JPH109813A - Optical position detector - Google Patents

Optical position detector

Info

Publication number
JPH109813A
JPH109813A JP16611096A JP16611096A JPH109813A JP H109813 A JPH109813 A JP H109813A JP 16611096 A JP16611096 A JP 16611096A JP 16611096 A JP16611096 A JP 16611096A JP H109813 A JPH109813 A JP H109813A
Authority
JP
Japan
Prior art keywords
light
optical
detected
waveguide
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16611096A
Other languages
Japanese (ja)
Other versions
JP3379336B2 (en
Inventor
Hajime Nakajima
一 仲嶋
Masahiro Shikai
正博 鹿井
Toshiro Nakajima
利郎 中島
Kazuo Takashima
和夫 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16611096A priority Critical patent/JP3379336B2/en
Publication of JPH109813A publication Critical patent/JPH109813A/en
Application granted granted Critical
Publication of JP3379336B2 publication Critical patent/JP3379336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the size of an optical position detector by providing a condensing means and an imaging means constituted of a planar waveguide on a same substrate. SOLUTION: A luminous flux introduced from an input optical fiber 104 to a planar waveguide (condensing means) 103 propagates while being confined in the Y-axis direction and being dispersed in the Z-axis direction depending on the numerical aperture of the fiber. It is reflected on the curved end face 106 of the planar waveguide and delivered from the outgoing end face 107 before being focused at a desired measuring point on a plane 110 to be detected. A luminous flux reflected on the plane 110 to be detected is introduced from an incoming end face 112 to a planar waveguide (focus means) 111. The luminous flux confined in the Y-axis direction is totally reflected inward on the curved end face 113 of the planar waveguide and the image of a spot on the plane 110 to be detected is separated to respective branch waveguides 114a, 114b depending on the focus position and then the separated states are combined through output optical fibers 115a, 115b and taken out externally. Since the light can be condensed and focused without employing any lens, dimensions of the detector can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、三角測量法を用い
て位置を検出する光学的位置検出装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical position detecting device for detecting a position using a triangulation method.

【0002】[0002]

【従来の技術】従来より位置検出器には三角測量方式と
呼ばれる方式が広く用いられ、安価で簡便であるためカ
メラのオートフォーカス用センサとして多用されてい
る。図4は、例えば刊行物{光計測のニーズとシーズ
P.167(社団法人計量管理協会光応用計測技術調査研究
委員会編)}に記載された三角測量法による位置検出法
を説明するための説明図である。図に示すように、レー
ザ等の光源1、結像レンズ2、位置検出素子{PSD(Pos
ition Sensitive Device)等}3を用い、撮像系を被検
出面4の変位方向に対して斜めに傾けるかあるいは光の
入射方向を傾けるかして構成している。被検出面4が基
準位置から変位すると被検出面4上のスポットが変化
し、それに応じて位置検出素子3上での結像位置が変化
する事を利用して被検出面4の位置を算出するものであ
る。
2. Description of the Related Art Conventionally, a method called a triangulation method has been widely used as a position detector, and since it is inexpensive and simple, it is frequently used as an autofocus sensor for a camera. Fig. 4 shows, for example, the publication “Need for optical measurement and seeds”.
FIG. 136 is an explanatory diagram for describing a position detection method by a triangulation method described in P. 167 (edited by the Metrology Association of Japan). As shown in the figure, a light source 1, such as a laser, an imaging lens 2, a position detection element {PSD (Pos
The imaging system is configured to be tilted obliquely with respect to the displacement direction of the detection target surface 4 or to tilt the light incident direction using} 3 or the like. When the surface 4 to be detected is displaced from the reference position, the spot on the surface 4 to be detected changes, and the position of the surface 4 to be detected is calculated using the fact that the image forming position on the position detection element 3 changes accordingly. Is what you do.

【0003】[0003]

【発明が解決しようとする課題】上記従来例ではレーザ
の平行ビームを用いており投光側にレンズを用いていな
いが、光源にコンパクトな半導体レーザを用いるような
場合にはコリメータレンズが不可欠であるし、気体レー
ザを用いる場合にはレンズ系は不要であるがレーザサイ
ズが本質的に大きなものとなる。即ち、従来の三角測量
法を用いる位置検出器では、光の集光および結像に一般
的な3次元の曲率分布を有するレンズを用いていたので
検出装置の寸法の小型化に限界があった。
In the above conventional example, a parallel beam of laser is used and no lens is used on the light projecting side. However, when a compact semiconductor laser is used as a light source, a collimator lens is indispensable. In the case where a gas laser is used, a lens system is unnecessary, but the laser size is essentially large. That is, in the position detector using the conventional triangulation method, since a lens having a general three-dimensional curvature distribution is used for condensing light and forming an image, there is a limit in reducing the size of the detection device. .

