JPH1096660A - Capacitive level-measuring apparatus - Google Patents

Capacitive level-measuring apparatus

Info

Publication number
JPH1096660A
JPH1096660A JP8269084A JP26908496A JPH1096660A JP H1096660 A JPH1096660 A JP H1096660A JP 8269084 A JP8269084 A JP 8269084A JP 26908496 A JP26908496 A JP 26908496A JP H1096660 A JPH1096660 A JP H1096660A
Authority
JP
Japan
Prior art keywords
electrode
main electrode
capacitance
liquid
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8269084A
Other languages
Japanese (ja)
Other versions
JP3372173B2 (en
Inventor
Noriyuki Maki
憲幸 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RKC Instrument Inc
Original Assignee
Rika Kogyo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rika Kogyo Inc filed Critical Rika Kogyo Inc
Priority to JP26908496A priority Critical patent/JP3372173B2/en
Publication of JPH1096660A publication Critical patent/JPH1096660A/en
Application granted granted Critical
Publication of JP3372173B2 publication Critical patent/JP3372173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To correctly measure a level of a liquid in spite of an environmental change such as a temperature change or the like in a capacitive level-measuring apparatus. SOLUTION: A main electrode 5 is inserted and immersed in a liquid 1 in a metallic bath 3 storing the liquid 1. An electrode of the same potential 29 is arranged below a leading end of the main electrode 5 at a slight interval. The main electrode 5 and the electrode 29 are connected to an OP amplifier (operational amplifier) 33 via a shielded cable 31. The OP amplifier 33 sets the electrode 29 at the same alternating potential as the main electrode 5. A rectifying smoothing part 1 rectifies and smooths an output signal from the main electrode 5 via the OP amplifier 33, and an adjusting part 13 adjusts the signal and outputs a measurement signal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は静電容量形レベル測
定装置に係り、絶縁性および導電性液体の液面レベル
(液位)を測定する静電容量形レベル測定装置の改良に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitance type level measuring device, and more particularly to an improvement in a capacitance type level measuring device for measuring a liquid level of an insulating and conductive liquid.

【0002】[0002]

【従来の技術】半導体製造装置の洗浄槽における薬液レ
ベル測定、食料加工装置における液体食品のレベル測
定、一般的な工場における液体レベル測定には、例えば
静電容量形レベル測定装置が用いられる。従来、この種
の静電容量形レベル測定装置は、概略的には図8に示す
ように、被測定液1の入った金属槽3内へ細長い主電極
5を液面から挿入し、例えば金属槽3に信号源7から印
加した交流電流を主電極5を介して出力し、この出力電
流から被測定液1の液位を測定する構成が良く知られて
いる。
2. Description of the Related Art For example, a capacitance type level measuring device is used for measuring a chemical level in a cleaning tank of a semiconductor manufacturing apparatus, measuring a level of a liquid food in a food processing apparatus, and measuring a liquid level in a general factory. Conventionally, this type of capacitance-type level measuring device inserts an elongated main electrode 5 from the liquid level into a metal tank 3 containing a liquid 1 to be measured, as shown schematically in FIG. It is well known that an alternating current applied from a signal source 7 to the tank 3 is output through the main electrode 5 and the level of the liquid 1 to be measured is measured from the output current.

【0003】すなわち、金属槽3と主電極5間に生じる
静電容量値は、それら金属槽3と主電極5間の距離が一
定であれば、それらの面積および介在する物質の誘電率
に比例するから、金属槽3と主電極5間に介在する気体
や被測定液1の誘電率の差により、被測定液1の液位変
化に比例して静電容量値が変化し、この静電容量値の変
化に伴った交流電流が主電極5から出力される。そのた
め、主電極5から出力された交流電流を変換部9で交流
電圧に電圧変換し、これを整流平滑部11で整流平滑
し、調整部13で基準点(零レベル点)と出力勾配(フ
ルスケール)を調整すれば、被測定液1の液位に応じた
測定信号を出力することが可能である。
[0003] That is, if the distance between the metal bath 3 and the main electrode 5 is constant, the capacitance value generated between the metal bath 3 and the main electrode 5 is proportional to their area and the dielectric constant of the intervening substance. Therefore, the capacitance value changes in proportion to the change in the liquid level of the liquid 1 to be measured, due to the gas interposed between the metal tank 3 and the main electrode 5 and the difference in the dielectric constant of the liquid 1 to be measured. An alternating current accompanying the change in the capacitance value is output from the main electrode 5. Therefore, the AC current output from the main electrode 5 is converted into an AC voltage by the conversion unit 9, rectified and smoothed by the rectification and smoothing unit 11, and the adjustment unit 13 adjusts the reference point (zero level point) and the output gradient (full level). By adjusting the scale, it is possible to output a measurement signal corresponding to the liquid level of the liquid 1 to be measured.

【0004】もっとも、被測定液1が導電性である場合
には、主電極5が被測定液1に触れた瞬間に金属槽3と
主電極5間が短絡状態となって液位測定が困難となるの
で、図8中の破線で示すように、主電極5の外周を均一
な厚さの被覆絶縁層15で被覆することが行われてい
る。なお、被覆絶縁層15で被覆した主電極5を用いる
静電容量形レベル測定装置は、上述した絶縁性の被測定
液1の液位測定にも使用可能であることから、双方の液
位測定に用いられる。
However, when the liquid 1 to be measured is conductive, the metal tank 3 and the main electrode 5 are short-circuited at the moment when the main electrode 5 touches the liquid 1 to be measured, so that the liquid level measurement is difficult. Therefore, as shown by a broken line in FIG. 8, the outer periphery of the main electrode 5 is covered with a covering insulating layer 15 having a uniform thickness. Note that the capacitance type level measuring device using the main electrode 5 covered with the coating insulating layer 15 can be used for measuring the liquid level of the above-mentioned insulating liquid 1 to be measured. Used for

【0005】そこで、被覆絶縁層15で被覆した主電極
5を用いた静電容量形レベル測定装置における液面レベ
ル測定の考え方を、図9を参照して説明する。図9は導
電性の被測定液1の液位を測定する例であり、主電極5
のうち金属槽3内に挿入された長さをLoとし、被測定
液1に漬浸された主電極5の長さをLとしたとき、長さ
Loにおける主電極5と金属槽3間の気体(空気)によ
る静電容量をCao、主電極5と金属槽3間の気体によ
る静電容量をCa、長さLoにおける被覆絶縁層15の
静電容量をCloとすれば、主電極5と金属槽3間の気
体による静電容量Ca、並びに主電極5と被測定液1間
に介在する被覆絶縁層15による静電容量Clは、 Ca=〔(Lo−L)/Lo〕×Cao Cl=(L/Lo)×Clo となる。
The concept of measuring the liquid level in a capacitance type level measuring apparatus using the main electrode 5 covered with the covering insulating layer 15 will be described with reference to FIG. FIG. 9 shows an example of measuring the liquid level of the conductive liquid 1 to be measured.
When the length inserted into the metal tank 3 is Lo and the length of the main electrode 5 immersed in the liquid 1 to be measured is L, the distance between the main electrode 5 and the metal tank 3 at the length Lo is If the capacitance due to gas (air) is Cao, the capacitance due to gas between the main electrode 5 and the metal tank 3 is Ca, and the capacitance of the coating insulating layer 15 at the length Lo is Clo, The capacitance Ca due to the gas between the metal tanks 3 and the capacitance Cl due to the coating insulating layer 15 interposed between the main electrode 5 and the liquid 1 to be measured are as follows: Ca = [(Lo−L) / Lo] × Cao Cl = (L / Lo) × Clo.

【0006】また、気体で囲まれた被覆絶縁層15によ
る静電容量Ceは、 Ce=〔(Lo−L)/Lo〕×Clo となる。さらに、主電極5の先端と金属槽3の底間の静
電容量をCs、主電極5と金属槽3間において横方向の
被測定液1の抵抗値をR1、主電極5の先端と金属槽3
の底間の縦および斜方向の被測定液1の抵抗値をRsと
すれば、一般的にこれら抵抗値R1、Rsは、l/ωC
l>>Rl、l/ωCs>>Rsの関係が成立するの
で、図10に示すように、0Ω(短絡)状態と考えられ
る。
The capacitance Ce of the coating insulating layer 15 surrounded by the gas is expressed as Ce = [(Lo−L) / Lo] × Clo. Further, the capacitance between the tip of the main electrode 5 and the bottom of the metal tank 3 is Cs, the resistance value of the liquid 1 to be measured in the horizontal direction between the main electrode 5 and the metal tank 3 is R1, the tip of the main electrode 5 and the metal Tank 3
Assuming that the resistance values of the liquid 1 to be measured in the vertical and diagonal directions between the bottoms are Rs, these resistance values R1 and Rs are generally 1 / ωC
Since the relation of l >> R1, l / ωCs >> Rs holds, it is considered that the state is 0Ω (short circuit) as shown in FIG.

【0007】そして、主電極5と金属槽3間で形成され
る全体の静電容量Cは、静電容量Cl、Ce、Ca、C
sの合成値であるから、 C=Cl+〔(Ce×Ca)/(Ce+Ca)〕+Cs =〔(L/Lo)×Clo〕+{〔(Lo−L)/Lo〕×Clo ×〔(Lo−L)/Lo〕×Cao/〔(Lo−L)/Lo〕 ×Clo+〔(Lo−L)/Lo〕×Cao}+Cs =L/Lo{Clo−〔(Clo×Cao)/(Clo+Cao)〕} +〔(Clo×Cao)/(Clo+Cao)〕+Cs … となる。
[0007] The total capacitance C formed between the main electrode 5 and the metal bath 3 is the capacitance Cl, Ce, Ca, C
C = Cl + [(Ce × Ca) / (Ce + Ca)] + Cs = [(L / Lo) × Clo] + {[(Lo−L) / Lo] × Clo × [(Lo −L) / Lo] × Cao / [(Lo−L) / Lo] × Clo + [(Lo−L) / Lo] × Cao} + Cs = L / Lo {Clo − [(Clo × Cao) / (Clo + Cao) ]} + [(Clo × Cao) / (Clo + Cao)] + Cs.

【0008】ここで 〔Clo−(Clo×Cao)/(Clo+Cao)〕
=Cf (Clo×Cao)/(Clo+Cao)=Cg とすれば、 C=(L/Lo)×Cf+Cg+Cs … となる。
Here, [Clo− (Clo × Cao) / (Clo + Cao)]
= Cf (Clo x Cao) / (Clo + Cao) = Cg, then C = (L / Lo) x Cf + Cg + Cs ...

【0009】他方、絶縁性の被測定液1の液位を測定す
る場合は、図11および図12に示すように、上述した
静電容量Cao、Ceに加えて、長さLoおよび長さL
における主電極5と金属槽3間の被測定液1による静電
容量をCbo、Cbとすれば、長さLにおける被覆絶縁
層15による静電容量Clおよび静電容量Ceは、 Cl=(L/Lo)×Cbo Ce=〔(Lo−L)/(Lo)〕×Clo となり、主電極5の先端の縦および斜め方向の静電容量
Cs1 、Cs2 の直列値は、 Cs=(Cs1×Cs2)/(Cs1+Cs2) となる。
On the other hand, when measuring the liquid level of the insulating liquid 1 to be measured, as shown in FIGS. 11 and 12, in addition to the above-mentioned capacitances Cao and Ce, the length Lo and the length L
Assuming that the capacitance between the main electrode 5 and the metal bath 3 due to the liquid 1 to be measured is Cbo and Cb, the capacitance Cl and the capacitance Ce due to the covering insulating layer 15 at the length L are Cl = (L / Lo) × Cbo Ce = [(Lo−L) / (Lo)] × Clo, and the series value of the capacitances Cs 1 and Cs 2 in the vertical and oblique directions at the tip of the main electrode 5 is Cs = (Cs 1 × Cs 2 ) / (Cs 1 + Cs 2 ).

【0010】そして、主電極5と金属槽3間で形成され
る全体の静電容量Cは、図12に示すように、静電容量
C1とCbの直列合成値、静電容量CeとCaの直列合
成値および静電容量Cs1 とCs2 の直列合成値の合算
であるから、次のようになる。 C=〔(Cl×Cb)/(Cl+Cb)〕+ 〔(Ce×Ca)/(Ce+Ca)〕+ 〔(Cs1×Cs2)/(Cs1+Cs2)〕 =(L/Lo){〔(Clo×Cbo)/(Clo+Cbo)〕 −〔(Clo×Cao)/(Clo+Cao)〕} +〔(Clo×Cao)/(Clo+Cao)〕+Cs …
The total capacitance C formed between the main electrode 5 and the metal tank 3 is, as shown in FIG. 12, a series composite value of the capacitances C1 and Cb, and the sum of the capacitances Ce and Ca. Since the sum of the series combination value and the series combination value of the capacitances Cs 1 and Cs 2 is as follows. C = [(Cl × Cb) / (Cl + Cb)] + [(Ce × Ca) / (Ce + Ca)] + [(Cs 1 × Cs 2 ) / (Cs 1 + Cs 2 )] = (L / Lo) {[ ((Clo × Cbo) / (Clo + Cbo))] − [((Clo × Cao) / (Clo + Cao)]} + [((Clo × Cao) / (Clo + Cao)] + Cs ...

【0011】ここで 〔(Clo×Cbo)/(Clo+Cbo)〕−〔(C
lo×Cao)/(Clo+Cao)〕=Cf (Clo×Cao)/(Clo+Cao)=Cg とすれば、 C=(L/Lo)×Cf+Cg+Cs … となる。
Here, [(Clo × Cbo) / (Clo + Cbo)]-[(C
lo * Cao) / (Clo + Cao)] = Cf If (Clo * Cao) / (Clo + Cao) = Cg, then C = (L / Lo) * Cf + Cg + Cs.

【0012】このように、主電極5と金属槽3間で形成
される全体の静電容量Cは、導電性および絶縁性被測定
液1の双方において同じ構成式[C=(L/Lo)×C
f+Cg+Cs]で示すことが可能となる。なお、Cf
は被測定液1が導電性か絶縁性かによって構成の異なる
定数である。従って、上述した図8の調整部13によっ
て定数(Cg+Cs)を差演算することにより、 C=(L/Lo)×Cf+Cg+Cs−(Cg+Cs) =(L/Lo)×Cf となり、主電極5から出力される交流電流に基づいて被
測定液1の液位Lの測定が可能となる。
As described above, the entire capacitance C formed between the main electrode 5 and the metal tank 3 has the same structural formula [C = (L / Lo) in both the conductive and insulating liquids 1 to be measured. × C
f + Cg + Cs]. Note that Cf
Is a constant having a different configuration depending on whether the liquid 1 to be measured is conductive or insulating. Accordingly, the difference between the constant (Cg + Cs) and the constant (Cg + Cs) is calculated by the adjusting unit 13 in FIG. The liquid level L of the liquid 1 to be measured can be measured based on the AC current to be measured.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上述し
た静電容量形レベル測定装置では、定数CfおよびCs
が文字どおり固定値の場合に成立するものであり、実際
にはそれらが変動要素となり易く、正確な液位測定を達
成するには改良すべき余地がある。すなわち、定数Cf
は、被覆絶縁層15と被測定液1で形成される静電容量
の合成値となって温度等による変動影響を受け易く、被
測定液1が導電性の場合、温度変化等による被覆絶縁層
15の誘電率や厚み変化に敏感に影響を受け、被測定液
1が絶縁性の場合、被測定液1の誘電率の変化に敏感に
影響を受ける。
However, in the above-mentioned capacitance type level measuring device, the constants Cf and Cs
Are literally fixed values, and in fact they tend to be variable factors, and there is room for improvement to achieve accurate liquid level measurement. That is, the constant Cf
Is a composite value of the capacitance formed by the coating insulating layer 15 and the liquid 1 to be measured, and is easily affected by fluctuations due to temperature and the like. When the liquid 1 to be measured is insulative, it is sensitive to a change in the dielectric constant of the liquid 1 to be measured.

【0014】また、定数Csは、被覆絶縁層15と被測
定液1で形成される静電容量の合成値であるうえ主電極
5の先端部に分布されるので、温度等による変動影響を
受け易く、被測定液1が導電性の場合、被覆絶縁層15
の誘電率および厚みの変化や、図13に示すように、主
電極5の先端と被覆絶縁層15間の間隙dの変化に敏感
に影響を受けるし、被測定液1が絶縁性の場合、被測定
液1の誘電率の変化や被覆絶縁層15と金属槽3の底間
の間隙tの変化に敏感に影響する。なお、定数Cgは、
被覆絶縁層15や主電極5と金属槽3間の気体による合
成値となり、比較的温度等の変動影響を受け難い。
The constant Cs is a composite value of the capacitance formed by the coating insulating layer 15 and the liquid 1 to be measured, and is distributed at the tip of the main electrode 5. If the liquid 1 to be measured is conductive,
13 and the gap d between the tip of the main electrode 5 and the coating insulating layer 15 as shown in FIG. It sensitively affects changes in the dielectric constant of the liquid 1 to be measured and changes in the gap t between the coating insulating layer 15 and the bottom of the metal tank 3. Note that the constant Cg is
It becomes a synthetic value due to the gas between the coating insulating layer 15 and the main electrode 5 and the metal bath 3, and is relatively insensitive to fluctuations in temperature and the like.

【0015】従って、上述した従来の静電容量形レベル
測定装置では、各変動要素が残ったまま使用されている
のが現状で、変化要素を考慮して誤差範囲を広げて使用
したり、測定範囲Loを長くしたり、静電容量Csの変
化を無視したりして測定範囲を限定していた。もっと
も、静電容量形レベル測定装置において、上述した各変
動要素を補正する構成も提案されている。
Therefore, in the above-mentioned conventional capacitance-type level measuring device, each variable element is used as it is at present. At present, the error range is widened in consideration of the variable element, or the measurement is performed. The measurement range is limited by lengthening the range Lo or ignoring the change in the capacitance Cs. However, a configuration for correcting each of the above-described variable elements in the capacitance-type level measurement device has also been proposed.

【0016】例えば、図14に示すように、円筒状の筒
電極(囲み電極)17の内側中央部に主電極5を挿入す
るとともに、筒電極17内において主電極5の先端に間
隔を置いて小さい参照電極19を共軸的に配置し、筒電
極17で主電極5および参照電極19を囲んだ構成であ
る。
For example, as shown in FIG. 14, the main electrode 5 is inserted into the center of the inside of a cylindrical cylindrical electrode (surrounding electrode) 17, and the main electrode 5 is spaced apart from the tip of the main electrode 5 in the cylindrical electrode 17. A small reference electrode 19 is coaxially arranged, and the main electrode 5 and the reference electrode 19 are surrounded by the cylindrical electrode 17.

【0017】このような構成では、長さLoにおける主
電極5と筒電極17間の気体および被測定液1による静
電容量をCao、Clo、主電極5と筒電極17間の気
体による静電容量をCa、長さLにおける主電極5と筒
電極17間の被測定液1による静電容量をCl、参照電
極19と筒電極17間の被測定液1による静電容量をC
rとすれば、 Ca=〔(Lo−L)/Lo〕×Cao Cl=(L/Lo)×Clo Cr=(Lr/Lo)×Clo となる。
In such a configuration, the capacitance between the main electrode 5 and the cylinder electrode 17 and the capacitance due to the liquid to be measured 1 at the length Lo are represented by Cao and Clo, and the capacitance between the main electrode 5 and the cylinder electrode 17 by the gas. The capacitance is Ca, the capacitance of the liquid L between the main electrode 5 and the cylindrical electrode 17 at the length L is Cl, and the capacitance of the liquid 1 between the reference electrode 19 and the cylindrical electrode 17 is C.
Assuming that r, Ca = [(Lo−L) / Lo] × Cao Cl = (L / Lo) × Clo Cr = (Lr / Lo) × Clo

【0018】ここで、主電極5における静電容量Clo
の変動の影響を抑えるため、例えば静電容量Clを静電
容量Crで除算すれば、 Cl/Cr=〔(L/Lo)×Clo〕/〔(Lr/Lo)×Clo〕 =L/Lr … となり、主電極5における静電容量Cloが相殺され
る。これらは、図15に示すように、主電極5および参
照電極19を被覆絶縁層15で被覆した構成でも全く同
一となり、静電容量Ca、Cl、Crにそれぞれ被測定
液1や気体と被覆絶縁層15間の合成静電容量を用いる
ことによって上述した式が得られる。
Here, the capacitance Clo of the main electrode 5
For example, if the capacitance Cl is divided by the capacitance Cr in order to suppress the influence of the fluctuation of the capacitance, Cl / Cr = [(L / Lo) × Clo] / [(Lr / Lo) × Clo] = L / Lr , And the capacitance Clo of the main electrode 5 is offset. As shown in FIG. 15, these are completely the same even when the main electrode 5 and the reference electrode 19 are covered with the coating insulating layer 15, and the capacitances Ca, Cl, and Cr are respectively insulated from the liquid 1 or gas to be measured by the coating insulation. Using the combined capacitance between layers 15 yields the above equation.

【0019】従って、主電極5における静電容量Clo
が相殺されることにより、温度変化等に対して被測定液
1や被覆絶縁層15の誘電率や厚みの変化による影響が
抑えられ、正確な液位が得られることになる。なお、
式のような信号処理を行う構成としては、図16に示す
ように、上述した図8のような変換部9および整流平滑
部11と同様な変換部21および整流平滑部23を参照
電極19に接続し、演算部25で主電極5からの出力信
号S1を参照電極19からの出力信号S2で除算(S1
/S2)し、調整部27で調整して測定信号を出力する
ことになる。
Therefore, the capacitance Clo of the main electrode 5 is
Are offset, the influence of a change in the dielectric constant or thickness of the liquid 1 to be measured or the coating insulating layer 15 on a temperature change or the like is suppressed, and an accurate liquid level can be obtained. In addition,
As a configuration for performing the signal processing as shown in the equation, as shown in FIG. 16, a conversion unit 21 and a rectification smoothing unit 23 similar to the conversion unit 9 and the rectification smoothing unit 11 shown in FIG. The calculation unit 25 divides the output signal S1 from the main electrode 5 by the output signal S2 from the reference electrode 19 (S1
/ S2), and the measurement signal is output after being adjusted by the adjustment unit 27.

【0020】ところが、静電容量形レベル測定装置につ
いて、図14又は図15に示すよう構成しても、実際に
は、主電極5と筒電極17間に形成される静電容量はC
lだけではなく、上述した式[C=(L/Lo)Cf
+Cg+Cs]となる。この式について、図14又は
図15に示した構成の主電極5と筒電極17間に形成さ
れる全体の静電容量Cmは、 Cm=〔(L/Lo)(Clo−Cao)〕+Cao となり、参照電極19が有るため、主電極5には静電容
量Csが形成され難くなる。但し、Cf=Clo−Ca
oである。
However, even if the capacitance type level measuring device is configured as shown in FIG. 14 or FIG. 15, the capacitance formed between the main electrode 5 and the cylindrical electrode 17 is actually C.
Not only l but also the above-mentioned formula [C = (L / Lo) Cf
+ Cg + Cs]. With respect to this equation, the total capacitance Cm formed between the main electrode 5 and the cylindrical electrode 17 having the configuration shown in FIG. 14 or 15 is as follows: Cm = [(L / Lo) (Clo−Cao)] + Cao Since the reference electrode 19 is provided, it is difficult to form the capacitance Cs on the main electrode 5. However, Cf = Clo-Ca
o.

【0021】また、参照電極19による静電容量は、図
14や図15で図示を省略した金属槽3との間の静電容
量Cs(Cs1、Cs2)を含むCrmとなり、このC
rmは Crm=(Lr/Lo)Clo+Cs となる。
The capacitance of the reference electrode 19 becomes Crm including the capacitance Cs (Cs1, Cs2) between the reference electrode 19 and the metal tank 3 not shown in FIGS.
rm is expressed as Crm = (Lr / Lo) Clo + Cs.

【0022】そして、静電容量Cmを静電容量Crmで
除算した式は、 Cm/Crm=〔(L/Lo)(Clo−Cao)+Cao〕/ 〔(Lr/Lo)(Clo)+Cs〕 =〔L(Clo−Cao)+LoCao〕/〔LrClo+LoCs〕 となってCm/Crm=Cl/Crは成立せず、 LrClo>>LoCs、Clo>>Cao … の条件を満足する場合に限り Cm/Cr≒Cl/Cr=L/Lr となり、式の成立する狭い範囲での使用に限定される
難点がある。
Then, an equation in which the capacitance Cm is divided by the capacitance Crm is as follows: Cm / Crm = [(L / Lo) (Clo-Cao) + Cao] / [(Lr / Lo) (Clo) + Cs] = [L (Clo-Cao) + LoCao] / [LrClo + LoCs], and Cm / Crm = Cl / Cr is not satisfied. Cl / Cr = L / Lr, and there is a problem that the use is limited to a narrow range where the formula holds.

【0023】また、このような構成では、補正除算(S
1/S2)の分母の参照電極19に係る静電容量Cr
は、常に被測定液1中にあってその誘電率や被覆絶縁層
15の変動に敏感に影響を受けるのに対し、分子の主電
極5に係る静電容量Cmは被測定液1の静電容量と気体
の静電容量の差によるため、分母、分子の変動にずれを
生じ易く、この観点からも補正範囲が狭い。しかも、参
照電極19に係る静電容量Crには、金属槽3との間の
静電容量Csが残り、温度変化等に対する静電容量Cs
の変動によって正確な液位測定に限界があるうえ、参照
電極19の小型化も難しく、依然として改善すべき余地
があった。
In such a configuration, the correction division (S
1 / S2) Capacitance Cr related to denominator reference electrode 19
Is always in the liquid 1 to be measured and is sensitive to the fluctuation of the dielectric constant and the coating insulating layer 15, whereas the capacitance Cm of the main electrode 5 of the molecule is the capacitance of the liquid 1 to be measured. Due to the difference between the capacitance and the capacitance of the gas, deviations in the denominator and the numerator tend to shift, and the correction range is narrow from this viewpoint. In addition, the capacitance Cs of the reference electrode 19 includes the capacitance Cs between the metal tank 3 and the capacitance Cs with respect to a temperature change.
In addition, there is a limit to accurate liquid level measurement due to fluctuations in the temperature, and it is difficult to reduce the size of the reference electrode 19, and there is still room for improvement.

【0024】本発明はそのような状況の下になされたも
ので、温度等の環境の変化に対しても被測定液の正確な
液位測定が可能な静電容量形レベル測定装置の提供を目
的とする。
The present invention has been made under such a circumstance, and provides a capacitance type level measuring apparatus capable of accurately measuring the liquid level of a liquid to be measured even when the environment such as temperature changes. Aim.

【0025】[0025]

【課題を解決するための手段】そのような課題を解決す
るために本発明は、被測定液中へ下方に向けて漬浸され
る細長い主電極と、この主電極の先端に間隔を置いて配
置された同電位電極と、間隔を置いてそれら主電極およ
び同電位電極の外周を囲む囲み電極と、この囲み電極お
よび主電極間に交流信号を印加する信号源と、それら同
電位電極および主電極間に交流的な同電位状態を形成す
る同電位形成部とを具備しており、それら主電極又は囲
み電極からの出力信号によって被測定液の液位測定がさ
れるものである。
In order to solve such a problem, the present invention provides an elongated main electrode which is immersed downward into a liquid to be measured, and a space provided at the tip of the main electrode. An equipotential electrode disposed, an enclosing electrode surrounding the outer periphery of the main electrode and the equipotential electrode at an interval, a signal source for applying an AC signal between the enclosing electrode and the main electrode, An equipotential forming section for forming an ac equipotential state between the electrodes; the liquid level of the liquid to be measured is measured by an output signal from the main electrode or the surrounding electrode.

【0026】そして、本発明は、上記出力信号を補正す
る信号を出力する参照電極を主電極の先端と同電位電極
の間に互いに間隔を置いて配置し、それら主電極、同電
位電極および参照電極間を交流的な同電位状態にするよ
う上記同電位形成部を形成することも可能である。ま
た、本発明は、それら電極を被覆絶縁層で被覆したり、
内部にそれらの主電極および同電位電極を共軸的に配置
した筒電極で上記囲み電極を形成すると良い。
According to the present invention, a reference electrode for outputting a signal for correcting the output signal is disposed between the tip of the main electrode and the same-potential electrode, and the main electrode, the same-potential electrode, It is also possible to form the same potential forming section so that the electrodes have the same AC potential. In addition, the present invention covers these electrodes with a coating insulating layer,
It is preferable to form the surrounding electrode by a cylindrical electrode in which the main electrode and the same potential electrode are coaxially arranged.

【0027】[0027]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。なお、従来例と共通する部分には
同一の符号を付す。図1は本発明に係る静電容量形レベ
ル測定装置の実施の形態を示す図であり、図2はその等
価回路図である。図1において、金属槽3は、公知の導
電性材料から形成された公知の容器であり、絶縁性の被
測定液1が入れられており、レベルの安定した例えば4
0KHzの交流信号を発振出力する信号源7が接続され
ている。
Embodiments of the present invention will be described below with reference to the drawings. Note that the same reference numerals are given to portions common to the conventional example. FIG. 1 is a diagram showing an embodiment of a capacitance type level measuring device according to the present invention, and FIG. 2 is an equivalent circuit diagram thereof. In FIG. 1, a metal tank 3 is a well-known container formed of a well-known conductive material, in which an insulative liquid to be measured 1 is put, and a level of, for example, 4
A signal source 7 for oscillating and outputting a 0 KHz AC signal is connected.

【0028】主電極5は細長い円筒状を有し、金属槽3
の開口部側から下方に向って被測定液1中に挿入されて
おり、図示しない適当な保持手段によってその中央部に
保持され、上部が金属槽3から多少突出している。金属
槽3内の被測定液1中において、主電極5の先端下方に
は、これと僅かな間隔を置いた小さな同電位電極29が
図示しない適当な保持手段によって共軸的に保持されて
いる。
The main electrode 5 has an elongated cylindrical shape, and the metal tank 3
Is inserted downward into the liquid to be measured 1 from the opening side thereof, is held at a central portion thereof by a suitable holding means (not shown), and an upper portion thereof slightly protrudes from the metal tank 3. In the liquid 1 to be measured in the metal bath 3, a small equipotential electrode 29, which is slightly spaced from the main electrode 5, is coaxially held by a suitable holding means (not shown). .

【0029】主電極5は、シールドケーブル31の芯線
31aを介してOPアンプ(オペアンプ)33の反転入
力端子に接続されている。同電位電極29は、主電極5
の中空部およびシールドケーブル31のシールド部31
bを介してOPアンプ33の非反転入力端子に接続され
ている。OPアンプ33の非反転入力端子は0電位(0
V)に固定されており、その出力端子は帰還回路35を
介して非反転入力端子に接続される一方、整流平滑部1
1に接続されている。
The main electrode 5 is connected to an inverting input terminal of an operational amplifier (OP) 33 via a core 31a of the shielded cable 31. The same potential electrode 29 is connected to the main electrode 5
Hollow part and shield part 31 of shielded cable 31
It is connected to the non-inverting input terminal of the OP amplifier 33 via b. The non-inverting input terminal of the OP amplifier 33 has a potential of 0 (0
V), the output terminal of which is connected to a non-inverting input terminal via a feedback circuit 35, while the rectifying / smoothing unit 1
1 connected.

【0030】そのため、OPアンプ33の出力端子に
は、反転入力端子に加えられた電圧の逆極性の電圧が出
力され、帰還回路35を適当に選定することによって非
反転入力端子と反転入力端子が交流的に同一電位とな
り、OPアンプ33は、主電極5に対して同電位電極2
9を交流的に同一電位状態にする同電位形成部37とし
て機能するとともに、主電極5からの出力電流を電圧に
変換する機能を有する。整流平滑部11は、OPアンプ
33からの出力信号を整流平滑するもので調整部13に
接続されている。これら整流平滑部11および調整部1
3の機能は従来例と同様である。
Therefore, a voltage having a polarity opposite to that of the voltage applied to the inverting input terminal is output to the output terminal of the OP amplifier 33. By appropriately selecting the feedback circuit 35, the non-inverting input terminal and the inverting input terminal are changed. The same potential is obtained in an AC manner.
9 has a function of converting the output current from the main electrode 5 into a voltage, while functioning as an equipotential forming unit 37 for setting the same 9 in an alternating potential state. The rectifying / smoothing unit 11 rectifies and smoothes an output signal from the OP amplifier 33 and is connected to the adjusting unit 13. The rectifying / smoothing unit 11 and the adjusting unit 1
The function of No. 3 is the same as the conventional example.

【0031】次に、このような構成の静電容量形レベル
測定装置の動作を説明する。図1および図2において、
上述した静電容量Ca、Clに加え、主電極5と同電位
電極29間に静電容量Ckが、同電位電極29から横方
向の金属槽3間に静電容量Chが、同電位電極29から
金属槽3の底間に静電容量Csが形成される一方、主電
極5と金属槽3の底間に形成される静電容量Csは無視
できる。
Next, the operation of the capacitance type level measuring device having such a configuration will be described. 1 and 2,
In addition to the above-mentioned capacitances Ca and Cl, a capacitance Ck between the main electrode 5 and the same potential electrode 29, a capacitance Ch between the same potential electrode 29 and the horizontal metal tank 3, , The capacitance Cs is formed between the bottom of the metal tank 3 and the capacitance Cs formed between the main electrode 5 and the bottom of the metal tank 3 is negligible.

【0032】ここで、同電位電極29を流れる交流電流
i2は、図2のように、 i2=ωV(Ch+Cs) となり、この交流電流i2がOPアンプ33の非反転入
力端子へ流れる。他方、主電極5から出力される交流電
流i1は、 il=ωV(Ca+Cl) となり、これがOPアンプ33の反転入力端子へ流れる
とともに、被測定液1の液位に比例して静電容量(Ca
+Cl)が変化するので、この交流電流i1が被測定液
1の液位に比例した出力値となる。
Here, the AC current i2 flowing through the same potential electrode 29 becomes i2 = ωV (Ch + Cs) as shown in FIG. 2, and this AC current i2 flows to the non-inverting input terminal of the OP amplifier 33. On the other hand, the AC current i1 output from the main electrode 5 becomes il = ωV (Ca + Cl), which flows to the inverting input terminal of the OP amplifier 33, and the capacitance (Ca) in proportion to the liquid level of the liquid 1 to be measured.
+ Cl) changes, the AC current i1 becomes an output value proportional to the liquid level of the liquid 1 to be measured.

【0033】また、主電極5と同電位電極29間に静電
容量Ckが形成されるものの、主電極5に対して同電位
電極29間が常に同電位差(0V)に制御されてこの間
に電流が流れないから、同電位電極29によって形成さ
れる静電容量Ck、Ch、Csの存在が除去され、主電
極5と金属槽3間に形成される静電容量Cmは次のよう
になる。 Cm=(L/Lo)×(Clo−Cao)+Cao そして、OPアンプ33の出力端子からの交流電圧が整
流平滑部11で整流平滑され、調整部13で調整されて
被測定液1の液位に比例した測定信号が出力される。
Although a capacitance Ck is formed between the main electrode 5 and the same potential electrode 29, the potential difference between the same potential electrode 29 and the main electrode 5 is always controlled to the same potential (0 V), and during this time the current is reduced. Does not flow, the existence of the capacitances Ck, Ch, Cs formed by the same potential electrode 29 is removed, and the capacitance Cm formed between the main electrode 5 and the metal tank 3 is as follows. Cm = (L / Lo) × (Clo−Cao) + Cao Then, the AC voltage from the output terminal of the OP amplifier 33 is rectified and smoothed by the rectification and smoothing unit 11 and adjusted by the adjustment unit 13 to adjust the liquid level of the liquid 1 to be measured. Is output in proportion to.

【0034】このように本発明の静電容量形レベル測定
装置では、被測定液1を入れた金属槽3と、被測定液1
中へ縦方向に挿入され、液位に比例した電流の出力され
る主電極5と、この主電極5の先端に間隔を置いて配置
した同電位電極29と、その金属槽3に交流信号を印加
する信号源と、主電極5に対して同電位電極29を交流
的に同電位状態にする同電位形成部37を有するから、
主電極5の下方先端と金属槽3の底間には静電容量Cs
が形成され難くなるうえ、同電位電極29と金属槽3の
底間に静電容量Csが形成されるものの、主電極5と同
電位電極29が交流的に同電位となってその間に電流が
流れないので、静電容量Csの変化が主電極5からの出
力交流電流i1に影響を与え難い。そのため、温度変動
等に起因する環境変化があっても正確な液位測定が可能
となる。
As described above, in the capacitance type level measuring device of the present invention, the metal tank 3 containing the liquid 1 to be measured and the liquid 1
An AC signal is applied to the main electrode 5 which is inserted vertically and outputs a current proportional to the liquid level, an equipotential electrode 29 which is arranged at an end of the main electrode 5 at an interval, and the metal tank 3. Since there is a signal source to be applied and an equipotential forming section 37 that sets the same potential electrode 29 to the same potential in an AC manner with respect to the main electrode 5,
The capacitance Cs is provided between the lower end of the main electrode 5 and the bottom of the metal tank 3.
And the capacitance Cs is formed between the same potential electrode 29 and the bottom of the metal tank 3, but the main electrode 5 and the same potential electrode 29 become the same potential in an alternating current, and a current flows between them. Since the current does not flow, the change in the capacitance Cs hardly affects the output AC current i1 from the main electrode 5. Therefore, accurate liquid level measurement is possible even if there is an environmental change due to a temperature change or the like.

【0035】次に、本発明に係る静電容量形レベル測定
装置の他の形態を説明する。図3に示す構成は、図1の
構成に対し、主電極5および同電位電極29の外周を、
耐食性の良好な絶縁材料からなる被覆絶縁層15で被覆
したものであり、導電性の被測定液1の液位測定に好適
し、他の構成は図1と同様である。
Next, another embodiment of the capacitance type level measuring apparatus according to the present invention will be described. The configuration shown in FIG. 3 is different from the configuration of FIG.
It is covered with a coating insulating layer 15 made of an insulating material having good corrosion resistance, and is suitable for measuring the liquid level of the conductive liquid 1 to be measured. The other configuration is the same as that of FIG.

【0036】この構成では、上述した図1の主電極5や
同電位電極29と金属槽3間に形成される静電容量C
a、Cl、Ck、Ch、Csに対し、それぞれ被覆絶縁
層15と被測定液1間又は被覆絶縁層15と気体間に形
成される静電容量を合成した静電容量を用いれば、上述
した図2と同様な等価回路構成となり、動作も同様とな
る。そして、この図3に示す構成では、上述した図1の
構成による効果に加えて、図13に示したように、温度
変化などに起因して主電極5の先端と被覆絶縁層15間
の間隔dや被覆絶縁層15と金属槽3の底間の間隔tが
変化しても、それらの影響を受けることなく、正確な液
位測定が可能となる。
In this configuration, the capacitance C formed between the metal electrode 3 and the main electrode 5 or the same potential electrode 29 shown in FIG.
If the capacitance obtained by combining the capacitances formed between the coating insulating layer 15 and the liquid 1 to be measured or between the coating insulating layer 15 and the gas is used for a, Cl, Ck, Ch, and Cs, respectively. The equivalent circuit configuration is the same as in FIG. 2, and the operation is also the same. In addition, in the configuration shown in FIG. 3, in addition to the effect of the configuration shown in FIG. 1, as shown in FIG. 13, the distance between the tip of the main electrode 5 and the coating insulating layer 15 due to a temperature change or the like. Even if d or the interval t between the coating insulating layer 15 and the bottom of the metal tank 3 changes, accurate liquid level measurement can be performed without being affected by them.

【0037】さらに、図4に示す構成は、図1の構成に
対し、主電極5の先端にこれより小さな筒型の参照電極
19および同電位電極29を各々僅かな間隔をおいて共
軸的に順次配置し、シールドケーブル31の芯線31a
を介して主電極5をOPアンプ33に接続し、シールド
ケーブル31の芯線31aを介して参照電極19をOP
アンプ39に接続し、OPアンプ33を整流平滑部11
を介して演算部25に接続し、OPアンプ39を整流平
滑部23を介して演算部25に接続して構成されてい
る。符号41は帰還回路35と同様な帰還回路である。
この構成の静電容量形レベル測定装置は、図5に示すよ
うに、液位測定用の出力信号としての交流電流i1が静
電容量Ca、Clおよびシールドケーブル31の芯線3
1aを介してOPアンプ33まで流れ、補正信号として
の交流電流i3が静電容量Crおよびシールドケーブル
31の芯線31aを介してOPアンプ39まで流れ、交
流電流i4が静電容量Ch、Csおよびシールドケーブ
ル31のシールド部31bを介してOPアンプ39まで
流れる。
Further, the configuration shown in FIG. 4 is different from the configuration shown in FIG. 1 in that a cylindrical reference electrode 19 and a same potential electrode 29 smaller than the main electrode 5 are coaxially arranged at a slight distance from each other. And the core wire 31a of the shielded cable 31
The main electrode 5 is connected to the OP amplifier 33 via the OP, and the reference electrode 19 is connected to the OP via the core 31a of the shielded cable 31.
The amplifier 39 is connected to the rectifying / smoothing unit 11
And the operational amplifier 25 is connected to the arithmetic unit 25 via the rectifying / smoothing unit 23. Reference numeral 41 denotes a feedback circuit similar to the feedback circuit 35.
As shown in FIG. 5, in the capacitance type level measuring device having this configuration, the alternating current i1 as an output signal for measuring the liquid level is supplied to the capacitances Ca and Cl and the core wire 3 of the shielded cable 31.
1a flows to the OP amplifier 33, the AC current i3 as a correction signal flows to the OP amplifier 39 via the capacitance Cr and the core wire 31a of the shielded cable 31, and the AC current i4 flows to the capacitance Ch, Cs and the shield. It flows to the OP amplifier 39 via the shield part 31b of the cable 31.

【0038】整流平滑部11からの出力信号S1と、整
流平滑部23からの出力信号S2が演算部25で除算
(S1/S2)されて測定信号として出力される。そし
て、主電極5と参照電極19間および参照電極19と同
電位電極29間は、OPアンプ33、39によって交流
的に同電位となっているから、主電極5と参照電極19
間および参照電極19と同電位電極29間に形成される
静電容量Ck1、Ck2には交流電流が流れず、同電位
電極29に形成される静電容量Ck、Ch、Csの存在
が除去される。すなわちOPアンプ39も同電位形成部
43として機能する。
The output signal S1 from the rectifying / smoothing unit 11 and the output signal S2 from the rectifying / smoothing unit 23 are divided (S1 / S2) by the arithmetic unit 25 and output as a measurement signal. Since the op-amps 33 and 39 have the same potential between the main electrode 5 and the reference electrode 19 and between the reference electrode 19 and the same potential electrode 29, the main electrode 5 and the reference electrode 19 have the same potential.
No alternating current flows through the capacitances Ck1 and Ck2 formed between the reference electrode 19 and the same potential electrode 29, and the existence of the capacitances Ck, Ch and Cs formed on the same potential electrode 29 is removed. You. That is, the OP amplifier 39 also functions as the same potential forming unit 43.

【0039】また、主電極5で形成される静電容量Cm
および参照電極19で形成される静電容量Crmは、 Cm=Ca+Cl=(L/Lo)×(Clo−Cao)+Cao … Crm=(Lr/Lo)×Clo=Cr … となる。同電位電極29の形成により、静電容量Crm
から静電容量Csが除かれてこの影響を受け難くなり、
Crm=Crとなって液位測定条件が限定されなくな
る。
The capacitance Cm formed by the main electrode 5
And the capacitance Crm formed by the reference electrode 19 is as follows: Cm = Ca + Cl = (L / Lo) × (Clo−Cao) + Cao... Crm = (Lr / Lo) × Clo = Cr. By forming the same potential electrode 29, the capacitance Crm
And the capacitance Cs is removed from the
Crm = Cr, and the liquid level measurement conditions are not limited.

【0040】さらに、金属槽3内の被測定液1が完全に
空になった時の静電容量Cm、Crmは、 Cm=Cao Crm=(Lr/Lo)×Cao となるから、空の状態において主電極5および参照電極
19からの出力信号S1、S2を出力端P1、P2で測
定し、出力信号S1、S2が「ゼロ」となるような補償
信号を補償部45、47から整流平滑部11、23へ出
力すれば、各式、は、出力端P1、P2から見て、 Cm=Cao−Cao=0 Crm=〔(Lr/Lo)×Cao〕−〔(Lr/L
o)×Cao〕=0 となる。ここで、[Cao]および[(Lr/Lo)×
Cao]は補償部47、45からの補償信号相当の補償
静電容量である。
Further, the capacitances Cm and Crm when the liquid 1 to be measured in the metal tank 3 is completely empty are as follows: Cm = Cao Crm = (Lr / Lo) × Cao , The output signals S1 and S2 from the main electrode 5 and the reference electrode 19 are measured at the output terminals P1 and P2, and compensation signals such that the output signals S1 and S2 become “zero” are supplied from the compensation units 45 and 47 to the rectifying / smoothing unit. When output to the output terminals 11 and 23, the expressions are as follows: Cm = Cao−Cao = 0 Crm = [(Lr / Lo) × Cao] − [(Lr / L)
o) × Cao] = 0. Here, [Cao] and [(Lr / Lo) ×
Cao] is a compensation capacitance corresponding to compensation signals from the compensation units 47 and 45.

【0041】そのため、空の状態における補償静電容量
に相当する補償信号値を補償部45、47に記憶してお
けば、空調整後の金属槽3に被測定液1を入れたとき、
出力端P1、P2から見た主電極5、参照電極19によ
って形成される静電容量Cm、Crmは、 Cm=(L/Lo)×(Clo−Cao)+Cao−Cao =(L/Lo)×(Clo−Cao) Crm=(Lr/Lo)×Clo−(Lr/Lo)×Cao =(Lr/Lo)×(Clo−Cao) となる。
Therefore, if the compensation signal value corresponding to the compensation capacitance in the empty state is stored in the compensation units 45 and 47, when the liquid 1 to be measured is put into the metal tank 3 after the empty adjustment,
The capacitances Cm and Crm formed by the main electrode 5 and the reference electrode 19 viewed from the output terminals P1 and P2 are as follows: Cm = (L / Lo) × (Clo−Cao) + Cao−Cao = (L / Lo) × (Clo−Cao) Crm = (Lr / Lo) × Clo− (Lr / Lo) × Cao = (Lr / Lo) × (Clo−Cao)

【0042】これにより、演算部25からの除算出力
は、 S1/S2=〔(L/Lo)×(Clo−Cao)〕/〔(Lr/Lo) ×(Clo−Cao)〕 =L/Lr となって各静電容量の項が消去される。すなわち、Cm
/Crm=Cl/Crm=L/Lrとなり、ほぼ完全な
補正が達成されたことが分かる。
Thus, the division calculation force from the arithmetic unit 25 is: S1 / S2 = [(L / Lo) × (Clo-Cao)] / [(Lr / Lo) × (Clo-Cao)] = L / Lr As a result, each capacitance term is deleted. That is, Cm
/ Crm = Cl / Crm = L / Lr, and it can be seen that almost complete correction has been achieved.

【0043】このように、主電極5および同電位電極2
9に加えて参照電極19を有する構成では、同電位電極
29に形成される静電容量Ck(Ck2)、Ch、Cs
の存在を除去できることに加え、主電極5における変動
要素となる静電容量を除去できるから、一層正確な液位
測定が可能である。しかも、空調整機能のない従来の構
成では、例えば被測定液1が少なくなるに従って演算部
25からの測定信号(S1/S2)がほぼ直線的に小さ
くなるものの、主電極5および参照電極19が露出した
とき、整流平滑部23からの出力信号S2が極小化し、
測定信号(S1/S2)が逆に大きくなってゆく出力反
転現象を発生させるおそれがあった。
As described above, the main electrode 5 and the same potential electrode 2
9, the capacitances Ck (Ck2), Ch, and Cs formed on the same potential electrode 29 are provided.
Can be removed, and the capacitance which is a variable element in the main electrode 5 can be removed, so that a more accurate liquid level measurement can be performed. Moreover, in the conventional configuration without the empty adjustment function, for example, as the measurement target liquid 1 decreases, the measurement signal (S1 / S2) from the calculation unit 25 decreases substantially linearly, but the main electrode 5 and the reference electrode 19 are not. When exposed, the output signal S2 from the rectifying and smoothing unit 23 is minimized,
On the contrary, there is a possibility that an output inversion phenomenon in which the measurement signal (S1 / S2) becomes larger in the opposite direction may occur.

【0044】この点、図4の構成では、上述したように
出力信号S2をほぼ「0」にして測定信号(S1/S
2)もほぼ「0」にすることが可能で、主電極5および
参照電極19が露出した以降、出力反転現象を抑えると
ともに測定信号(S1/S2)を横ばい又は「0」に至
るまで減少させることが可能となる。なお、図示はしな
いが、図4に示す構成においても、図3のように主電極
5、参照電極19および同電位電極29を被覆絶縁層1
5で被覆すれば、導電性の被測定液1の液位測定が可能
となり、温度変化等に起因して同電位電極29の先端と
被覆絶縁層15間の間隔や被覆絶縁層15と金属槽3の
底間の間隔が変化しても、それらの影響を受けることが
ないのは上述した例と同様である。
In this regard, in the configuration of FIG. 4, the output signal S2 is set to substantially "0" as described above, and the measurement signal (S1 / S
2) can also be substantially "0", and after the main electrode 5 and the reference electrode 19 are exposed, the output inversion phenomenon is suppressed and the measurement signal (S1 / S2) is leveled off or reduced until it reaches "0". It becomes possible. Although not shown, in the configuration shown in FIG. 4, the main electrode 5, the reference electrode 19, and the same potential electrode 29 are covered with the coating insulating layer 1 as shown in FIG.
5, the liquid level of the conductive liquid 1 to be measured can be measured, and the distance between the tip of the same potential electrode 29 and the coating insulating layer 15 or the coating insulating layer 15 and the metal tank can be measured due to a temperature change or the like. Even if the distance between the bottoms of the bases 3 changes, they are not affected as in the above-described example.

【0045】また、本発明では、図1、図3および図4
の構成において、図16のように、主電極5、参照電極
19および同電位電極29の外周を所定の間隔を置いて
筒電極17で囲む構成も可能であり、本発明においては
金属槽3および筒電極17が囲み電極として機能する。
さらに、本発明に係る静電容量形レベル測定装置は、必
ずしも囲み電極としての金属槽3や筒電極17を用いる
構成に限らない。主電極5と金属槽3の間が液位方向
(通常高さ方向)で一定間隔に保たれていれば良く、例
えば図6に示すように、四角形状の金属槽3や図示はし
ないが多角形、楕円等の金属槽の使用が可能である。
In the present invention, FIGS. 1, 3 and 4
In the configuration shown in FIG. 16, as shown in FIG. 16, a configuration in which the outer circumferences of the main electrode 5, the reference electrode 19, and the same potential electrode 29 are surrounded by the cylindrical electrode 17 at a predetermined interval is also possible. The cylindrical electrode 17 functions as a surrounding electrode.
Further, the capacitance type level measuring device according to the present invention is not necessarily limited to the configuration using the metal tank 3 or the cylindrical electrode 17 as the surrounding electrode. It is sufficient that the main electrode 5 and the metal tank 3 are kept at a constant interval in the liquid level direction (normally the height direction). For example, as shown in FIG. It is possible to use a metal tank such as a square or an ellipse.

【0046】そして、上述した実施の形態において、同
電位形成37、43をOPアンプ33、39で形成した
が、本発明では主電極5、同電位電極29および参照電
極19について交流的な電位差の発生を抑えるような回
路であれば、本発明の目的達成が可能である。また、本
発明では、金属槽3側から交流信号を印加して主電極5
側から交流信号を出力する構成に限らず、図1中に破線
で示すように、同電位電極29および主電極5側に交流
信号を印加し、金属槽3や筒電極17側から交流電流を
出力させる構成であっても実施可能であり、主電極5と
囲み電極(金属槽3、筒電極17)間に交流信号を印加
する構成であれば良い。
In the embodiment described above, the same potential formation 37, 43 is formed by the OP amplifiers 33, 39, but in the present invention, the AC potential difference between the main electrode 5, the same potential electrode 29 and the reference electrode 19 is reduced. The object of the present invention can be achieved by a circuit that suppresses the generation. Further, in the present invention, an AC signal is applied from the metal tank 3 to
The AC signal is applied to the same potential electrode 29 and the main electrode 5 side as shown by a broken line in FIG. The present invention can be applied to a configuration in which output is performed, and any configuration may be used as long as an AC signal is applied between the main electrode 5 and the surrounding electrodes (the metal tank 3 and the cylindrical electrode 17).

【0047】ところで、上述した各実施の形態は、主電
極5の下方先端に同電位電極29を配置する構成であっ
たが、実際の静電容量形レベル測定装置では、例えば筒
電極17の上部を測定不感帯とし、人体や物体の接近、
接触による誤動作防止を可能に構成するのが一般的であ
る。そのため、図1の静電容量形レベル測定装置では、
例えば図7Aに示すように、主電極5の上側に若干の間
隔を置いて上側の同電位電極49を共軸的に配置し、主
電極5に対して同電位電極49を交流的に同電位状態に
するとともにシールド機能をもたせる構成も可能である
し、それら主電極5や同電位電極29を筒電極17で囲
む構成でも、図7Bに示すように、筒電極17内におい
て主電極5の上側に間隔を置いて上側の同電位電極49
を共軸的に配置する構成が可能である。
In each of the embodiments described above, the same potential electrode 29 is arranged at the lower end of the main electrode 5. However, in an actual capacitance type level measuring device, for example, Is used as a measurement dead zone,
It is common to configure to prevent malfunction due to contact. Therefore, in the capacitance type level measuring device of FIG.
For example, as shown in FIG. 7A, an upper equipotential electrode 49 is arranged coaxially at a slight interval above the main electrode 5, and the same potential electrode 49 is alternately and equipotentially arranged with respect to the main electrode 5. It is possible to provide a shield function as well as a state in which the main electrode 5 and the same potential electrode 29 are surrounded by the cylindrical electrode 17, as shown in FIG. 7B. The upper equipotential electrode 49 at an interval
Can be arranged coaxially.

【0048】さらに、主電極5の先端と同電位電極29
との間に参照電極19を配置する構成でも、図7Cに示
すように、主電極5の上側に間隔を置いて上側の同電位
電極49を共軸的に配置したり、図7Dのように、筒電
極17内において主電極5の上側に上側の同電位電極4
9を共軸的に配置する構成が可能である。なお、上側の
同電位電極49を主電極5に対して交流的に同電位状態
にするには、上述した帰還回路35、41等からなる同
電位形成部37、43を同電位電極49に接続する構成
とすれば良い。
Further, the tip of the main electrode 5 and the same potential electrode 29
7C, the same potential electrode 49 on the upper side is coaxially arranged at an interval above the main electrode 5 as shown in FIG. 7C, or as shown in FIG. 7D. , The upper equipotential electrode 4 above the main electrode 5 in the cylindrical electrode 17.
A configuration in which 9 are arranged coaxially is possible. In order to make the same potential electrode 49 on the upper side AC and the same potential state with respect to the main electrode 5, the same potential forming parts 37 and 43 composed of the above-mentioned feedback circuits 35 and 41 are connected to the same potential electrode 49. The configuration may be such that

【0049】本発明に係る静電容量形レベル測定装置
は、上述した各形態例のように金属槽3に被測定液1を
溜める構成に限らず、広く一般的な容器、水処理等の貯
水槽、自然界のダムや河川等々の液面レベル測定に適用
可能である。
The capacitance type level measuring apparatus according to the present invention is not limited to the configuration in which the liquid to be measured 1 is stored in the metal tank 3 as in the above-described embodiments, but may be a widely used container, a water storage such as a water treatment or the like. It is applicable to liquid level measurement of tanks, natural dams and rivers.

【0050】[0050]

【発明の効果】以上説明したように本発明の静電容量形
レベル測定装置は、被測定液中へ挿入された主電極の先
端にこれと間隔を置いて同電位電極を配置し、これら主
電極および同電位電極を囲む囲み電極とその主電極間に
交流信号を印加し、同電位電極および主電極間に交流的
な同電位状態を形成する構成としたから、主電極や囲み
電極から被測定液の液面レベルに応じた測定信号を出力
できるとともに、主に主電極の先端に形成される静電容
量の変動影響を除去し、温度等の環境の変化に対しても
被測定液の正確な液位測定が可能となる。そして、測定
出力信号を補正する信号を出力する参照電極を主電極の
先端と同電位電極の間に互いに間隔を置いて配置し、そ
れら主電極、同電位電極および参照電極間の交流的な同
電位状態を形成する構成では、上述した効果に加えて、
被測定液の空状態における空調整が可能となる利点があ
る。また、共軸的に配置されたそれらの電極を絶縁層で
被覆する構成では、温度等の環境条件の変動によって絶
縁層と主電極や同電位電極間の寸法が変化しても、その
変動の影響を抑えることが可能となる。さらに、それら
主電極、同電位電極および参照電極間を内側中空部に配
置した筒電極を囲み電極とする構成では、主電極や参照
電極の下部先端から容器底部間に形成される静電容量が
ほとんどなくなるから、より一層正確な液位測定が可能
となる。
As described above, according to the capacitance type level measuring apparatus of the present invention, the same potential electrodes are arranged at the tip of the main electrode inserted into the liquid to be measured at a distance from the main electrode. An AC signal is applied between the surrounding electrode surrounding the electrode and the same potential electrode and its main electrode to form an AC same potential state between the same potential electrode and the main electrode. A measurement signal can be output in accordance with the liquid level of the measurement liquid.Also, the influence of the fluctuation of the capacitance formed mainly at the tip of the main electrode is eliminated, and the liquid to be measured is protected against environmental changes such as temperature. Accurate liquid level measurement becomes possible. Then, a reference electrode for outputting a signal for correcting the measurement output signal is arranged at an interval between the tip of the main electrode and the same-potential electrode, and the AC electrode between the main electrode, the same-potential electrode and the reference electrode is separated from each other. In the configuration for forming the potential state, in addition to the effects described above,
There is an advantage that empty adjustment can be performed in an empty state of the liquid to be measured. In a configuration in which the electrodes arranged coaxially are covered with an insulating layer, even if the dimensions between the insulating layer and the main electrode or the same potential electrode change due to changes in environmental conditions such as temperature, the change is not affected. The effect can be suppressed. Furthermore, in a configuration in which a cylindrical electrode in which the main electrode, the same potential electrode, and the reference electrode are disposed in the inner hollow portion is used as the surrounding electrode, the capacitance formed between the lower end of the main electrode and the reference electrode and the bottom of the container is reduced. Since there is almost no liquid level, a more accurate liquid level measurement can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る静電容量形レベル測定装置の実施
の形態を示す図である。
FIG. 1 is a diagram showing an embodiment of a capacitance type level measuring device according to the present invention.

【図2】図1の静電容量形レベル測定装置の等価回路図
である。
FIG. 2 is an equivalent circuit diagram of the capacitance type level measuring device of FIG.

【図3】本発明に係る静電容量形レベル測定装置の他の
実施の形態を示す図である。
FIG. 3 is a diagram showing another embodiment of the capacitance type level measuring device according to the present invention.

【図4】本発明に係る静電容量形レベル測定装置の他の
実施の形態を示す図である。
FIG. 4 is a diagram showing another embodiment of the capacitance type level measuring device according to the present invention.

【図5】図4の静電容量形レベル測定装置の等価回路図
である。
FIG. 5 is an equivalent circuit diagram of the capacitance type level measuring device of FIG.

【図6】本発明の静電容量形レベル測定装置の更に他の
実施の形態を示す要部概略図である。
FIG. 6 is a schematic view of a main part showing still another embodiment of the capacitance type level measuring device of the present invention.

【図7】本発明の静電容量形レベル測定装置の更に他の
実施の形態を概略で示す概略図である。
FIG. 7 is a schematic diagram schematically showing still another embodiment of the capacitance type level measuring device of the present invention.

【図8】従来の静電容量形レベル測定装置を示す図であ
る。
FIG. 8 is a diagram showing a conventional capacitance-type level measuring device.

【図9】図8に係る静電容量形レベル測定装置の動作を
説明する図である。
FIG. 9 is a diagram for explaining the operation of the capacitance type level measuring device according to FIG. 8;

【図10】図8に係る静電容量形レベル測定装置の動作
を説明する図である。
FIG. 10 is a view for explaining the operation of the capacitance type level measuring device according to FIG. 8;

【図11】図8に係る静電容量形レベル測定装置の動作
を説明する図である。
FIG. 11 is a view for explaining the operation of the capacitance type level measuring device according to FIG. 8;

【図12】図8に係る静電容量形レベル測定装置の動作
を説明する図である。
FIG. 12 is a view for explaining the operation of the capacitance type level measuring device according to FIG. 8;

【図13】図8に係る静電容量形レベル測定装置の動作
を説明する図である。
FIG. 13 is a view for explaining the operation of the capacitance type level measuring device according to FIG. 8;

【図14】静電容量形レベル測定装置の補正動作を説明
する図である。
FIG. 14 is a diagram illustrating a correction operation of the capacitance-type level measurement device.

【図15】静電容量形レベル測定装置の補正動作を説明
する図である。
FIG. 15 is a diagram illustrating a correction operation of the capacitance type level measuring device.

【図16】図14又は図15に係る静電容量形レベル測
定装置を説明する図である。
FIG. 16 is a diagram illustrating a capacitance type level measuring device according to FIG. 14 or FIG.

【符号の説明】[Explanation of symbols]

1 被測定液 3 金属槽 5 主電極 7 信号源 9、21 変換部 11、23 整流平滑部 13、27 調整部 15 被覆絶縁層 17 筒電極 19 参照電極 25 演算部 29、49 同電位電極 31 シールドケーブル 31a 芯線 31b シールド部 33、39 OPアンプ(同電位形成部) 35、41 帰還回路 37、43 同電位形成部 45、47 補償部 DESCRIPTION OF SYMBOLS 1 Measurement liquid 3 Metal tank 5 Main electrode 7 Signal source 9, 21 Conversion part 11, 23 Rectification smoothing part 13, 27 Adjustment part 15 Coating insulating layer 17 Cylindrical electrode 19 Reference electrode 25 Operation part 29, 49 Same potential electrode 31 Shield Cable 31a Core 31b Shield 33, 39 OP amplifier (same potential forming part) 35, 41 Feedback circuit 37, 43 Same potential forming part 45, 47 Compensation part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被測定液中へ下方に向けて漬浸される細
長い主電極と、 この主電極の先端に間隔を置いて配置された同電位電極
と、 間隔を置いて前記主電極および同電位電極の外周を囲む
囲み電極と、 この囲み電極および前記主電極間に交流信号を印加する
信号源と、 前記同電位電極および主電極間に交流的な同電位状態
形成する同電位形成部と、 を具備し、前記主電極又は囲み電極からの出力信号によ
って前記被測定液の液位が測定されるものであることを
特徴とする静電容量形レベル測定装置。
1. An elongated main electrode immersed downward into a liquid to be measured, an equipotential electrode disposed at an end of the main electrode at an interval, and the main electrode and an electrode at an interval. A surrounding electrode surrounding the outer periphery of the potential electrode; a signal source for applying an AC signal between the surrounding electrode and the main electrode; and a same potential forming section for forming an AC same potential state between the same potential electrode and the main electrode. And a liquid level of the liquid to be measured is measured by an output signal from the main electrode or the surrounding electrode.
【請求項2】 前記主電極の先端と前記同電位電極の間
に互いに間隔を置いて配置され、前記出力信号を補正す
る信号を出力する参照電極を有し、前記同電位形成部は
前記主電極、同電位電極および参照電極間の交流的な同
電位状態を形成するものである請求項1記載の静電容量
形レベル測定装置。
2. A reference electrode which is arranged at an interval between a tip of the main electrode and the same-potential electrode and outputs a signal for correcting the output signal, and wherein the same-potential forming part is provided with the main-potential forming part. 2. The capacitance-type level measuring device according to claim 1, wherein an alternating-current same potential state is formed between the electrode, the same potential electrode and the reference electrode.
【請求項3】 前記電極が絶縁層で被覆されてなる請求
項1又は2記載の静電容量形レベル測定装置。
3. The capacitance type level measuring device according to claim 1, wherein the electrode is covered with an insulating layer.
【請求項4】 前記囲み電極は、前記主電極、同電位電
極および参照電極を内部に配置した筒電極である請求項
1〜3のいずれか1項記載の静電容量形レベル測定装
置。
4. The capacitance type level measuring device according to claim 1, wherein the surrounding electrode is a cylindrical electrode in which the main electrode, the same potential electrode, and a reference electrode are arranged.
JP26908496A 1996-09-20 1996-09-20 Capacitance type level measuring device Expired - Fee Related JP3372173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26908496A JP3372173B2 (en) 1996-09-20 1996-09-20 Capacitance type level measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26908496A JP3372173B2 (en) 1996-09-20 1996-09-20 Capacitance type level measuring device

Publications (2)

Publication Number Publication Date
JPH1096660A true JPH1096660A (en) 1998-04-14
JP3372173B2 JP3372173B2 (en) 2003-01-27

Family

ID=17467455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26908496A Expired - Fee Related JP3372173B2 (en) 1996-09-20 1996-09-20 Capacitance type level measuring device

Country Status (1)

Country Link
JP (1) JP3372173B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7137741B2 (en) 2001-12-27 2006-11-21 Nsk Ltd. Rolling bearing
JP2007278968A (en) * 2006-04-11 2007-10-25 Yazaki Corp Liquid level detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7137741B2 (en) 2001-12-27 2006-11-21 Nsk Ltd. Rolling bearing
JP2007278968A (en) * 2006-04-11 2007-10-25 Yazaki Corp Liquid level detector

Also Published As

Publication number Publication date
JP3372173B2 (en) 2003-01-27

Similar Documents

Publication Publication Date Title
US4204427A (en) Device for the capacitive level height measurement of liquids or solids
JPH0337501A (en) Electrostatic capacitance type detecting apparatus
JPS631524B2 (en)
US4021707A (en) Compensated probe for capacitive level measurement
KR910004509Y1 (en) Alcohol sensor
US20190086253A1 (en) Capacitive level sensor and method of measuring the level of a medium
CA1103329A (en) Sensor for determining level of a flowing liquid in a vessel
JPH0238988A (en) Liquid sensor
JPS61148321A (en) Tilt angle measuring apparatus
JP3436117B2 (en) Capacitance type level measuring device
JPH1096660A (en) Capacitive level-measuring apparatus
JP3422355B2 (en) Capacitance type level measuring device
JP2705257B2 (en) Liquid level detector
GB1603793A (en) Apparatus and method for measuring the level of electrically conducting liquids
JPH04110618A (en) Liquid level sensor
JP3422358B2 (en) Capacitance type level measuring device
JP6132482B2 (en) Liquid level detector
JP2708219B2 (en) Water level sensor
JP6295018B2 (en) Liquid concentration detector
JP3591709B2 (en) Capacitance type level measuring device
US3228245A (en) Liquid quantity gage
JPH06194212A (en) Electrostatic capacitance sensor
JPS61233323A (en) Method for measuring solution level
SU1768996A1 (en) Capacity-type level gage
RU2042928C1 (en) Capacitor level meter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees