JPH1097869A - Rocking chair type lithium secondary battery incombustible electrolyte and its manufacture - Google Patents

Rocking chair type lithium secondary battery incombustible electrolyte and its manufacture

Info

Publication number
JPH1097869A
JPH1097869A JP8285800A JP28580096A JPH1097869A JP H1097869 A JPH1097869 A JP H1097869A JP 8285800 A JP8285800 A JP 8285800A JP 28580096 A JP28580096 A JP 28580096A JP H1097869 A JPH1097869 A JP H1097869A
Authority
JP
Japan
Prior art keywords
bath
metal
alcl
reaction
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8285800A
Other languages
Japanese (ja)
Inventor
Nobuyuki Koura
延幸 小浦
Koichi Ui
幸一 宇井
Yasushi Idemoto
康 井手本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8285800A priority Critical patent/JPH1097869A/en
Publication of JPH1097869A publication Critical patent/JPH1097869A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02P70/54

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To individually precipitate Li by adding a Li metal to a LiCl saturation bath because Al is far more precious than Li. SOLUTION: A Li metal with reduction capability is added to a LiCl saturation AlCl3 -EMIC bath (50mol%<AlCl3 ). Thus Al2 Cl7 <-> is deposited as Al on the Li metal, and local cell reaction is caused to dissolve the Li metal acting as Li in the bath. As a result, the remaining Al2 Cl<-> can be removed from the bath in order to provide the electrolytic bath where the Al cannot be deposited during cathode (charging) reaction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は引火および発火性
がないAlCl−EMIC系溶融塩中にLiを存在
させ、Liのみがキャリャーイオンになるようにした
ことにより、ロッキングチェアタイプのリチウム二次電
池用不燃性電解液として実現したものである。
TECHNICAL FIELD The present invention is the presence of Li + in the flammable and pyrophoric no AlCl 3 -EMIC molten salts, by only Li + was set to carry catcher over ion, rocking chair type This is realized as a nonflammable electrolyte for a lithium secondary battery.

【0002】[0002]

【従来の技術】リチウム二次電池においては、電解液に
有機溶媒系を用いたものが中心となって研究開発が盛ん
に行われている。しかし、有機溶媒系を電解液として用
いたリチウム二次電池では、電解質として用いる過塩素
酸リチウム(LiClO)に爆発の危険性があること
や、電池電解液として用いる有機溶媒系に引火および発
火性を有する等の問題点がある。
2. Description of the Related Art In lithium secondary batteries, research and development have been actively conducted mainly on those using an organic solvent system as an electrolytic solution. However, in a lithium secondary battery using an organic solvent system as an electrolyte, lithium perchlorate (LiClO 4 ) used as an electrolyte has a danger of explosion, and an organic solvent system used as a battery electrolyte ignites and ignites. There are problems such as having properties.

【0003】[0003]

【発明が解決しようとする課題】リチウム二次電池用電
解液として使用するためには、AlCl−EMIC系
浴(50mol%<AlCl,以下酸性浴と称する)
にLiを存在させる必要がある。この浴でのLiCl
の溶解は、主として なる反応によるものと考えられている。したがって、L
iClの溶解性は、浴中のAlCl の量に依存す
ることになる。しかし、[1]式において、完全には平
衡は右に傾かないため、若干のAlCl が浴中に
残存していることが考えられる。このために充電(カソ
ード分極)時にLiと若干のAlの共析反応が起こり得
るという問題点を有する。
In order to be used as an electrolyte for a lithium secondary battery, an AlCl 3 -EMIC bath (50 mol% <AlCl 3 , hereinafter referred to as an acidic bath).
Need to be made Li + . LiCl in this bath
Is mainly dissolved It is believed to be due to the reaction Therefore, L
solubility iCl is, Al 2 Cl 7 in the bath - will depend on the amount of. However, in the formula [1], since the equilibrium does not completely tilt to the right, it is conceivable that some Al 2 Cl 7 remains in the bath. For this reason, there is a problem that a slight eutectoid reaction between Li and Al may occur during charging (cathode polarization).

【0004】[0004]

【課題を解決するための手段】本発明はこの欠点を除い
て、LiCl飽和浴にAlよりずっと卑なLi金属を添
加することにより、 4AlCl +3Li→Al+7AlCl +3Li [2] なる反応によって、浴中からAlCl を完全に除
去することに成功したものであって、[2]式により、
浴中からAlの析出反応のキャリヤーイオンのAl
が消失され、充電(カソード分極)時にLiとA
lとの共析反応は起こらず、Liが単独で析出可能にし
たものである。
SUMMARY OF THE INVENTION The present invention eliminates this drawback by adding Li metal, which is much lower than Al, to a LiCl saturated bath, whereby 4Al 2 Cl 7 +3 Li → Al + 7 AlCl 4 +3 Li + [2] The reaction succeeded in completely removing Al 2 Cl 7 from the bath by the following reaction.
Al 2 C of carrier ion of Al precipitation reaction from bath
l 7 disappears, and Li and A during charging (cathode polarization).
No eutectoid reaction with 1 occurs, and Li can be precipitated alone.

【0005】[0005]

【発明の実施の形態】次に、本発明の実施の形態につい
て実験結果を例にあげて説明する。 第一例 本発明は引火及び発火性がないLiCl飽和AlCl
−EMIC系浴をリチウム二次電池用不燃性電解液とし
て実現させるために、以下に示す方法で問題点を解決し
た。 (イ) 無水AlClとEMICとのモル比が、1.
5:1で混合した液を、一昼夜、Al置換法により精製
した。無水LiClは、200℃、約1Torrで1週
間減圧乾燥し、水分を十分除去した。これを上記AlC
−EMIC系浴に添加して、一昼夜、50℃で撹拌
して電解浴とした。 (ロ) LiCl飽和AlCl−EMIC系浴(50
mol%<AlCl)に、還元能力を有するLi金属
を添加した。以上により、[2]式に示すようにAl
Cl がLi金属上にAlとして析出して、Li金属
がLiとして浴中に溶解する局部セル反応が起こると
考えられる。その結果、浴中から残存AlCl
除去でき、カソード(充電)反応時にAlが析出しない
電解浴が得られる。酸性浴にLiClを飽和溶解度以上
添加した例として、LiCl飽和60.6mol%Al
Cl−39.4mol%EMIC系浴におけるタング
ステン(W)電極のC.V.を図1に示す。図1(a)
に示すLiCl無添加浴のC.V.と比較して、(b)
では−0.1Vvs.Al付近の酸化還元ピークが小さ
くなった。これら若干のピークは、Alの析出溶解反応
に関するものと考えられるが、これはLiClの溶解は
[1]式に示す平衡反応によるものであり、完全には平
衡は右に傾かないため、若干のAlCl が浴中に
残存しているためと考えられる。また、上記浴における
Al電極のC.V.を図2に示す。−2.0Vvs.A
l付近に還元ピークが、−1.4Vvs.Al付近に酸
化ピークが出現した。このピークは、Alを基板に用い
ることにより、Liの析出溶解反応が可能になることを
示している。また、この反応の可逆性は、走査を80サ
イクル繰り返しても安定していた。ここで、−1.2V
vs.Al付近にごく小さな還元ピークが観察された
が、このピークは、Alの析出反応のピークと考えられ
る。以上のことから、酸性浴にLiClを飽和溶解度以
上添加した浴には、Li析出反応のキャリャーイオンが
存在することが考えられるので、リチウム二次電池用電
解液として可能性があるといえる。しかし、浴中に少量
のAlCl が残存しているため、充電(カソード
分極)時に若干のAlの共析が起こることが示唆され
た。
Next, an embodiment of the present invention will be described with reference to experimental results. First example the present invention is not flammable and pyrophoric LiCl saturated AlCl 3
-In order to realize an EMIC bath as a non-combustible electrolyte for a lithium secondary battery, the problem was solved by the following method. (B) The molar ratio between anhydrous AlCl 3 and EMIC is 1.
The solution mixed at 5: 1 was purified overnight by the Al substitution method. The anhydrous LiCl was dried under reduced pressure at 200 ° C. and about 1 Torr for 1 week to sufficiently remove water. This is the above AlC
It was added to l 3 -EMIC based bath, overnight, and the electrolytic bath and stirred at 50 ° C.. (B) LiCl saturated AlCl 3 -EMIC bath (50
mol% <AlCl 3 ), Li metal having a reducing ability was added. As described above, as shown in the equation [2], Al 2
It is considered that a local cell reaction occurs in which Cl 7 precipitates on the Li metal as Al and the Li metal dissolves in the bath as Li + . As a result, the remaining Al 2 Cl 7 can be removed from the bath, and an electrolytic bath in which Al does not precipitate during a cathode (charge) reaction is obtained. As an example of adding LiCl to the acidic bath at a saturation solubility or higher, LiCl saturated 60.6 mol% Al
Cl 3 -39.4 mol% C.I. of tungsten (W) electrode in EMIC bath. V. Is shown in FIG. FIG. 1 (a)
C. of the LiCl-free bath shown in FIG. V. Compared to (b)
Then -0.1Vvs. The redox peak near Al became smaller. These slight peaks are considered to be related to the precipitation and dissolution reaction of Al. This is because the dissolution of LiCl is due to the equilibrium reaction shown in equation [1], and the equilibrium does not completely tilt to the right. This is probably because Al 2 Cl 7 remained in the bath. In addition, the C.I. V. Is shown in FIG. −2.0 V vs. A
1 and a reduction peak near −1.4 V vs. An oxidation peak appeared near Al. This peak indicates that the use of Al for the substrate enables the precipitation and dissolution reaction of Li. The reversibility of this reaction was stable even after repeating the scanning for 80 cycles. Here, -1.2V
vs. A very small reduction peak was observed near Al, and this peak is considered to be the peak of the precipitation reaction of Al. From the above, it can be considered that a carrier in which LiCl is added to an acidic bath at a saturation solubility or higher contains carrier ions for the Li deposition reaction, and thus it can be said that there is a possibility as an electrolyte for a lithium secondary battery. However, since a small amount of Al 2 Cl 7 remained in the bath, it was suggested that some eutectoid of Al occurs during charging (cathode polarization).

【0006】第二例 ここで、Li金属を添加することにより、浴中に存在す
るAlCl を完全に除去できることを確認するた
めに、Li金属添加後のLiCl飽和60.6mol%
AlCl−39.4mol%EMIC系浴におけるW
電極のC.V.を測定した。図3に示すように、図1
(b)で観察された−1.0Vvs.Al付近の還元ピ
ークと、−0.2Vvs.Al付近の酸化ピークが消失
しており、AlCl が完全に消滅したことを示し
ている。このときの電位窓は約4.4Vであった。ま
た、上記浴におけるAl電極のC.V.(図4)からも
わかるように、図2で観察された−1.2Vvs.Al
付近の小さな還元ピークが消失し、Liの還元ピーク
のみが現れている。従って、これからも、浴中からAl
Cl が消失し、Liが単独で析出可能になったと
いえる。
Second Example Here, in order to confirm that Al 2 Cl 7 existing in the bath can be completely removed by adding Li metal, 60.6 mol% of LiCl saturated after adding Li metal was used.
AlCl 3 -39.4 mol% W in EMIC bath
C. of electrode V. Was measured. As shown in FIG.
-1.0 V vs. observed in (b). Al and a reduction peak near -0.2 Vvs. The oxidation peak near Al disappeared, indicating that Al 2 Cl 7 had completely disappeared. The potential window at this time was about 4.4V. In addition, the C.I. V. (FIG. 4), it can be seen from FIG. 2 that -1.2 V vs. Al
The nearby small reduction peak disappeared, and only the Li + reduction peak appeared. Therefore, from now on, Al
2 Cl 7 - is lost, it can be said that Li has become possible precipitation alone.

【0007】[0007]

【発明の効果】本発明によると、次の効果を期待する。 (1)引火および発火性がないAlCl−EMIC系
溶融塩を用いて、ロッキングチェアタイプのリチウム二
次電池用の不燃性電解液が得られる。 (2)従来のリチウム二次電池用の電解液として用いら
れている有機溶媒系に取って代わり得る。
According to the present invention, the following effects are expected. (1) A non-flammable electrolyte for a rocking chair type lithium secondary battery can be obtained using an AlCl 3 -EMIC molten salt having no ignitability or ignition property. (2) It can replace the organic solvent system used as a conventional electrolyte for lithium secondary batteries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Li金属添加前のLiCl飽和AlCl−E
MIC系浴におけるW電極のサイクリックボルタモグラ
FIG. 1: LiCl saturated AlCl 3 -E before adding Li metal
Cyclic voltammogram of W electrode in MIC bath

【図2】Li金属添加前のLiCl飽和AlCl−E
MIC系浴におけるAl電極のサイクリックボルタモグ
ラム
FIG. 2: LiCl saturated AlCl 3 -E before adding Li metal
Cyclic voltammogram of Al electrode in MIC bath

【図3】Li金属添加後のLiCl飽和AlCl−E
MIC系浴におけるW電極のサイクリックボルタモグラ
FIG. 3: LiCl saturated AlCl 3 -E after addition of Li metal
Cyclic voltammogram of W electrode in MIC bath

【図4】Li金属添加後のLiCl飽和AlCl−E
MIC系浴におけるAl電極のサイクリックボルタモグ
ラム
FIG. 4: LiCl saturated AlCl 3 -E after addition of Li metal
Cyclic voltammogram of Al electrode in MIC bath

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 塩化アルミニウム(AlCl)−1
−エチル−3−メチルイミダゾリウムクロリド(EMI
C)を含有する電解液(AlClの比率は50mol
%<AlCl)に塩化リチウム(LiCl)を飽和溶
解度以上添加することにより、リチウムイオン(L
)が電解液中に存在する電解液の作製法。
1. An aluminum chloride (AlCl 3 ) -1.
-Ethyl-3-methylimidazolium chloride (EMI
C) -containing electrolytic solution (AlCl 3 ratio is 50 mol)
% <AlCl 3 ), lithium ion (LCl) is added at a saturation solubility or higher.
i + ) A method for producing an electrolytic solution in which the electrolytic solution exists.
【請求項2】 請求項1に記載の電解液を用い、電析
したリチウムと合金化する金属基板(アルミニウムな
ど)を用いることによりカソード反応(負極の充電反
応)を可能にする負極基板。
2. A negative electrode substrate capable of performing a cathode reaction (a negative electrode charging reaction) by using the electrolytic solution according to claim 1 and using a metal substrate (such as aluminum) alloyed with electrodeposited lithium.
【請求項3】 請求項1の電解液にリチウム(Li)
金属を添加することにより、アルミニウム(Al)析出
反応のキャリャーイオンを除去する方法。
3. The method according to claim 1, wherein the electrolyte is lithium (Li).
A method of removing carrier ions in an aluminum (Al) deposition reaction by adding a metal.
JP8285800A 1996-09-20 1996-09-20 Rocking chair type lithium secondary battery incombustible electrolyte and its manufacture Pending JPH1097869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8285800A JPH1097869A (en) 1996-09-20 1996-09-20 Rocking chair type lithium secondary battery incombustible electrolyte and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8285800A JPH1097869A (en) 1996-09-20 1996-09-20 Rocking chair type lithium secondary battery incombustible electrolyte and its manufacture

Publications (1)

Publication Number Publication Date
JPH1097869A true JPH1097869A (en) 1998-04-14

Family

ID=17696250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8285800A Pending JPH1097869A (en) 1996-09-20 1996-09-20 Rocking chair type lithium secondary battery incombustible electrolyte and its manufacture

Country Status (1)

Country Link
JP (1) JPH1097869A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082493A (en) * 1998-09-02 2000-03-21 Science Univ Of Tokyo Incombustible electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2001303286A (en) * 2000-03-28 2001-10-31 E I Du Pont De Nemours & Co Method for manufacturing alkali metal by low temperature electrolysis process and electrolytic solution composition
WO2014030761A1 (en) * 2012-08-21 2014-02-27 本田技研工業株式会社 Device provided with positive electrode and salt, and secondary battery
WO2014030500A1 (en) * 2012-08-21 2014-02-27 トヨタ自動車株式会社 Electrode body and cell provided with same
US11258100B2 (en) 2018-11-27 2022-02-22 Industrial Technology Research Intitute Electrolyte composition and metal-ion battery employing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082493A (en) * 1998-09-02 2000-03-21 Science Univ Of Tokyo Incombustible electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2001303286A (en) * 2000-03-28 2001-10-31 E I Du Pont De Nemours & Co Method for manufacturing alkali metal by low temperature electrolysis process and electrolytic solution composition
WO2014030761A1 (en) * 2012-08-21 2014-02-27 本田技研工業株式会社 Device provided with positive electrode and salt, and secondary battery
WO2014030500A1 (en) * 2012-08-21 2014-02-27 トヨタ自動車株式会社 Electrode body and cell provided with same
JP2014041709A (en) * 2012-08-21 2014-03-06 Honda Motor Co Ltd Device including positive electrode and salt, and secondary battery
JP2014041722A (en) * 2012-08-21 2014-03-06 Toyota Motor Corp Electrode body, and battery including the electrode body
US11258100B2 (en) 2018-11-27 2022-02-22 Industrial Technology Research Intitute Electrolyte composition and metal-ion battery employing the same

Similar Documents

Publication Publication Date Title
Yagi et al. A concept of dual-salt polyvalent-metal storage battery
US5552238A (en) Stabilized rechargeable cell in MSE and method therefor
JP6914486B2 (en) Magnesium salt
JP2003512704A (en) High energy, rechargeable, non-aqueous electrolyte for electrochemical cells
KR20170142162A (en) Electrolyte system for high-voltage lithium-ion batteries
WO2012043129A1 (en) Aluminum electroplating solution
AU2012369141A1 (en) Methods and electrolytes for electrodeposition of smooth films
JPH1097869A (en) Rocking chair type lithium secondary battery incombustible electrolyte and its manufacture
US4091152A (en) Lithium SO2 cell
JP3380930B2 (en) Aluminum non-aqueous electrolyte secondary battery
JP3324101B2 (en) Aluminum non-aqueous electrolyte, battery using the same, and aluminum electrodeposition method
Shimizu et al. Suppressing the effect of lithium dendritic growth by the addition of magnesium bis (trifluoromethanesulfonyl) amide
KR101872057B1 (en) Aluminum-halogen fuel cell
US20220416301A1 (en) An electrolyte for magnesium ion batteries
JPH0636375B2 (en) Zinc-halogen battery
JP2003242991A (en) Stabilized lithium electrochemical cell containing alkoxysilane
JP7424912B2 (en) Electrolyte and magnesium manufacturing method
JPWO2005011042A1 (en) Lead acid battery electrolyte additive and lead acid battery
KR101629918B1 (en) Electrolytic apparatus for electro-refining and recovery of platinum metals, and method thereof
JP2000082493A (en) Incombustible electrolyte for lithium secondary battery and lithium secondary battery using the same
GB1206140A (en) Improvements in process for zirconiding and hafniding base metal compositions
JPH07153487A (en) Electrolyte for lithium secondary battery
US20190020058A1 (en) Magnesium-based electrolyte compositions and uses thereof
KR0135513B1 (en) Zine bromine batteries with an improved electolyte
US11876188B2 (en) Electrolyte for use in sodium-sulfur batteries