の好適範囲にあるときスケール厚さが
薄くなるとスケール密着性が向上し、その効果はスケー
ル厚さ 1.0μm 以下で顕著となる。よって、黒皮材の耐
食性およびスケール密着性を両方とも顕著に向上させる
には、スケール厚さが 1.0μm 以下である必要がある。
なお、スケール厚さが 0.5μm 以下で外観がテンパーカ
ラー状を呈し表面光沢が一層向上するので、スケール厚
さのより好ましい範囲は 0.5μm 以下である。また、ス
ケールは全くないに越したことはないのでスケール厚さ
の下限は特に設ける必要がない。 (2) CCr比0.40以上:黒皮材の耐食性(とくに加工部分
の耐食性)およびスケール密着性は、前述のスケール厚
みとともにCCr比に大きく依存し、スケール厚さ 1.0μ
m 以下においてCCr比が0.40以上であると、耐食性とス
ケール密着性とがともに向上する。
The scale adhesion (hard-to-peel off during processing) of the black scale material is also greatly affected by the C Cr ratio and the scale thickness. When the C Cr ratio is within a preferred range described later, the scale thickness becomes thinner. The scale adhesion is improved, and the effect becomes remarkable when the scale thickness is 1.0 μm or less. Therefore, in order to remarkably improve both the corrosion resistance and scale adhesion of the scale material, the scale thickness needs to be 1.0 μm or less.
When the scale thickness is 0.5 μm or less, the appearance is a temper color and the surface gloss is further improved. Therefore, the more preferable range of the scale thickness is 0.5 μm or less. Since there is no scale at all, there is no particular need to set a lower limit for the scale thickness. (2) C Cr ratio 0.40 or more: The corrosion resistance (especially the corrosion resistance of the processed portion) and scale adhesion of the black scale material greatly depend on the C Cr ratio together with the scale thickness described above, and the scale thickness is 1.0 μm.
When the C Cr ratio is 0.40 or more at m or less, both corrosion resistance and scale adhesion are improved.

【0025】このことを裏付ける実験例を以下に述べ
る。SUS304の熱延板(1.5mm 厚)を酸洗して一旦スケー
ルを除去した後、表1に示す条件で大気中で熱処理を施
してスケール厚さを 0.7μm 程度に調整した供試材A〜
D、ならびに、SUS304の素材(10mm厚)を図1に示した
試験圧延設備にて表2に示す条件以外は前記研究実験と
同様の要領で熱延(1パスで圧下率50%)−冷却−均熱
してスケール厚さを 0.7μm 程度に調整した供試材E、
Fを準備し、これらの供試材について、スケール厚さ、
Cr比、耐食性、加工時のスケール密着性を調べた。な
お、供試材Eは大気中の熱延でスケール厚さを 0.7μm
程度に調整するために圧延温度 600℃、巻取温度(C
T) 400℃と通常のオーステナイトステンレス鋼よりず
っと低温で圧延したものである。
An experimental example supporting this is described below. Specimens A to SUS304 hot-rolled (1.5 mm thick) were pickled and scales were removed once, and then heat-treated in air under the conditions shown in Table 1 to adjust the scale thickness to about 0.7 µm.
D and SUS304 material (10 mm thick) were hot rolled (50% reduction in one pass) and cooled in the same manner as in the above research and experiment, except for the conditions shown in Table 2 using the test rolling equipment shown in FIG. Specimen E, which was soaked to adjust the scale thickness to about 0.7 μm,
Prepare F, and for these test materials, scale thickness,
The C Cr ratio, corrosion resistance, and scale adhesion during processing were examined. Sample E was hot rolled in air and had a scale thickness of 0.7 μm.
Rolling temperature 600 ° C, winding temperature (C
T) Rolled at 400 ° C, much lower than normal austenitic stainless steel.

【0026】スケール厚さは、採取した板を液体窒素中
で冷却−破断し、その断面をSEM観察して求めた。C
Cr比を導出するCCrおよびCFeは、試料表面のスケール
をAES分析しそのピーク強度比により求めた。耐食性
については、50mm×100mm の試験片を角度90°の曲げ加
工を施した後、5%NaCl水溶液を用いて表3に示す条件
で塩乾湿複合サイクル腐食試験(30サイクル)を行い、
試験後に曲げ加工部および未加工部を目視観察し表4に
示すグレードで評価した。
The scale thickness was determined by cooling and breaking the sampled plate in liquid nitrogen and observing the cross section by SEM. C
C Cr and C Fe for deriving the Cr ratio were obtained from the peak intensity ratio by AES analysis of the scale of the sample surface. Regarding the corrosion resistance, a 50 mm x 100 mm test piece was bent at an angle of 90 °, and then a salt-dry / wet combined cycle corrosion test (30 cycles) was performed using a 5% NaCl aqueous solution under the conditions shown in Table 3.
After the test, the bent portion and the unprocessed portion were visually observed and evaluated according to the grades shown in Table 4.

【0027】加工時のスケール密着性(加工スケール密
着性)については、加工によるスケール剥離量で評価し
た。この量は、JIS13B引張試験片の標点部分(10mm×20
mm)の表裏面に貼って15%引張加工後に剥がした粘着テ
ープの貼・剥前後の重量増分(単位面積当たり)から、
テープの粘着力のみによるスケール剥離量すなわち試料
表面に貼って剥がした50mm×50mmの粘着テープの貼・剥
前後の重量増分(単位面積当たり)を差し引いて求め
た。
The scale adhesion during processing (processed scale adhesion) was evaluated based on the amount of scale peeled during processing. This amount is measured in the gauge part of JIS13B tensile test piece (10mm × 20
mm) from the weight increase (per unit area) before and after applying and removing the adhesive tape that was applied to the front and back surfaces and peeled after 15% tensile processing.
It was determined by subtracting the amount of scale peeling based only on the adhesive strength of the tape, that is, the weight increase (per unit area) before and after sticking and peeling of a 50 mm × 50 mm adhesive tape stuck and peeled on the sample surface.

【0028】なお、これら試験・分析・評価方法は後述
の実施例にも適用される。これらの結果を表1、表2に
併せ示す。
These test / analysis / evaluation methods are also applied to the examples described later. These results are shown in Tables 1 and 2.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】スケール厚さはいずれの供試材でも概ね
0.7μm となったが、CCr比は0.26〜0.75の範囲で変化
した。表1、表2からわかるように、過程が熱処理であ
るか熱延であるかに関わらずスケール厚さがほぼ同じ場
合、加工によるスケール剥離量および耐食性はCCr比に
左右され、CCr比が0.40以上でスケール密着性が向上す
るとともに、曲げ加工部の耐食性も向上する。
The thickness of the scale is approximately the same for all the test materials.
Although it was 0.7 μm, the C Cr ratio changed in the range of 0.26 to 0.75. Table 1, as can be seen from Table 2, when the scale thickness is approximately the same regardless of whether the process is a hot-rolled or a heat treatment, descaling weight and corrosion resistance due to processing is dependent on the C Cr ratio, C Cr ratio When 0.40 or more, the scale adhesion is improved and the corrosion resistance of the bent portion is also improved.

【0034】これは、スケール厚み 1.0μm 以下におい
てCCr比が0.40以上であると、スケールと母地合金との
密着性が加工によっても剥離しないレベルに達し、それ
に随伴してスケール剥離に伴う耐食性への悪影響、すな
わち隙間腐食を起こしやすい環境の形成や、不働態皮膜
の発達が不十分で発錆しやすい状態にある母地合金の露
出などが抑えられるためと推察される。
This is because when the C Cr ratio is 0.40 or more at a scale thickness of 1.0 μm or less, the adhesion between the scale and the base metal reaches a level at which the scale does not exfoliate even when it is worked. This is presumed to be due to the suppression of adverse effects on steel, that is, the formation of an environment in which crevice corrosion is likely to occur, and the exposure of the base alloy in a state where the passive film is insufficiently developed and easily rusts.

【0035】すなわち、耐食性とスケール密着性との両
方に優れたオーステナイトステンレス熱延鋼板は、CCr
比≧0.40を満足する必要がある。 (3) 仕上げ圧延ロール噛み出し部を酸素濃度1.0vol%以
下の雰囲気に保持:前述のように、熱延中のスケールの
生成・成長を抑制するには、圧延により導入された歪み
が多量に残存する圧延直後の鋼帯を難酸化環境に置くこ
とが有効である。とくに、熱延中のオーステナイト系ス
テンレス鋼のスケール生成・成長を厚さ 1.0μm 以下に
抑え、かつCCr比を0.40以上に制御するためには、仕上
げ圧延ロール噛み出し部を酸素濃度1.0vol%以下の雰囲
気に保持することが必要であるため、上記のように規定
する。酸素濃度は可能なかぎり低いほうが望ましいこと
は自明であるから本発明では特に下限は設けない。
That is, an austenitic stainless hot-rolled steel sheet excellent in both corrosion resistance and scale adhesion is C Cr
It is necessary to satisfy the ratio ≧ 0.40. (3) Finishing roll roll is kept in an atmosphere with oxygen concentration of 1.0 vol% or less: As described above, in order to suppress scale generation and growth during hot rolling, a large amount of strain introduced by rolling is required. It is effective to place the remaining steel strip immediately after rolling in a non-oxidizing environment. In particular, in order to suppress the scale formation and growth of the austenitic stainless steel during hot rolling to a thickness of 1.0 μm or less and to control the C Cr ratio to 0.40 or more, the oxygen concentration of the finishing roll is set to 1.0 vol%. Since it is necessary to maintain the following atmosphere, it is defined as described above. Since it is obvious that the oxygen concentration is desirably as low as possible, no particular lower limit is set in the present invention.

【0036】圧延ロール噛み出し部雰囲気制御は、前記
研究実験で述べたように局所ガスパージによって容易に
実施できるので、従来技術にあるような長大なボックス
を設ける必要はない。またパージ用のガスとしては前記
研究実験で用いたN2ガスのほか、Arガスあるいは他の不
活性ガス等の非酸化性ガスを用いてもよい。なお、噛み
出し部雰囲気制御は、仕上圧延機全スタンドの圧延ロー
ルに対して行うのが最善であるが、製品によってはいく
つかのスタンドについてこれを省略することもできる。 (4) 巻取温度 900℃以下:圧延後のコイル巻取温度が 9
00℃を超えると、噛み出し部雰囲気制御を行って熱延中
のスケール生成・成長を抑制しても、コイル冷却中にス
ケールが成長し厚さ 1.0μm を超えてしまうため、巻取
温度は 900℃以下に規定する。なお、スケール厚さ 0.5
μm 以下に制御してテンパーカラー状とし表面光沢をさ
らに向上させるには巻取温度を 800℃以下とすることが
望ましい。また、巻取温度の下限はスケール厚さ制御の
観点からは特に規定されず、巻き形状不良防止の面から
通常設定される下限(300 ℃程度)以上であればよい。
As described in the above-mentioned research experiment, the control of the atmosphere in the roll roll extruding portion can be easily performed by local gas purging, so that it is not necessary to provide a long box as in the prior art. As the gas for purging, a non-oxidizing gas such as Ar gas or other inert gas may be used in addition to the N 2 gas used in the above research and experiment. It is best to control the atmosphere of the extruding portion on the rolling rolls of all the stands of the finishing mill, but it may be omitted for some stands depending on the product. (4) Winding temperature 900 ° C or lower: coil winding temperature after rolling is 9
If the temperature exceeds 00 ° C, even if the scale formation and growth during hot rolling is controlled by controlling the atmosphere in the extruded portion, scale grows during coil cooling and exceeds 1.0 μm in thickness, so the winding temperature is Specify below 900 ° C. The scale thickness 0.5
The winding temperature is desirably set to 800 ° C. or lower in order to control the thickness to less than μm to form a temper color and further improve the surface gloss. Further, the lower limit of the winding temperature is not particularly limited from the viewpoint of scale thickness control, and may be at least the lower limit (approximately 300 ° C.) normally set from the viewpoint of preventing a defective winding shape.

【0037】[0037]

【実施例】厚さ200mm のSUS304スラブを1200℃に加熱
後、粗圧延機にて厚さ30mmのシートバーに粗圧延して図
4に示す仕上げ圧延設備に送り、デスケーリング装置7
でデスケーリング後、各スタンド出側に噛み出し部酸素
濃度制御用のN2ガスノズル5が配置された7スタンドの
仕上げ圧延機8により、圧延開始温度1000℃、圧延終了
温度 960℃とし、N2ガス噴出量の調整により噛み出し部
酸素濃度を表5に示すように種々変えて、仕上げ板厚
1.5mmに仕上げ圧延し、続いて冷却装置(冷却水噴霧装
置)3で水量を変えて水噴霧冷却することにより巻取温
度(CT)を表5に示す通り種々変えてコイラ9で巻き
取った。なお、図中の11は圧延パスラインである。
EXAMPLE A SUS304 slab having a thickness of 200 mm was heated to 1200 ° C., then roughly rolled into a sheet bar having a thickness of 30 mm by a rough rolling mill, and sent to a finishing rolling facility shown in FIG.
In after descaling, the finishing mill 8 7 stand N 2 gas nozzle 5 is arranged in the chew out unit oxygen concentration control in each stand outlet side, rolling start temperature 1000 ° C., the rolling end temperature 960 ° C., N 2 The thickness of the finished plate is varied by adjusting the gas ejection amount to variously change the oxygen concentration at the biting portion as shown in Table 5.
Finish rolling was performed to 1.5 mm, followed by water spray cooling by changing the amount of water with a cooling device (cooling water spraying device) 3 to wind up with a coiler 9 while changing the winding temperature (CT) variously as shown in Table 5. . Note that reference numeral 11 in the drawing denotes a rolling pass line.

【0038】こうして得られた熱延コイル(熱延板)か
ら試験片を採取し、スケール厚さ、CCr比、耐食性、加
工時のスケール密着性を調査した。試験・分析・評価方
法は前記実験例で述べた通りである。なお、スケールの
ない状態での耐食性をチェックするために、表5の条件
2の熱延板を酸洗して試験したところ当然ながらグレー
ド1であった。
Test specimens were taken from the hot-rolled coil (hot-rolled sheet) thus obtained, and the scale thickness, C Cr ratio, corrosion resistance, and scale adhesion during processing were examined. The test / analysis / evaluation method is as described in the experimental example. In addition, in order to check the corrosion resistance in the state without a scale, the hot-rolled sheet under the condition 2 in Table 5 was pickled and tested.

【0039】この結果を表5に示す。Table 5 shows the results.

【0040】[0040]

【表5】 [Table 5]

【0041】条件1は、噛み出し部雰囲気制御を行わな
い従来例であり、スケール厚さは 8.2μm と最も厚く、
Cr比は0.22と最も小さく、耐食性、スケール密着性と
も最悪のレベルにある。条件2は、酸素濃度が3.2vol%
と本発明範囲より高い比較例であり、スケールが厚さ
2.2μm までしか薄化せず、CCr比も0.30と本発明範囲
に未達のため、耐食性は従来例同様グレード3であり、
スケール密着性は従来例よりは良くなるものの不十分な
レベルである。条件5は、酸素濃度は0.9vol%と本発明
範囲にあるが巻取温度が 940℃と本発明範囲より高い比
較例であり、CCr比は本発明範囲にあるがスケール厚さ
が本発明範囲を超えたために、耐食性がせいぜいグレー
ド2までのレベルに停まり、スケール密着性も条件2ほ
ど悪くはないが、問題のないレベルにまでは達していな
い。
Condition 1 is a conventional example in which the atmosphere control of the extruded portion is not performed, and the scale thickness is the largest at 8.2 μm.
The C Cr ratio is the smallest at 0.22, and the corrosion resistance and scale adhesion are at the worst levels. Condition 2 is that the oxygen concentration is 3.2 vol%
And Comparative Example higher than the range of the present invention, the scale is thick
Since the thickness was reduced to only 2.2 μm and the C Cr ratio did not reach the range of the present invention of 0.30, the corrosion resistance was grade 3 as in the conventional example.
Although the scale adhesion is better than the conventional example, it is an insufficient level. Condition 5, the oxygen concentration is higher comparative example than the present invention range but the ℃ coiling temperature 940 in 0.9Vol% and the range of the present invention, C Cr ratio is the present invention there is scale thickness range of the present invention Since it exceeded the range, the corrosion resistance stopped at a level up to grade 2 at most, and the scale adhesion was not so bad as in condition 2, but did not reach a level without any problem.

【0042】これら従来例、比較例に対し、酸素濃度、
巻取温度とも本発明範囲に制御された発明例である条件
3、4および条件6〜9の熱延板は、スケール厚さ、C
Cr比がともに本発明の規定を満たすので、耐食性はグレ
ード1に到達し、加工によるスケール剥離はほとんど生
じない。このように、本発明によれば、とくに加工部の
耐食性に優れ、かつ加工時のスケール密着性にも優れる
オーステナイト系ステンレス熱延鋼板が得られる。
The oxygen concentration,
The hot rolled sheets under the conditions 3, 4 and the conditions 6 to 9, which are examples of the present invention in which both the winding temperature is controlled within the range of the present invention, have a scale thickness, C
Since both Cr ratios satisfy the requirements of the present invention, the corrosion resistance reaches grade 1 and scale peeling hardly occurs due to processing. As described above, according to the present invention, an austenitic stainless hot-rolled steel sheet having particularly excellent corrosion resistance in a processed portion and excellent scale adhesion during processing can be obtained.

【0043】[0043]

【発明の効果】本発明によれば、黒皮材同士で従来に比
較してスケール厚さが際立って薄くそれゆえ耐食性(特
に加工部の)およびスケール密着性が格段に優れたオー
ステナイト系ステンレス熱延鋼板を、多大な設備投資を
要さず、また生産性を損なうことなく製造することがで
き、これにより、従来、コスト的に有利であっても表面
性状・耐食性の問題で使用が制限され酸洗板や冷延板に
供用の座を譲らざるをえなかった黒皮材を、各種用途分
野に安価に提供できるようになることに加え、これを冷
延素材とする場合にも、そのスケールの薄さから酸洗工
程の省略あるいは酸洗負荷の大幅な低減が必至で製造コ
ストの低減が期待できるという、産業上寄与するところ
多大な種々特段の効果を奏する。
According to the present invention, the austenitic stainless steel has a significantly smaller scale thickness between black scale materials compared to the prior art, and therefore has much better corrosion resistance (particularly in the processed portion) and scale adhesion. Rolled steel sheets can be manufactured without significant capital investment and without impairing productivity, which limits the use of conventional steel sheets due to problems with surface properties and corrosion resistance even if they are cost-effective. In addition to being able to provide inexpensive blackscale materials to various fields of use, which had to yield to pickled and cold-rolled sheets, and when using them as cold-rolled materials, Owing to the thinness of the scale, it is inevitable to omit the pickling step or to significantly reduce the pickling load, and a reduction in manufacturing cost can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】試験圧延機の(a)は模式側面図、(b)は
(a)で上圧延ロールを取り去った状態の部分的模式平
面図である。
1 (a) is a schematic side view of a test rolling mill, and FIG. 1 (b) is a partial schematic plan view of FIG. 1 (a) with an upper rolling roll removed.

【図2】噛み出し部酸素濃度とスケール厚さとの関係を
示すグラフである。
FIG. 2 is a graph showing the relationship between the oxygen concentration at the biting portion and the scale thickness.

【図3】冷却後均熱保持温度とスケール厚さとの関係を
示すグラフである。
FIG. 3 is a graph showing a relationship between a soaking temperature after cooling and a scale thickness.

【図4】実施例に用いた仕上げ圧延設備の模式図であ
る。
FIG. 4 is a schematic diagram of a finish rolling facility used in an example.

【符号の説明】[Explanation of symbols]

1 加熱炉 2 圧延ロール 3 冷却装置(冷却水噴霧装置) 4 均熱炉 5 ガスノズル 6 酸素メータ 6A 酸素センサ 7 デスケーリング装置 8 仕上げ圧延機 9 コイラ 10 試験材(熱延板) 10A 噛み込み線 10B 噛み出し線 11 圧延パスライン DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Rolling roll 3 Cooling device (cooling water spraying device) 4 Soaking furnace 5 Gas nozzle 6 Oxygen meter 6A Oxygen sensor 7 Descaling device 8 Finishing rolling mill 9 Coiler 10 Test material (hot rolled sheet) 10A Biting wire 10B Starting line 11 Rolling pass line

フロントページの続き (51)Int.Cl.6 識別記号 FI C21D 6/00 102 C21D 6/00 102B C23F 15/00 C23F 15/00 Continued on the front page (51) Int.Cl. 6 Identification code FI C21D 6/00 102 C21D 6/00 102B C23F 15/00 C23F 15/00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 表面のスケール厚さが 1.0μm 以下で、
該スケール中のFe、Crの濃度をそれぞれCFe、CCrとし
たとき下記に定義されるCCr比が0.4 以上であることを
特徴とする耐食性およびスケール密着性に優れたオース
テナイト系ステンレス熱延鋼板。 記 CCr比=CCr/(CFe+CCr
1. A scale thickness of the surface is 1.0 μm or less,
An austenitic stainless steel hot-rolled steel having excellent corrosion resistance and scale adhesion, wherein the C Cr ratio defined below is 0.4 or more, where the concentrations of Fe and Cr in the scale are C Fe and C Cr , respectively. steel sheet. Note: C Cr ratio = C Cr / (C Fe + C Cr )
【請求項2】 スラブを熱間にて粗圧延し、デスケーリ
ングを行い、仕上げ圧延してコイル状に巻き取るにあた
り、仕上げ圧延ロール噛み出し部を酸素濃度1.0vol%以
下の雰囲気に保持し、 900℃以下で巻き取ることを特徴
とする耐食性およびスケール密着性に優れたオーステナ
イト系ステンレス熱延鋼板の製造方法。
2. A hot rolling of the slab, descaling, finishing rolling, and winding into a coil shape, the finishing roll roll extruded portion is kept in an atmosphere having an oxygen concentration of 1.0 vol% or less, A method for manufacturing a hot-rolled austenitic stainless steel sheet having excellent corrosion resistance and scale adhesion, characterized by winding at 900 ° C or lower.
【請求項3】 スラブを熱間にて粗圧延し、デスケーリ
ングを行い、仕上げ圧延してコイル状に巻き取るにあた
り、仕上げ圧延ロール噛み出し部を局所ガスパージして
酸素濃度1.0vol%以下の雰囲気に保持し、 900℃以下で
巻き取ることを特徴とする耐食性およびスケール密着性
に優れたオーステナイト系ステンレス熱延鋼板の製造方
法。
3. The slab is hot-rolled roughly, descaled, finish-rolled and wound into a coil. At the end of the roll, the rolled-out portion of the finish-roll is subjected to local gas purging and an atmosphere having an oxygen concentration of 1.0 vol% or less. A method for producing a hot-rolled austenitic stainless steel sheet having excellent corrosion resistance and scale adhesion, wherein the sheet is wound at 900 ° C or lower.
JP25931796A 1996-09-30 1996-09-30 Hot rolled austenitic stainless steel sheet excellent in corrosion resistance and adhesibility of scale and its manufacture Pending JPH1099911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25931796A JPH1099911A (en) 1996-09-30 1996-09-30 Hot rolled austenitic stainless steel sheet excellent in corrosion resistance and adhesibility of scale and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25931796A JPH1099911A (en) 1996-09-30 1996-09-30 Hot rolled austenitic stainless steel sheet excellent in corrosion resistance and adhesibility of scale and its manufacture

Publications (1)

Publication Number Publication Date
JPH1099911A true JPH1099911A (en) 1998-04-21

Family

ID=17332407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25931796A Pending JPH1099911A (en) 1996-09-30 1996-09-30 Hot rolled austenitic stainless steel sheet excellent in corrosion resistance and adhesibility of scale and its manufacture

Country Status (1)

Country Link
JP (1) JPH1099911A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520396A (en) * 2009-03-13 2012-09-06 グリーン・ソース・エナジー・リミテッド・ライアビリティ・カンパニー Suppression of corrosion and scaling of surfaces in contact with sulfur-containing materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520396A (en) * 2009-03-13 2012-09-06 グリーン・ソース・エナジー・リミテッド・ライアビリティ・カンパニー Suppression of corrosion and scaling of surfaces in contact with sulfur-containing materials
US8858717B2 (en) 2009-03-13 2014-10-14 Green Source Energy Llc Inhibiting corrosion and scaling of surfaces contacted by sulfur-containing materials

Similar Documents

Publication Publication Date Title
JP3888396B2 (en) Continuous production method of rolled stainless steel sheet and production line for carrying out it
US6546771B1 (en) Method for manufacturing of strips and rolling mill line
CN110157891A (en) Ultra-thin stainless steel band TA annealing process
CN113512686B (en) Production method of hot-rolled, whole-coil annealed and pickled steel strip with high alloy content
JPH1099911A (en) Hot rolled austenitic stainless steel sheet excellent in corrosion resistance and adhesibility of scale and its manufacture
JP2000351014A (en) PRODUCTION OF THIN SCALE Cr-CONTAINING HOT ROLLED STEEL PLATE
JP3113490B2 (en) Manufacturing method of ultra-thin scale steel sheet
JPH10263622A (en) Hot rolled ferritic stainless steel sheet excellent in corrosion resistance and manufacture thereof
JP3252553B2 (en) Method and apparatus for producing cold rolled steel sheet with excellent surface gloss
JP4320891B2 (en) Manufacturing method of hot-rolled steel sheet with excellent scale adhesion
CN115734827A (en) Method for manufacturing a steel strip and coated steel sheet obtainable thereby
US20060053617A1 (en) Method and device for the continuous production of metallic strips
JP3252704B2 (en) Method for producing hot-rolled steel sheet excellent in pickling properties and surface properties
JP2012006128A (en) Method of manufacturing high-tension steel plate excellent in chemical treatment property and manufacturing apparatus therefor
JPH1177142A (en) Production of hot rolled stainless steel plate
EP3959021B1 (en) Method for producing a high strength silicon containing steel strip with excellent surface quality and said steel strip produced thereby
JP2001314912A (en) Method and equipment for treating surface of hot rolled metallic strip or steel sheet
JP3342799B2 (en) Manufacturing method of good scale thick steel plate
JP3091418B2 (en) Hot rolled stainless steel sheet and method for producing the same
JP2825986B2 (en) Method for producing thin hot rolled steel sheet with excellent surface properties
JPH08188832A (en) Production of cold rolled steel sheet excellent in surface characteristic
JP2820805B2 (en) Method for producing thin hot rolled steel sheet with excellent surface properties
JP3671516B2 (en) Method for producing hot-rolled steel sheet with excellent pickling and surface properties
JPH0517888A (en) Manufacture of stainless steel strip
CN114369701A (en) Method for improving pickling quality of Cr-containing hot forming steel