【0004】本発明はかかる課題を解決するためになさ
れたもので、小型化が可能な光学的位置検出装置を得る
ことを目的とするものである。
[0004] The present invention has been made to solve such a problem, and an object of the present invention is to provide an optical position detecting device which can be downsized.

【0005】[0005]

【課題を解決するための手段】本発明に係る第1の光学
的位置検出装置は、光源から導入された光を偏向させて
基準位置に集光させる集光手段、この集光手段によって
被検出面上に形成されたスポットの反射光を結像する結
像手段、およびこの結像手段によって結像されたスポッ
ト像の結像位置の変化から被検出面の基準位置からの変
位を検出する検出手段を備え、上記集光手段と結像手段
の光軸が非同軸である光学的位置検出装置において、上
記集光手段と結像手段が同一基板上に設けられ、上記集
光手段と結像手段が平板導波路で構成されたものであ
る。
A first optical position detecting device according to the present invention is a light condensing means for deflecting light introduced from a light source and condensing the light at a reference position, and detecting the light by the light converging means. Imaging means for imaging reflected light of a spot formed on a surface, and detection for detecting displacement of a detected surface from a reference position from a change in an imaging position of a spot image formed by the imaging means An optical position detecting device, wherein the optical axis of the focusing means and the imaging means are non-coaxial, wherein the focusing means and the imaging means are provided on the same substrate, and The means is constituted by a flat waveguide.

【0006】本発明に係る第2の光学的位置検出装置
は、第1の光学的位置検出装置において、上記集光手段
が平板導波路の光の出射側に一軸収束作用を有する光学
的手段を備え、上記結像手段が平板導波路の光の入射側
に一軸収束作用を有する光学的手段を備えたものであ
る。
According to a second optical position detecting device of the present invention, in the first optical position detecting device, the light condensing means has an optical means having a uniaxial focusing action on the light exit side of the flat waveguide. Wherein the imaging means comprises optical means having a uniaxial focusing action on the light incident side of the flat waveguide.

【0007】[0007]

【発明の実施の形態】図面を使って本発明の実施の形態
を説明する。図1は本発明の実施の形態の光学的位置検
出装置の構成図で、集光手段となる第1の平板導波路1
03と、結像手段となる第2の平板導波路111とが同
一の基板101上に設けられ、集光手段と結像手段の光
軸が非同軸であり位置検出が小型の装置により可能とな
る。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of an optical position detecting device according to an embodiment of the present invention.
03 and a second flat plate waveguide 111 serving as an imaging means are provided on the same substrate 101, and the optical axes of the condensing means and the imaging means are non-coaxial, so that position detection is possible with a small device. Become.

【0008】次に、集光手段の動作について説明する。
光源から入力光ファイバ104より第1の平板導波路1
03内に導入され、図中Aで示した3本の実線で示すよ
うにY軸方向(紙面に垂直方向)には閉じ込められZ軸
方向にはファイバの開口数に応じて拡散しながら伝搬
し、曲面形状を有する第1の平板導波路端面106に入
射する。上記平板導波路端面106で反射した光は、上
記第1の平板導波路103からの光の出射端面107か
ら出射し、被検出面110に至る。ここで、上記平板導
波路端面106の曲率およびその曲面の傾きは、入力光
ファイバ104よりの発散光が、内部全反射を起こし且
つXZ平面内でZ軸に対して所定角度偏向し、光軸がZ
軸に対して所定角度傾いて被検出面110の所望測定範
囲の概括中心位置(基準位置)で焦点を持つように決定
されている。
Next, the operation of the light collecting means will be described.
The first flat waveguide 1 from the input optical fiber 104 from the light source
03, and are confined in the Y-axis direction (perpendicular to the paper surface) as shown by three solid lines indicated by A in the figure, and propagate while diffusing in the Z-axis direction according to the numerical aperture of the fiber. , And enters the first planar waveguide end face 106 having a curved shape. The light reflected on the flat waveguide end face 106 exits from the emission end face 107 of the light from the first flat waveguide 103 and reaches the detection surface 110. Here, the curvature of the flat waveguide end face 106 and the inclination of the curved face are such that the divergent light from the input optical fiber 104 causes total internal reflection and is deflected by a predetermined angle with respect to the Z axis in the XZ plane. Is Z
It is determined to have a focal point at a general center position (reference position) of a desired measurement range of the detection surface 110 while being inclined at a predetermined angle with respect to the axis.

【0009】次に、結像手段の動作について説明する。
上記被検出面110で反射した光束は、第2の平板導波
路111への光の入射端面112より第2の平板導波路
111に導入される。導入されY軸方向に閉じ込められ
た光束は、曲面形状を有する第2の平板導波路端面11
3により上記第1の平板導波路端面106と同様に内部
全反射されて結像する。
Next, the operation of the imaging means will be described.
The light beam reflected by the surface to be detected 110 is introduced into the second planar waveguide 111 from an incident end surface 112 of the light to the second planar waveguide 111. The luminous flux introduced and confined in the Y-axis direction is converted into a second planar waveguide end face 11 having a curved shape.
3, an image is formed by total internal reflection similarly to the end surface 106 of the first planar waveguide.

【0010】次に、検出手段の動作について説明する。
上記平板導波路端面113は、その傾きと曲率を、測定
の概括中心位置(基準位置)に被検出面110がある場
合に、被検出面110上のスポットの像が第2の平板導
波路111に連続して続く分岐導波路114aおよび1
14bの分岐点において結像するように設定する。上記
第2の平板導波路111内の光束が、上記分岐点におい
てその結像位置に応じて各々の分岐導波路に分離され、
分離された状態を検出し、その分離状態を出力光ファイ
バ115aおよび115bに結合して外部に取り出す。
Next, the operation of the detecting means will be described.
When the plane to be detected 113 is located at the approximate center position (reference position) of the measurement, the image of the spot on the surface to be detected 110 is converted into the second plane waveguide 111 by the inclination and the curvature of the plane waveguide end face 113. Waveguides 114a and 1
It is set so that an image is formed at the branch point 14b. The luminous flux in the second flat waveguide 111 is separated into each branch waveguide at the branch point according to the image forming position,
The separated state is detected, and the separated state is coupled to the output optical fibers 115a and 115b and taken out.

【0011】なお、図1は集光手段の光軸を被検出面の
変位方向に対して傾けている場合を示しているがこれに
限定されるのではなく、例えば集光手段の光軸がZ軸と
一致し結像手段の光軸がZ軸に対して傾いている様な系
でもよく、集光手段と結像手段の光軸が非同軸であれば
よい。
FIG. 1 shows a case where the optical axis of the light collecting means is inclined with respect to the direction of displacement of the surface to be detected. However, the present invention is not limited to this. The system may be such that the optical axis of the imaging means is inclined with respect to the Z axis so as to coincide with the Z axis, and the optical axes of the focusing means and the imaging means may be non-coaxial.

【0012】図2は本発明の実施の形態の光学的位置検
出装置の構成図で、図1の光学的位置検出装置におい
て、一軸収束作用を有する光学的手段として棒状レンズ
108を用いた場合である。円筒レンズも上記棒状レン
ズと同様に用いられる。上記棒状レンズ108を第1の
平板導波路103の光の出射側に設けることにより被検
出面110に集光されるスポット量が増しSN比が向上
し、第2の平板導波路111の光の入射側に設けること
により被検出面からの光を導波路に効率よく結像させる
ことができるので、結像の光量が増しSN比が向上し結
果として位置検出のSN比が向上する。
FIG. 2 is a block diagram of an optical position detecting apparatus according to an embodiment of the present invention. In the optical position detecting apparatus shown in FIG. 1, a rod-shaped lens 108 is used as an optical means having a uniaxial focusing function. is there. A cylindrical lens is also used in the same manner as the rod lens. By providing the rod-shaped lens 108 on the light emission side of the first flat waveguide 103, the amount of spots focused on the detection surface 110 is increased, the SN ratio is improved, and the light of the second flat waveguide 111 is reduced. By providing the light on the incident side, light from the surface to be detected can be efficiently formed on the waveguide, so that the amount of light for image formation is increased and the SN ratio is improved. As a result, the SN ratio for position detection is improved.

【0013】[0013]

【実施例】【Example】

実施例1.図1は本発明の第1の実施例の光学的位置検
出装置の構成図である。図において、101は基板、1
02はバッファ層、103は第1の平板導波路、104
は入力光ファイバ、105は光ファイバ保持体である。
106は曲面形状を有する上記第1の平板導波路端面
で、その曲率と曲面の傾きは、形成される収束光束が被
検出面の所望測定範囲の概括中心位置(基準位置)で焦
点を持つように決定されている。107は第1の平板導
波路からの光の出射端面、110は被検出面、111は
第2の平板導波路、112は第2の平板導波路への光の
入射端面である。114aおよび114bは第2の平板
導波路111に連続して続くくさび型に分岐した分岐導
波路、115aおよび115bは出力光ファイバであ
る。113は曲面形状を有する上記第2の平板導波路端
面であり、その傾きと曲率は、測定の中心位置に上記被
検出面110がある場合に、上記被検出面110上のス
ポットの像が上記分岐導波路114aおよび114bの
分岐点において結像するように設定されている。
Embodiment 1 FIG. FIG. 1 is a configuration diagram of an optical position detecting device according to a first embodiment of the present invention. In the figure, 101 is a substrate, 1
02 is a buffer layer, 103 is a first planar waveguide, 104
Is an input optical fiber, and 105 is an optical fiber holder.
Reference numeral 106 denotes an end surface of the first flat waveguide having a curved surface shape. The curvature and the inclination of the curved surface are such that the formed convergent light beam has a focus at the general center position (reference position) of the desired measurement range of the detection surface. Has been determined. Reference numeral 107 denotes an emission end face of light from the first flat waveguide, 110 denotes a detection surface, 111 denotes a second flat waveguide, and 112 denotes an incident end face of light to the second flat waveguide. Reference numerals 114a and 114b denote wedge-shaped branch waveguides that continue from the second planar waveguide 111, and 115a and 115b denote output optical fibers. Reference numeral 113 denotes an end face of the second flat waveguide having a curved surface shape, and its inclination and curvature are such that when the detection target surface 110 is located at the center position of the measurement, the spot image on the detection target surface 110 is It is set so that an image is formed at the branch point between the branch waveguides 114a and 114b.

【0014】なお、上記バッファ層102は、上記基板
101上に厚みを光ファイバ104、115aおよび1
15bのクラッド厚みに概略一致するように形成され、
また上記光ファイバ保持体105は、上記光ファイバ1
04、115aおよび115bを基板上の所定位置に案
内するように各々の位置および大きさが決定されてい
る。
The buffer layer 102 is formed on the substrate 101 by adding optical fibers 104, 115a and 1
It is formed so as to approximately match the cladding thickness of 15b,
The optical fiber holder 105 is provided with the optical fiber 1.
Each position and size are determined so as to guide 04, 115a and 115b to a predetermined position on the substrate.

【0015】上記出力光ファイバ115aおよび115
bに効率良く光束を結合するためには、上記分岐導波路
の終端の形状と上記出力光ファイバのコアの形状が近い
ほど良く、これを概括一致させるように上記第2の平板
導波路の厚みと上記分岐導波路の終端での幅を制御し、
また、各々の上記出力光ファイバのコア位置が上記分岐
導波路の終端位置に一致するように上記光ファイバ保持
体105が配置される。
The output optical fibers 115a and 115
In order to efficiently couple the light beam to the b, it is better that the shape of the end of the branch waveguide and the shape of the core of the output optical fiber are closer, and the thickness of the second planar waveguide is set so as to roughly match this. And controlling the width at the end of the branch waveguide,
Further, the optical fiber holder 105 is arranged so that the core position of each output optical fiber coincides with the terminal position of the branch waveguide.

【0016】次に、上記本発明の実施例の光学的位置検
出装置の製造方法について説明する。以下、本発明の実
施例の光学的位置検出装置を半導体の作製に用いられる
リソグラフィーを利用した技術により製造する場合に基
づいて説明するが本願発明はこれに限定されるものでは
ない。
Next, a method of manufacturing the optical position detecting device according to the embodiment of the present invention will be described. Hereinafter, an optical position detecting device according to an embodiment of the present invention will be described based on a case where the optical position detecting device is manufactured by a technique using lithography used for manufacturing a semiconductor, but the present invention is not limited to this.

【0017】本発明の光学的位置検出装置に係わる構成
材料としては、少なくとも導波路が使用する光波の波長
において透明であれば良く、例えば可視光〜近赤外光の
光源として発光ダイオードおよび半導体レーザ等を用い
た場合は、SiO2、光学ガラスおよび光学ポリマー等
多種類のものが用いられ、また、その他の材質について
は更に多様であるが以下一例について具体的に説明す
る。即ち、基板には例えばガラスを用い、フォトレジス
トをスピナー等で塗布後フォトリソグラフィーによりバ
ッファ層、光ファイバ保持体の2次元形状をパターニン
グし、上記光ファイバーのクラッド厚みと同じ厚みにガ
ラスをスパッタ等により積層した後、リフトオフ、エッ
チング等により上記バッファ層、光ファイバ保持体を成
形する。この時のガラスは基板のガラスとの関連性は無
くても良く、その他にも、基板ガラスをエッチングして
成形する事も可能である。次に同様のリソグラフィー工
程に依り導波路を成形する。導波路厚みは光の利用効率
の面から光ファイバーのコア径に等しい事が望ましく、
また光を導波路内に閉じ込めるために導波路材の屈折率
は上記バッファ層の屈折率に比べて十分に高くなければ
ならない。この後、光ファイバを保持体にはめ込み、必
要であれば接着を行う。以上のように半導体技術を用い
ることにより、本発明の実施例の光学的位置検出装置を
量産性良く作製することができる。
The constituent material of the optical position detecting device of the present invention may be any material as long as it is transparent at least at the wavelength of the light wave used by the waveguide. When such materials are used, various kinds of materials such as SiO 2 , optical glass and optical polymer are used, and other materials are more various, but one example will be specifically described below. That is, for example, using glass as the substrate, applying a photoresist with a spinner or the like, patterning the buffer layer and the two-dimensional shape of the optical fiber holder by photolithography, and sputtering the glass to the same thickness as the clad thickness of the optical fiber by sputtering or the like. After lamination, the buffer layer and the optical fiber holder are formed by lift-off, etching, or the like. At this time, the glass may not be related to the glass of the substrate, and it is also possible to form the substrate glass by etching. Next, a waveguide is formed by a similar lithography process. It is desirable that the waveguide thickness is equal to the core diameter of the optical fiber from the viewpoint of light utilization efficiency,
Further, in order to confine light in the waveguide, the refractive index of the waveguide material must be sufficiently higher than the refractive index of the buffer layer. Thereafter, the optical fiber is fitted into the holder, and if necessary, bonded. By using the semiconductor technology as described above, the optical position detecting device according to the embodiment of the present invention can be manufactured with high productivity.

【0018】次に、上記検出手段によりスポット像の結
像位置の変化から被検出面の基準位置からの変位を検出
する方法の一例を詳細に説明する。被検出面110が測
定の中心位置にある時には、第2の平板導波路端面11
3の構成から、スポット像が上記分岐導波路114aお
よび114bの分岐位置に結像し等量の光束が各出力光
ファイバに取り出される。被検出面が位置検出装置に近
づいた場合には、第1の平面板導波路103よりの出射
光束がZ軸に対しXZ面内で傾いているためにスポット
位置が−X方向に移動する。この時の上記被検出面11
0からの反射光は図1中の1点鎖線のような光線として
上記分岐位置に結像し、その結像点は−Z方向に変位す
る事になる。このため、上記分岐導波路に入射する光量
は+Z側の分岐導波路114aでは少なく、−Z側の分
岐導波路114bでは多くなり、結果として上記出力フ
ァイバから出射する光量も同様に変化することになる。
一方、被検出面が位置検出装置から遠ざかった場合に
は、図中破線で示したように、前述とは逆に結像点は+
Z方向に変位する事になり、結果として出力光ファイバ
115aから取り出される光量が増加し、出力光ファイ
バ115bから取り出される光量は減少することにな
る。
Next, an example of a method for detecting the displacement of the detected surface from the reference position from the change of the image forming position of the spot image by the detecting means will be described in detail. When the surface to be detected 110 is at the center position of the measurement, the second planar waveguide end surface 11
In the configuration 3, the spot image is formed at the branch position of the branch waveguides 114a and 114b, and an equal amount of light is extracted to each output optical fiber. When the detected surface approaches the position detection device, the spot position moves in the −X direction because the light beam emitted from the first flat plate waveguide 103 is inclined in the XZ plane with respect to the Z axis. The detected surface 11 at this time
The reflected light from 0 forms an image at the branch position as a light ray such as a one-dot chain line in FIG. 1, and the image forming point is displaced in the −Z direction. For this reason, the amount of light incident on the branch waveguide is small in the + Z side branch waveguide 114a and is large in the -Z side branch waveguide 114b. As a result, the amount of light emitted from the output fiber also changes. Become.
On the other hand, when the surface to be detected has moved away from the position detecting device, the image forming point is +
As a result, the amount of light extracted from the output optical fiber 115a increases, and the amount of light extracted from the output optical fiber 115b decreases.

【0019】上記出力光ファイバ115aおよび115
bから出力される光量と被検出面の位置の相関を図3に
示す。図において、201は上記出力光ファイバ115
aの出力、202は上記出力光ファイバ115bの出力
で、縦軸は出力、横軸は位置を示し、図中Pは基準位置
であり、この基準位置より被検出面が位置検出装置に近
い領域をnear、遠い領域をfarと示す。図3から
明らかなように、被検出面110が基準位置Pにある時
には、等量の光束が各出力光ファイバに取り出され、各
出力光ファイバの出力により被検出面の基準位置Pから
の変位を検出することができる。
The output optical fibers 115a and 115
FIG. 3 shows the correlation between the amount of light output from b and the position of the detected surface. In the figure, 201 is the output optical fiber 115
The output 202a is the output of the output optical fiber 115b, the vertical axis is the output, and the horizontal axis is the position. In the figure, P is a reference position, and a region where the detected surface is closer to the position detecting device than the reference position. Is shown as near, and the far area is shown as far. As is apparent from FIG. 3, when the detected surface 110 is at the reference position P, an equal amount of light is extracted by each output optical fiber, and the output of each output optical fiber causes the detected surface to be displaced from the reference position P. Can be detected.

【0020】実施例2.図2は本発明の第2の実施例の
光学的位置検出装置の構成図である。図において、10
8は棒状レンズで一軸収束作用を有する光学的手段とし
て用いられる。109は上記棒状レンズ保持体であり、
棒状レンズ108を基板上の所定位置に案内するように
位置および大きさが決定されている。つまり、棒状レン
ズ8を図2に示すように設ける他は、図1に示す第1の
実施例の光学的位置検出装置と同様の構成であり、実施
例1と同様に製造することができる。
Embodiment 2 FIG. FIG. 2 is a configuration diagram of an optical position detecting device according to a second embodiment of the present invention. In the figure, 10
Reference numeral 8 denotes a rod-shaped lens which is used as optical means having a uniaxial convergence action. Reference numeral 109 denotes the rod-shaped lens holder,
The position and size are determined so as to guide the rod-shaped lens 108 to a predetermined position on the substrate. That is, except that the rod-shaped lens 8 is provided as shown in FIG. 2, the configuration is the same as that of the optical position detecting device of the first embodiment shown in FIG. 1, and it can be manufactured in the same manner as the first embodiment.

【0021】次に、動作について説明する。第1の平板
導波路端面106で反射した光は、平板導波路からの光
の出射端面107から出射し、棒状レンズ108を経て
被検出面110に至る。ここで、第1の平板導波路端面
106と上記棒状レンズ108の曲率は、各々によって
形成される収束光束が、被検出面110の所望測定範囲
の概括中心位置(基準位置)で焦点を持つように決定さ
れる。被検出面110で反射した光束は、棒状レンズ1
08に再度入射し、第2の平板導波路111への光の入
射端面112より第2の平板導波路111に導入され、
実施例1と同様に分岐導波路114aおよび114bの
分岐点で結像される。ここで、第2の平板導波路端面1
13と棒状レンズ108の位置は、棒状レンズ108に
よりY軸方向に収束した上記被検出面110からの反射
光の焦点位置に第2の平板導波路端面113があるよう
に決定される。
Next, the operation will be described. The light reflected on the first flat waveguide end face 106 exits from the light output end face 107 of the light from the flat waveguide, and reaches the detection surface 110 via the rod-shaped lens 108. Here, the curvatures of the first planar waveguide end face 106 and the rod-shaped lens 108 are such that the convergent light flux formed by each has a focus at the general center position (reference position) of the desired measurement range of the detection surface 110. Is determined. The light beam reflected by the detection surface 110 is reflected by the rod-shaped lens 1
08 again, the light is incident on the second flat waveguide 111 from the incident end face 112 of the light to the second flat waveguide 111,
An image is formed at the branch point of the branch waveguides 114a and 114b as in the first embodiment. Here, the second planar waveguide end face 1
The positions of the rod 13 and the rod lens 108 are determined such that the second flat waveguide end face 113 is located at the focal position of the reflected light from the detection surface 110 converged in the Y-axis direction by the rod lens 108.

【0022】図に示すように、棒状レンズ108を第1
の平板導波路107の光の出射側に設けることにより被
検出面に集光されるスポット量が増しSN比が向上し、
第2の平板導波路111の光の入射側に設けることによ
り被検出面からの光を導波路に効率よく結像させること
ができるので、結像の光量が増しSN比が向上し、従っ
て検出のSN比が向上する。
As shown in FIG.
The amount of spots focused on the surface to be detected is increased by providing the light exit side of the plate waveguide 107 of
Since the light from the surface to be detected can be efficiently formed on the waveguide by providing the light on the light incident side of the second flat waveguide 111, the light quantity of the image is increased and the S / N ratio is improved. Is improved.

【0023】なお、本実施例では棒状レンズ108を第
1平板導波路103および第2平板導波路111と同一
基板101に設けた場合を示したがこれに限定されな
い。即ち、第1の平板導波路103を出射した光が棒状
レンズ108に入射して被検出面110に至り、被検出
面110で反射した光が棒状レンズ108に再度入射
し、第2の平板導波路111へ入射すればよい。
In this embodiment, the case where the rod-shaped lens 108 is provided on the same substrate 101 as the first flat waveguide 103 and the second flat waveguide 111 is shown, but the present invention is not limited to this. That is, light emitted from the first flat waveguide 103 enters the rod-shaped lens 108 and reaches the detection surface 110, and light reflected by the detection surface 110 re-enters the rod-shaped lens 108, and What is necessary is just to inject into the wave path 111.

【0024】[0024]

【発明の効果】本発明の第1の光学的位置検出装置によ
れば、光源から導入された光を偏向させて基準位置に集
光させる集光手段、この集光手段によって被検出面上に
形成されたスポットの反射光を結像する結像手段、およ
びこの結像手段によって結像されたスポット像の結像位
置の変化から被検出面の基準位置からの変位を検出する
検出手段を備え、上記集光手段と結像手段の光軸が非同
軸である光学的位置検出装置において、上記集光手段と
結像手段が同一基板上に設けられ、上記集光手段と結像
手段が平板導波路で構成され、小型化が可能であるとい
う効果がある。
According to the first optical position detecting device of the present invention, the light condensing means for deflecting the light introduced from the light source and condensing the light at the reference position, and the light converging means on the surface to be detected by this light condensing means Image forming means for forming an image of reflected light of the formed spot, and detecting means for detecting a displacement of the detected surface from a reference position from a change in the image forming position of the spot image formed by the image forming means. An optical position detecting device in which the optical axis of the light focusing means and the image forming means is non-coaxial, wherein the light focusing means and the image forming means are provided on the same substrate, and the light focusing means and the image forming means are flat It is composed of a waveguide and has an effect that downsizing is possible.

【0025】本発明の第2の光学的位置検出装置によれ
ば、上記第1の光学的位置検出装置において、上記集光
手段が平板導波路の光の出射側に一軸収束作用を有する
光学的手段を備え、上記結像手段が平板導波路の光の入
射側に一軸収束作用を有する光学的手段を備え、検出の
SN比が大きいという効果がある。
According to the second optical position detecting device of the present invention, in the first optical position detecting device, the light condensing means has an optical axis converging function on the light exit side of the flat waveguide. The imaging means is provided with an optical means having a uniaxial convergence function on the light incident side of the flat waveguide, and has an effect that the SN ratio of detection is large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施例の光学的位置検出装置
の構成図である。
FIG. 1 is a configuration diagram of an optical position detection device according to a first embodiment of the present invention.

【図2】 本発明の第2の実施例の光学的位置検出装置
の構成図である。
FIG. 2 is a configuration diagram of an optical position detection device according to a second embodiment of the present invention.

【図3】 本発明の実施の形態の光学的位置検出装置の
出力と被検出面の位置の相関を示す特性図である。
FIG. 3 is a characteristic diagram showing a correlation between an output of the optical position detecting device according to the embodiment of the present invention and a position of a detected surface.

【図4】 従来の三角測量法による位置検出法を説明す
るための説明図である。
FIG. 4 is an explanatory diagram for explaining a position detection method using a conventional triangulation method.

【符号の説明】[Explanation of symbols]

101 基板、103 第1の平板導波路、106 第
1の平板導波路端面、108 棒状レンズ、110 被
検出面、111 第2の平板導波路。
101 substrate, 103 first planar waveguide, 106 first planar waveguide end face, 108 rod-shaped lens, 110 detected surface, 111 second planar waveguide.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高嶋 和夫 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 ────────────────────────────────────────────────── ─── Continued on front page (72) Inventor Kazuo Takashima 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光源から導入された光を偏向させて基準
位置に集光させる集光手段、この集光手段によって被検
出面上に形成されたスポットの反射光を結像する結像手
段、およびこの結像手段によって結像されたスポット像
の結像位置の変化から被検出面の基準位置からの変位を
検出する検出手段を備え、上記集光手段と結像手段の光
軸が非同軸である光学的位置検出装置において、上記集
光手段と結像手段が同一基板上に設けられ、上記集光手
段と結像手段が平板導波路で構成されていることを特徴
とする光学的位置検出装置。
1. A light collecting means for deflecting light introduced from a light source and condensing the light at a reference position, an image forming means for forming an image of reflected light of a spot formed on a surface to be detected by the light condensing means, And a detecting means for detecting a displacement of the detected surface from a reference position from a change in the image forming position of the spot image formed by the image forming means, wherein the optical axis of the light collecting means and the optical axis of the image forming means are non-coaxial. An optical position detecting device, wherein the light-collecting means and the image-forming means are provided on the same substrate, and the light-collecting means and the image-forming means are constituted by a flat waveguide. Detection device.
【請求項2】 集光手段が平板導波路の光の出射側に一
軸収束作用を有する光学的手段を備え、結像手段が平板
導波路の光の入射側に一軸収束作用を有する光学的手段
を備えたことを特徴とする請求項1記載の光学的位置検
出装置。
2. A light collecting means comprising an optical means having a uniaxial focusing function on a light emitting side of a flat waveguide, and an imaging means having an optical focusing means on a light incident side of the flat waveguide. The optical position detecting device according to claim 1, further comprising:
JP16611096A 1996-06-26 1996-06-26 Optical position detector Expired - Fee Related JP3379336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16611096A JP3379336B2 (en) 1996-06-26 1996-06-26 Optical position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16611096A JP3379336B2 (en) 1996-06-26 1996-06-26 Optical position detector

Publications (2)

Publication Number Publication Date
JPH109813A true JPH109813A (en) 1998-01-16
JP3379336B2 JP3379336B2 (en) 2003-02-24

Family

ID=15825215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16611096A Expired - Fee Related JP3379336B2 (en) 1996-06-26 1996-06-26 Optical position detector

Country Status (1)

Country Link
JP (1) JP3379336B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016148A1 (en) * 1998-09-16 2000-03-23 Mitsubishi Denki Kabushiki Kaisha Lens for converting optical axis
WO2000016035A1 (en) * 1998-09-16 2000-03-23 Mitsubishi Denki Kabushiki Kaisha Optical position sensor
EP1342984A1 (en) * 2000-12-11 2003-09-10 Mitsubishi Denki Kabushiki Kaisha Optical distance sensor
US6846116B2 (en) 2000-12-11 2005-01-25 Mitsubishi Denki Kabushiki Kaisha Sensor head
US7465916B2 (en) 2006-10-19 2008-12-16 Fujikura Ltd. Optical detection sensor
RU2471203C1 (en) * 2011-10-04 2012-12-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Laser distance meter
WO2012151072A3 (en) * 2011-05-04 2013-03-28 Honeywell International Inc. Collimated illumination using light pipes
EP3441714A4 (en) * 2016-04-07 2019-11-20 Mostop Co., Ltd. Distance measuring sensor assembly and electronic device having same
US11642893B2 (en) * 2020-02-19 2023-05-09 Brother Kogyo Kabushiki Kaisha Image forming apparatus capable of performing processes in accordance with operation mode set therefor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016148A1 (en) * 1998-09-16 2000-03-23 Mitsubishi Denki Kabushiki Kaisha Lens for converting optical axis
WO2000016035A1 (en) * 1998-09-16 2000-03-23 Mitsubishi Denki Kabushiki Kaisha Optical position sensor
US6198862B1 (en) 1998-09-16 2001-03-06 Mitsubishi Denki Kabushiki Kaisha Optical position detector
US6341043B1 (en) 1998-09-16 2002-01-22 Mitsubishi Denki Kabushiki Kaisha Optical axis conversion lens
US6846116B2 (en) 2000-12-11 2005-01-25 Mitsubishi Denki Kabushiki Kaisha Sensor head
EP1342984A4 (en) * 2000-12-11 2004-04-14 Mitsubishi Electric Corp Optical distance sensor
EP1342984A1 (en) * 2000-12-11 2003-09-10 Mitsubishi Denki Kabushiki Kaisha Optical distance sensor
US6972834B1 (en) 2000-12-11 2005-12-06 Mitsubishi Denki Kabushiki Kaisha Optical distance sensor
US7465916B2 (en) 2006-10-19 2008-12-16 Fujikura Ltd. Optical detection sensor
WO2012151072A3 (en) * 2011-05-04 2013-03-28 Honeywell International Inc. Collimated illumination using light pipes
US8845162B2 (en) 2011-05-04 2014-09-30 Honeywell International Inc. Collimated illumination using light pipes
RU2471203C1 (en) * 2011-10-04 2012-12-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Laser distance meter
EP3441714A4 (en) * 2016-04-07 2019-11-20 Mostop Co., Ltd. Distance measuring sensor assembly and electronic device having same
US11642893B2 (en) * 2020-02-19 2023-05-09 Brother Kogyo Kabushiki Kaisha Image forming apparatus capable of performing processes in accordance with operation mode set therefor

Also Published As

Publication number Publication date
JP3379336B2 (en) 2003-02-24

Similar Documents

Publication Publication Date Title
US5760905A (en) Distance measuring apparatus
US6483961B1 (en) Dual refraction index collimator for an optical switch
JPH075340A (en) Optical output splitter for division of high-output light
JPWO2008108068A1 (en) Optical scanning device and two-dimensional image display device using the same
JP2005528637A (en) Light guide that saves less etendue with less loss
JPH109813A (en) Optical position detector
JP2003202205A (en) Optical distance sensor
US20220244360A1 (en) Hybrid two-dimensional steering lidar
US6198862B1 (en) Optical position detector
WO2022046432A1 (en) Hybrid two-dimensional steering lidar
JPH10301056A (en) Light projecting and receiving device
JP3091243B2 (en) Multi-point distance measuring device
JPH1039250A (en) Device for forming flat beam
JP2003110891A (en) Imaging optical system
JPS6125104A (en) Compound lens
JP2002062460A (en) Beam-condensing unit
JP2004272116A (en) Wavelength dispersion compensation device and optical transmission apparatus
US6438284B1 (en) Optical switching device with reduced insertion loss
JP3333583B2 (en) Focusing lens and focusing lens array
US6341043B1 (en) Optical axis conversion lens
JP2714097B2 (en) Optical waveguide device
JPS57142604A (en) Luminescence spot scanner
JP2984018B2 (en) Horizontal synchronization detection optical system of scanning optical device
JPH1030959A (en) Method and device for measuring refractive index
WO2023158957A2 (en) Hybrid two-dimensional steering lidar

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees