JPH1095612A - Silver-containing zeolite, separation of gas using the same and production of zeolite - Google Patents

Silver-containing zeolite, separation of gas using the same and production of zeolite

Info

Publication number
JPH1095612A
JPH1095612A JP8250682A JP25068296A JPH1095612A JP H1095612 A JPH1095612 A JP H1095612A JP 8250682 A JP8250682 A JP 8250682A JP 25068296 A JP25068296 A JP 25068296A JP H1095612 A JPH1095612 A JP H1095612A
Authority
JP
Japan
Prior art keywords
zeolite
silver
separation
nitrogen
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8250682A
Other languages
Japanese (ja)
Inventor
Takashi Suzuki
喬 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP8250682A priority Critical patent/JPH1095612A/en
Publication of JPH1095612A publication Critical patent/JPH1095612A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a zeolite better in separation coefficient than that of a conventional adsorbent when used for gas separation. SOLUTION: This silver-containing zeolite is produced by exchanging 10-100% of ion exchangeable cations in an X type zeolite with silver ions. The silver- containing zeolite is used to separate a component gas from a mixed gas. The method for producing the silver-containing zeolite is to carry out the ion exchange of an NaX type zeolite or a CaX type zeolite in a silver salt solution and provide the silver-containing zeolite in which 10-100% of the ion exchangeable cations in the zeolite are exchanged with the silver ions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス吸着分離、な
かでも空気中の酸素と窒素の分離に好適に使用される銀
含有ゼオライトと、それを用いたガス分離方法、及びゼ
オライトの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silver-containing zeolite which is preferably used for gas adsorption separation, particularly for separation of oxygen and nitrogen in air, a gas separation method using the same, and a method for producing zeolite. .

【0002】[0002]

【従来の技術】[Prior art]

(ガス分離吸着剤)工業的ガス分離用の吸着剤として
は、合成ゼオライト、天然ゼオライト、シリカゲル、ア
ルミナゲル、活性炭、分子ふるい炭素などが使用されて
いる。空気中の酸素と窒素を分離する目的に対しては、
ゼオライトと分子ふるい炭素が使用されている。ゼオラ
イトは、一般に酸素よりも窒素の平衡吸着量が大きい。
この性質を利用して、空気から酸素または窒素ガスの分
離が行われる。ゼオライトによる酸素、窒素吸着平衡の
データは、たとえば以下の文献に示されている。1)D.M.
Ruthven, AIChE Journal, Vol.22, No.4, p.753(1976)
にはA型ゼオライトについて記されている。2)吸着技術
ハンドブック(発行(株)エヌ.ティー.エス、199
3年)、15頁(田村孝章)には天然ゼオライトについ
ての記述がある。3)同上、699頁(伊藤亘)には天然
ゼオライトに関する記述がある。4)同上、723頁(松
長義則)には市販の合成ゼオライトについてのデータが
ある。
(Gas separation adsorbent) As an adsorbent for industrial gas separation, synthetic zeolite, natural zeolite, silica gel, alumina gel, activated carbon, molecular sieve carbon and the like are used. For the purpose of separating oxygen and nitrogen in the air,
Zeolite and molecular sieve carbon are used. Zeolites generally have a greater equilibrium adsorption of nitrogen than oxygen.
By utilizing this property, oxygen or nitrogen gas is separated from air. Data on the equilibrium of oxygen and nitrogen adsorption by zeolites are shown in the following documents, for example. 1) DM
Ruthven, AIChE Journal, Vol.22, No.4, p.753 (1976)
Describes A-type zeolites. 2) Adsorption technology handbook (published by NTS, 199
(3 years), p. 15 (Takaaki Tamura) describes a natural zeolite. 3) Same as above, p. 699 (Wataru Ito) describes natural zeolites. 4) Same as above, page 723 (Matsunaga Matsunaga) contains data on commercially available synthetic zeolites.

【0003】(分離方法)ガス分離方法として、PSA
法(Pressure Swing Adsorption法、圧力変動吸着法)
と呼ばれる方法は周知である。この方法は、成分A,B
からなる混合ガスにおいて、吸着剤に対する吸着量が成
分AがBよりも大きい場合に、吸着剤床にある高い圧力
で一定時間混合ガスを流し、成分Aが床で吸着される
間、成分Bを取り出し(吸着工程)、次にある低い圧力
まで減圧することで、成分Aを床から排除(脱着工程ま
たは再生工程)し、これを順次繰り返すことで、混合ガ
スを成分AとBに分離する。
(Separation method) As a gas separation method, PSA
Method (Pressure Swing Adsorption method, pressure fluctuation adsorption method)
The method called is well known. This method comprises the steps of components A and B
When the amount of adsorption to the adsorbent is greater than that of component B in the mixed gas consisting of, the mixed gas is flowed at a high pressure in the adsorbent bed for a certain period of time, and while component A is adsorbed on the bed, component B is removed. The component A is removed from the bed by removing (adsorbing step) and then reducing the pressure to a certain low pressure (desorption step or regeneration step), and the mixed gas is separated into the components A and B by repeating these steps sequentially.

【0004】[0004]

【発明が解決しようとする課題】空気中には、容積で酸
素が約21%、窒素が約78%含まれている。空気から
酸素と窒素を分離するのに使用されるゼオライト吸着剤
としては、窒素/酸素吸着比(分離係数)が大きいこと
が求められる。従来使用されているゼオライトは、おお
むねその要求を満たすものではあるが、十分満足できる
ものではなく、特に分離効率を改善するために、分離係
数の向上が不断に求められている。
The air contains about 21% oxygen and about 78% nitrogen by volume. A zeolite adsorbent used for separating oxygen and nitrogen from air is required to have a large nitrogen / oxygen adsorption ratio (separation coefficient). Conventionally used zeolites generally satisfy the requirements, but are not sufficiently satisfactory. In particular, in order to improve the separation efficiency, the improvement of the separation coefficient is constantly required.

【0005】本発明は前記事情に鑑みてなされたもの
で、ガス分離に使用する場合に、従来の吸着剤に比べ分
離係数に優れたゼオライトの提供を課題としている。
The present invention has been made in view of the above circumstances, and has as its object to provide a zeolite having a higher separation coefficient than conventional adsorbents when used for gas separation.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1に係る
発明は、X型ゼオライト中のイオン交換可能なカチオン
の10〜100%が銀イオンで交換されてなる銀含有ゼ
オライトである。請求項2に係る発明は、請求項1記載
の銀含有ゼオライトを用い、混合ガス中から成分ガスを
分離することを特徴とするガス分離方法である。請求項
3に係る発明は、前記混合ガスが酸素と窒素を含む混合
ガスであり、該混合ガスから酸素と窒素を分離すること
を特徴とする請求項2記載のガス分離方法である。請求
項4に係る発明は、NaX型ゼオライトまたはCaX型
ゼオライトを銀塩溶液中でイオン交換し、ゼオライト中
のイオン交換可能なカチオンの10〜100%が銀イオ
ンで交換されてなる銀含有ゼオライトを得ることを特徴
とするゼオライトの製造方法である。
The invention according to claim 1 of the present invention is a silver-containing zeolite obtained by exchanging 10 to 100% of ion-exchangeable cations in an X-type zeolite with silver ions. The invention according to claim 2 is a gas separation method, comprising separating a component gas from a mixed gas using the silver-containing zeolite according to claim 1. The invention according to claim 3 is the gas separation method according to claim 2, wherein the mixed gas is a mixed gas containing oxygen and nitrogen, and oxygen and nitrogen are separated from the mixed gas. According to a fourth aspect of the present invention, there is provided a silver-containing zeolite in which NaX-type zeolite or CaX-type zeolite is ion-exchanged in a silver salt solution, and 10 to 100% of ion-exchangeable cations in the zeolite are exchanged with silver ions. And a method for producing a zeolite.

【0007】[0007]

【発明の実施の形態】ゼオライトはケイ酸塩の縮合酸の
構造であり、基本単位はケイ素(Si)を中心として形
成される4個の酸素(O)が頂点に位置したSiO4
面体と、このSiの代わりにアルミニウム(Al)の置
換したAlO4四面体であり、これと、その他の種々の
基本構造の単位が三次元的に組み合わされ、チャンネル
(通路)とケージ(空洞)を形成している。様々なチャ
ンネルとケージは吸着やイオン交換などの多様な特性を
発現する。本発明は、ゼオライトを構成するイオン交換
可能なカチオンを銀イオンで交換することにより、ゼオ
ライト結晶の孔径あるいは静電場を改変し、酸素/窒素
吸着分離に適した銀含有ゼオライトを得る。ゼオライト
は、一価および二価のカチオンをそれぞれ、M1,M2
表すと、組成は次式のように表される。 (M1,2 1/2)m(AlmSinO2(m+n))・xH2O, (n≧m) M1=Li+,Na+,K+,Pb+,Me4+(TMA), Et4+(TEA),Pr4+(TPA),C816+ M2=Ca2+,Mg2+,Ba2+,Sr2+,C8182 2+ 合成ゼオライトで、SiO2/Al23比がほぼ1.8
〜1.9であるものをA型、2〜3であるものをX型、
3〜6であるものをY型と呼ぶ。一価および二価のカチ
オンの一部または全部は、他の陽イオンと可逆的に交換
することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Zeolite is a structure of a condensed acid of silicate, and its basic unit is a SiO 4 tetrahedron in which four oxygens (O) formed around silicon (Si) are located at the top. Is an AlO 4 tetrahedron in which aluminum (Al) is substituted for this Si, and this and other various basic structural units are three-dimensionally combined to form a channel (passage) and a cage (cavity). doing. Various channels and cages exhibit various properties such as adsorption and ion exchange. According to the present invention, a silver-containing zeolite suitable for oxygen / nitrogen adsorption separation is obtained by changing the pore size or electrostatic field of zeolite crystals by exchanging ion-exchangeable cations constituting zeolite with silver ions. In the zeolite, when monovalent and divalent cations are represented by M 1 and M 2 , respectively, the composition is represented by the following formula. (M 1, M 2 1/2) m (AlmSinO2 (m + n)) · xH2O, (n ≧ m) M1 = Li +, Na +, K +, Pb +, Me 4 N + (TMA), Et 4 N + (TEA), Pr 4 N + (TPA), C 8 H 16 N + M 2 = Ca 2+ , Mg 2+ , Ba 2+ , Sr 2+ , C 8 H 18 N 2 2+ synthetic zeolite , The SiO 2 / Al 2 O 3 ratio is approximately 1.8
A type of ~ 1.9, X type of 2-3,
Those having 3 to 6 are called Y type. Some or all of the monovalent and divalent cations can be reversibly exchanged with other cations.

【0008】イオン交換可能なカチオンが、Caのみ又
は価数を考慮して主としてCaであるX型ゼオライトは
CaX型と呼ばれる。イオン交換可能なカチオンがNa
の場合にはNaX型と呼ばれる。CaまたはNaと共存
するカチオンは上記のように様々な種類がある。CaX
型ゼオライトまたはNaX型ゼオライトを銀塩溶液中に
浸漬することにより、カルシウムまたはナトリウムを銀
(Ag)に交換することができる。交換する量は銀塩の
濃度、イオン交換の反応温度、反応の時間を選択するこ
とで調整することができる。銀塩としては、例えば、硝
酸銀、塩素酸銀、過塩素酸銀、酢酸銀、ヘキサフルオロ
リン酸銀、テトラフルオロホウ酸銀などが使用でき、な
かでも硝酸銀が好適に使用できる。
An X-type zeolite in which the ion-exchangeable cation is Ca alone or mainly Ca in consideration of valence is called CaX type. The ion-exchangeable cation is Na
Is referred to as NaX type. There are various kinds of cations coexisting with Ca or Na as described above. CaX
By immersing the type zeolite or the NaX type zeolite in a silver salt solution, calcium or sodium can be exchanged for silver (Ag). The exchange amount can be adjusted by selecting the concentration of the silver salt, the ion exchange reaction temperature, and the reaction time. As the silver salt, for example, silver nitrate, silver chlorate, silver perchlorate, silver acetate, silver hexafluorophosphate, silver tetrafluoroborate, and the like can be used, and among them, silver nitrate can be preferably used.

【0009】Ag+は、Ca2+やNa+よりイオン半径が
大きいので、Ag+でイオン交換されたゼオライト(銀
含有ゼオライト)のチャンネルやケージは狭まり、した
がって細孔径は小さくなり、細孔容積や比表面積も小さ
くなると推定される。しかし、細孔径は窒素や酸素を通
過させない程に小さくなることはなく、かつAg+イオ
ンで交換された細孔の静電場は、窒素分子の四重極モー
メントと作用して窒素分子の吸着に寄与するので、イオ
ン交換可能なカチオンの一部または全部をAgイオンで
交換した銀含有ゼオライトは、分離係数を増加する作用
を持つと推測される。
Since Ag + has a larger ionic radius than Ca 2+ or Na + , the channels and cages of the zeolite (silver-containing zeolite) ion-exchanged with Ag + are narrowed, so that the pore diameter is reduced and the pore volume is reduced. It is also estimated that the specific surface area will be small. However, the pore diameter does not become so small that it does not allow nitrogen or oxygen to pass through, and the electrostatic field of the pores exchanged with Ag + ions acts on the quadrupole moment of the nitrogen molecule to affect the adsorption of the nitrogen molecule. It is presumed that the silver-containing zeolite in which some or all of the ion-exchangeable cations were exchanged with Ag ions because of their contribution to increase the separation coefficient.

【0010】NaX型ゼオライトまたはCaX型ゼオラ
イトのイオン交換可能なカチオンの10〜100%を銀
で交換した銀含有ゼオライトは、原料ゼオライトに比
べ、同一温度、同一圧力における酸素/窒素分離係数が
大きいことに特徴がある。分離係数とは、同一温度、同
一圧力における窒素の吸着量(qN2)と酸素の吸着量
(qO2)の比(qN2/qO2)である。また、本発明
の銀含有ゼオライトは、窒素/酸素分離以外のガス分
離、例えば窒素とメタンの混合ガスからの窒素の分離、
窒素とアルゴンの混合ガスからの窒素の分離、空気から
の炭酸ガス除去、水素や一酸化炭素を含むガスからの水
素、一酸化炭素の分離などのガス分離の際の吸着剤とし
て使用できる。また、本発明の銀含有ゼオライトは、保
有するAgイオンの静菌・抗菌効果によって、例えば浄
水器用吸着剤として使用すれば、使用後の器内の細菌繁
殖を防止できるなど、抗菌機能を有する浄水器用吸着剤
としても使用することができる。
A silver-containing zeolite obtained by exchanging 10 to 100% of ion-exchangeable cations of NaX-type zeolite or CaX-type zeolite with silver has a higher oxygen / nitrogen separation coefficient at the same temperature and the same pressure as the raw material zeolite. There is a feature. And the separation factor are the same temperature, the amount of adsorption of nitrogen at the same pressure (qN 2) and the adsorption amount of the oxygen ratio (qO 2) (qN 2 / qO 2). Further, the silver-containing zeolite of the present invention can be used for gas separation other than nitrogen / oxygen separation, for example, separation of nitrogen from a mixed gas of nitrogen and methane,
It can be used as an adsorbent in gas separation such as separation of nitrogen from a mixed gas of nitrogen and argon, removal of carbon dioxide from air, and separation of hydrogen and carbon monoxide from gases containing hydrogen and carbon monoxide. In addition, the silver-containing zeolite of the present invention has an antibacterial function, for example, if it is used as an adsorbent for a water purifier, it can prevent the growth of bacteria in the vessel after use, due to the bacteriostatic and antibacterial effects of the Ag ions possessed. It can also be used as a dexterous adsorbent.

【0011】[0011]

【実施例】【Example】

(原料)X型ゼオライトとして、一般に市販されてい
る、CaX型ゼオライト(1.4〜2.4mm径のビー
ズ(小球)状)を使用した。これはバインダーを10.
2重量%含有していた。この原料の組成を次のようにし
て分析した。400℃で加熱脱水した試料0.5gを精
密秤量してテフロン容器に取り、フッ化水素酸および過
塩素酸を加え250〜280℃で加熱し、フッ化ケイ素
を揮発させ、このときの試料の減量をSiO2の量とし
た。次に、試料に過塩素酸と水を加えて加熱溶解し、冷
却後硝酸を加える。この溶液を原子吸光分析計およびI
CP(高周波誘導結合プラズマ発光)分析計を用いてケ
イ酸以外の元素(Na,Ca,Al)の定量分析を行っ
た。結晶水の含有量は熱重量分析法により求めた。その
結果、原料ゼオライトのSiO2/Al23=3.1
0、Na2O/Al23=0.02、CaO/Al23
=1.03であった。以上の分析結果から、この原料ゼ
オライトの組成は、 Ca44.3Na1.72Al86.0Si133.3O448・195H2O であった。また、この原料ゼオライトのイオン交換可能
な全容量(理論イオン交換容量)は、4.40meq/
gであった。
(Raw material) As the X-type zeolite, a commercially available CaX-type zeolite (beads (small spheres) having a diameter of 1.4 to 2.4 mm) was used. This adds 10.
It contained 2% by weight. The composition of this raw material was analyzed as follows. 0.5 g of a sample heated and dehydrated at 400 ° C. is precisely weighed and placed in a Teflon container, and hydrofluoric acid and perchloric acid are added and heated at 250 to 280 ° C. to volatilize silicon fluoride. The reduction was defined as the amount of SiO 2 . Next, perchloric acid and water are added to the sample and dissolved by heating. After cooling, nitric acid is added. This solution was added to an atomic absorption spectrometer and I
Quantitative analysis of elements (Na, Ca, Al) other than silicic acid was performed using a CP (high frequency inductively coupled plasma emission) analyzer. The content of water of crystallization was determined by thermogravimetric analysis. As a result, the raw material zeolite SiO 2 / Al 2 O 3 = 3.1
0, Na 2 O / Al 2 O 3 = 0.02, CaO / Al 2 O 3
= 1.03. From the above analysis results, the composition of this raw material zeolite was Ca44.3Na1.72Al86.0Si133.3O448.195H2O. The total ion-exchangeable capacity (theoretical ion-exchange capacity) of this raw material zeolite is 4.40 meq /
g.

【0012】(銀イオンの交換)原料ゼオライト中のカ
チオンを銀(Ag)イオンに交換する処理は、恒温で原
料ゼオライト(0.1g)を一定濃度の硝酸銀(AgN
3)水溶液(100mL)に一定時間浸漬するバッチ
法で行った。試料を固液分離し、溶液中に含まれるAg
+,Na+およびCa2+を高周波誘導結合プラズマ発光分
析法および原子吸光法二より定量分析した。銀イオンの
交換量は溶液中の銀イオンの減少量として求めた。Ag
+の取り込み量と、遊離した(Na++Ca2+)量とは
1:1となり、理想的なイオン交換が行われたことが分
かった。
(Exchange of Silver Ions) In the treatment for exchanging cations in the raw material zeolite for silver (Ag) ions, the raw material zeolite (0.1 g) is converted to silver nitrate (AgN
O 3 ) was carried out by a batch method of dipping in an aqueous solution (100 mL) for a certain period of time. The sample is subjected to solid-liquid separation and the Ag contained in the solution
+ , Na + and Ca 2+ were quantitatively analyzed by high frequency inductively coupled plasma emission spectrometry and atomic absorption spectrometry. The exchange amount of silver ions was determined as the decrease amount of silver ions in the solution. Ag
The uptake amount of + and the amount of released (Na + + Ca 2+ ) were 1: 1, indicating that ideal ion exchange was performed.

【0013】イオン交換量の異なる5種類の銀含有ゼオ
ライト(試料〜)を作製した。 試料:硝酸銀水溶液の濃度を6.05meq/L、温
度を25℃、反応時間を2時間とした。Ag+の取り込
み量は0.57meq/gであり、理論交換容量の1
2.9%であった。 試料:硝酸銀水溶液の濃度を6.05meq/L、温
度を25℃、反応時間を4時間とした。Ag+の取り込
み量は0.93meq/gであり、理論交換容量の2
1.1%であった。 試料:硝酸銀水溶液の濃度を6.05meq/L、温
度を25℃、反応時間を48時間とした。Ag+の取り
込み量は2.11meq/gであり、理論交換容量の4
8.0%であった。 試料:硝酸銀水溶液の濃度を15.4meq/L、温
度を25℃、反応時間を48時間とした。Ag+の取り
込み量は3.57meq/gであり、理論交換容量の8
1.1%であった。 試料:硝酸銀水溶液の濃度を15.4meq/L、温
度を50℃、反応時間を48時間とした。Ag+の取り
込み量は4.39meq/gであり、理論交換容量の9
9.8%であった。 以下、5種類の試料を順に、13−AgX、21−
AgX、48−AgX、81−AgX、100−
AgXと略記する。また原料ゼオライトはCaXと略記
する。
[0013] Five kinds of silver-containing zeolites (samples) having different ion exchange amounts were prepared. Sample: The concentration of the aqueous silver nitrate solution was 6.05 meq / L, the temperature was 25 ° C., and the reaction time was 2 hours. The uptake of Ag + was 0.57 meq / g, which was 1 of the theoretical exchange capacity.
2.9%. Sample: The concentration of the aqueous silver nitrate solution was 6.05 meq / L, the temperature was 25 ° C., and the reaction time was 4 hours. The uptake of Ag + was 0.93 meq / g, which was 2 times the theoretical exchange capacity.
1.1%. Sample: The concentration of the aqueous silver nitrate solution was 6.05 meq / L, the temperature was 25 ° C., and the reaction time was 48 hours. The uptake of Ag + was 2.11 meq / g, which was 4 times the theoretical exchange capacity.
8.0%. Sample: The concentration of the aqueous silver nitrate solution was 15.4 meq / L, the temperature was 25 ° C., and the reaction time was 48 hours. The uptake of Ag + was 3.57 meq / g, which was 8 times the theoretical exchange capacity.
1.1%. Sample: The concentration of the aqueous silver nitrate solution was 15.4 meq / L, the temperature was 50 ° C., and the reaction time was 48 hours. The uptake of Ag + was 4.39 meq / g, which was 9 times the theoretical exchange capacity.
9.8%. Hereinafter, five types of samples were sequentially analyzed for 13-AgX and 21-AgX.
AgX, 48-AgX, 81-AgX, 100-
Abbreviated as AgX. The raw material zeolite is abbreviated as CaX.

【0014】(銀含有ゼオライトの構造特性)原料ゼオ
ライトCaXと、100−AgXの粉末X線回折図を図
1に示す。X線源はCuKαである。原料ゼオライトC
aXと3種類の銀含有ゼオライトの合計4種類のフーリ
エ変換赤外線分光分析の結果を図2に示す。これによれ
ば、CaXにおいては、760cm-1の吸収ピークが交
換カチオンの種類に対して鋭敏である四面体の連鎖体の
対称振動に対応し、669cm-1の吸収ピークがSi
(Al)・Oの対称伸縮に対応し、567cm-1の吸収
ピークが二重六員環の伸縮に対応し、461cm -1の吸
収ピークがSi(Al)・O結合の振動に対応してい
る。銀イオン交換体の交換カチオンの種類に対して鋭敏
である連鎖体の対称振動に対応する吸収ピークは、48
−AgXが752cm-1近傍、81−AgXが738c
-1近傍、100−AgXが733cm-1近傍に近傍に
存在した。これらのデータから、本発明による銀含有ゼ
オライトは、原料ゼオライトの構造を破壊することな
く、原料ゼオライトのカチオンの一部または全部が、銀
イオンに交換されていることが分かる。また、前記四種
類の試料の熱重量分析によれば、400℃ですべての結
晶水が脱離していることが認められた。400℃に加熱
した前記四種類の試料の比表面積は、原料ゼオライトC
aXが650m2/g、48−AgXが635m2/g、
81−AgXが410m2/g、100−AgXが36
2m2/gであった。このように銀含有ゼオライトは、
原料ゼオライトCaXより比表面積が減少し、銀交換量
が多いほど小さな値となった。CaXゼオライト中のカ
チオンであるCa2+とNa+がイオン半径の大きなAg+
と交換した結果、細孔内の比表面積が減少したものと推
測される。なお、比表面積は、−196℃の温度におけ
る窒素の吸着に多分子層吸着理論を適用したBET(Br
unauer, Emett, Teller)式を用いて算出した値であ
る。 −196℃における窒素の吸脱着データから、細孔が両
端が開いたシリンダー状であるとしたモデルであるDH
(Dollimore, Heal)法を適用して細孔分布を計算した
結果、CaXについてはチャンネルの最大径に対応する
0.80nmと、ケージの最大径に対応する1.60n
mの存在が確認できた。また、細孔容積は、銀イオン交
換量の増加とともに減少した。
(Structural characteristics of silver-containing zeolite) Raw material zeolite
Fig. 7 shows powder X-ray diffraction diagrams of light CaX and 100-AgX.
It is shown in FIG. The X-ray source is CuKα. Raw material zeolite C
aX and three types of silver-containing zeolites, a total of four types of Fouries
FIG. 2 shows the results of the conversion infrared spectroscopy. This
For example, in CaX, 760 cm-1Absorption peaks
Of tetrahedral chains that are sensitive to the type of exchange cation
669cm corresponding to symmetric vibration-1Absorption peak of Si
567cm, corresponding to the symmetric expansion and contraction of (Al) .O-1Absorption of
The peak corresponds to the expansion and contraction of the double six-membered ring, 461 cm -1Sucking
The yield peak corresponds to the vibration of the Si (Al) .O bond.
You. Sensitive to the type of exchange cation of silver ion exchanger
The absorption peak corresponding to the symmetrical vibration of the chain
-AgX is 752cm-1Nearby, 81-AgX is 738c
m-1Near, 100-AgX is 733cm-1Near to near
Were present. From these data, the silver-containing zeolite according to the present invention was
Olite does not destroy the structure of the raw zeolite.
Some or all of the cations in the starting zeolite are silver
It can be seen that the ions have been exchanged. In addition, the four types
According to the thermogravimetric analysis of samples of the type
It was observed that crystallization water had been eliminated. Heat to 400 ° C
The specific surface area of the above four types of samples was determined as the raw material zeolite C.
aX is 650mTwo/ G, 635 m for 48-AgXTwo/ G,
81-AgX is 410mTwo/ G, 100-AgX is 36
2mTwo/ G. Thus, the silver-containing zeolite is
The specific surface area is smaller than that of the raw material zeolite CaX, and the amount of silver exchanged
The smaller the value, the smaller the value. Ca in CaX zeolite
Ca as thione2+And Na+Is Ag with a large ion radius+
It is assumed that the specific surface area in the pores decreased as a result of
Measured. The specific surface area was measured at a temperature of -196 ° C.
BET (Br
unauer, Emett, Teller)
You. From the data of nitrogen adsorption and desorption at -196 ° C,
DH, a model that assumes a cylindrical shape with open ends
(Dollimore, Heal) method to calculate pore distribution
As a result, CaX corresponds to the maximum diameter of the channel.
0.80 nm and 1.60 n corresponding to the maximum diameter of the cage
m was confirmed. The pore volume is determined by the silver ion exchange.
It decreased with an increase in the exchange rate.

【0015】(窒素、酸素の吸着)原料ゼオライトCa
Xと、前記5種類の銀含有ゼオライトの合計6試料につ
き、全自動ガス吸着装置(日本ベル(株)、BELSO
RP28SA)で酸素および窒素の吸着等温線を測定し
た。温度は25℃とした。各試料は測定に先立ち400
℃に加熱して水分を除いた。吸着測定の結果を図3に示
す。また表1には、200Torrと760Torrにおける窒
素、酸素の吸着量、および分離係数を示す。
(Adsorption of Nitrogen and Oxygen) Raw material zeolite Ca
X and a total of six samples of the above five types of silver-containing zeolites, a fully automatic gas adsorber (Nippon Bell Co., Ltd., BELSO
RP28SA) was used to measure the adsorption isotherms of oxygen and nitrogen. The temperature was 25 ° C. Each sample is 400
Heated to ° C to remove moisture. FIG. 3 shows the results of the adsorption measurement. Table 1 shows nitrogen and oxygen adsorption amounts and separation coefficients at 200 Torr and 760 Torr.

【表1】 図3及び表1に示す通り、銀含有ゼオライトは、原料ゼ
オライトに比べて窒素吸着量と酸素吸着量が低下してい
るが、窒素と酸素の分離係数(qN2/qO2)は増加し
た。分離係数は最大で10.0(81−AgX、200
Torr)であり、原料ゼオライトCaXの分離係数の1.
72倍に達した。
[Table 1] As shown in FIG. 3 and Table 1, the silver-containing zeolite, but the nitrogen adsorption amount as compared with the raw material zeolite and oxygen adsorption amount is reduced, nitrogen and oxygen separation factor (qN 2 / qO 2) increased. The maximum separation factor is 10.0 (81-AgX, 200
Torr) and the separation factor of the raw material zeolite CaX is 1.
Reached 72 times.

【0016】また、原料ゼオライトとして、CaX型に
代えて、市販のNaX型ゼオライトを用い、同様の方法
によって銀含有ゼオライトを合成した。この銀含有ゼオ
ライトは、原料のゼオライト(NaX)に比べ、イオン
交換した銀量が多くなるほど比表面積は減少し、細孔容
積も減少した。また、窒素/酸素分離係数は原料ゼオラ
イトに比べ大きくなり、上記実施例と同様の結果が得ら
れた。
Further, a commercially available NaX type zeolite was used as a raw material zeolite instead of CaX type, and a silver-containing zeolite was synthesized in the same manner. In this silver-containing zeolite, as the amount of ion-exchanged silver increased, the specific surface area decreased and the pore volume decreased as compared with the raw material zeolite (NaX). Further, the nitrogen / oxygen separation coefficient was larger than that of the raw material zeolite, and the same result as in the above example was obtained.

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば、
以下のような効果が得られる。請求項1の銀含有ゼオラ
イトは、X型ゼオライト中のイオン交換可能なカチオン
の10〜100%が銀イオンで交換されてなり、同一温
度、同一圧力における窒素/酸素分離係数が原料ゼオラ
イトよりも高い、優れたガス分離特性を有している。請
求項2のガス分離方法は、請求項1記載の銀含有ゼオラ
イトを用い、混合ガス中から成分ガスを分離することに
よって、ガス分離効率を向上させることができるので、
混合ガスからの成分ガスの製造、或いは混合ガスからの
不純物除去などの処理コストを削減することができる。
請求項3のガス分離方法は、請求項2記載のガス分離方
法において、前記混合ガスを酸素と窒素を含む混合ガス
とし、該混合ガスから酸素と窒素を分離することによっ
て、PSA法による空気分離システムを簡略化、低コス
ト化することができ、酸素と窒素を安価に生産すること
が可能となる。請求項4のゼオライトの製造方法は、N
aX型ゼオライトまたはCaXゼオライトを銀塩溶液中
でイオン交換し、ゼオライト中のイオン交換可能なカチ
オンの10〜100%が銀イオンで交換されてなる銀含
有ゼオライトを得ることによって、同一温度、同一圧力
における窒素/酸素分離係数が原料ゼオライトよりも高
い、優れたガス分離特性を有する銀含有ゼオライトを製
造することができる。特にCaX型ゼオライトのカチオ
ンをAgイオンで交換することによって、窒素/酸素分
離係数が10を越える銀含有ゼオライトが得られる。
As described above, according to the present invention,
The following effects can be obtained. The silver-containing zeolite according to claim 1 is obtained by exchanging 10 to 100% of the ion-exchangeable cations in the X-type zeolite with silver ions, and has a higher nitrogen / oxygen separation coefficient at the same temperature and the same pressure as the raw material zeolite. And has excellent gas separation characteristics. According to the gas separation method of the second aspect, the gas separation efficiency can be improved by separating the component gas from the mixed gas using the silver-containing zeolite of the first aspect,
It is possible to reduce processing costs such as production of a component gas from the mixed gas or removal of impurities from the mixed gas.
According to a third aspect of the present invention, there is provided a gas separation method according to the second aspect, wherein the mixed gas is a mixed gas containing oxygen and nitrogen, and oxygen and nitrogen are separated from the mixed gas, whereby air separation by the PSA method is performed. The system can be simplified and the cost can be reduced, and oxygen and nitrogen can be produced at low cost. The method for producing a zeolite according to claim 4 is characterized in that:
aX-type zeolite or CaX zeolite is ion-exchanged in a silver salt solution to obtain a silver-containing zeolite in which 10 to 100% of ion-exchangeable cations in the zeolite are exchanged with silver ions to obtain the same temperature and the same pressure. Thus, it is possible to produce a silver-containing zeolite having an excellent gas separation characteristic in which the nitrogen / oxygen separation coefficient is higher than that of the raw material zeolite. In particular, a silver-containing zeolite having a nitrogen / oxygen separation coefficient exceeding 10 can be obtained by exchanging cations of CaX-type zeolite with Ag ions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例に係るゼオライトの粉末X線
回折図。
FIG. 1 is a powder X-ray diffraction diagram of a zeolite according to an example of the present invention.

【図2】 本発明の実施例に係るゼオライトの赤外線分
光スペクトル図。
FIG. 2 is an infrared spectrum diagram of a zeolite according to an example of the present invention.

【図3】 本発明の実施例に係るゼオライトの窒素と酸
素の吸着等温線。
FIG. 3 is a nitrogen and oxygen adsorption isotherm of a zeolite according to an example of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 X型ゼオライト中のイオン交換可能なカ
チオンの10〜100%が銀イオンで交換されてなる銀
含有ゼオライト。
1. A silver-containing zeolite obtained by exchanging 10 to 100% of ion-exchangeable cations in an X-type zeolite with silver ions.
【請求項2】 請求項1記載の銀含有ゼオライトを用
い、混合ガス中から成分ガスを分離することを特徴とす
るガス分離方法。
2. A gas separation method comprising using the silver-containing zeolite according to claim 1 to separate a component gas from a mixed gas.
【請求項3】 前記混合ガスが酸素と窒素を含む混合ガ
スであり、該混合ガスから酸素と窒素を分離することを
特徴とする請求項2記載のガス分離方法。
3. The gas separation method according to claim 2, wherein the mixed gas is a mixed gas containing oxygen and nitrogen, and oxygen and nitrogen are separated from the mixed gas.
【請求項4】 NaX型ゼオライトまたはCaX型ゼオ
ライトを銀塩溶液中でイオン交換し、ゼオライト中のイ
オン交換可能なカチオンの10〜100%が銀イオンで
交換されてなる銀含有ゼオライトを得ることを特徴とす
るゼオライトの製造方法。
4. A method for obtaining a silver-containing zeolite in which NaX-type zeolite or CaX-type zeolite is ion-exchanged in a silver salt solution and 10 to 100% of ion-exchangeable cations in the zeolite are exchanged with silver ions. Characteristic method for producing zeolite.
JP8250682A 1996-09-20 1996-09-20 Silver-containing zeolite, separation of gas using the same and production of zeolite Withdrawn JPH1095612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8250682A JPH1095612A (en) 1996-09-20 1996-09-20 Silver-containing zeolite, separation of gas using the same and production of zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8250682A JPH1095612A (en) 1996-09-20 1996-09-20 Silver-containing zeolite, separation of gas using the same and production of zeolite

Publications (1)

Publication Number Publication Date
JPH1095612A true JPH1095612A (en) 1998-04-14

Family

ID=17211486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8250682A Withdrawn JPH1095612A (en) 1996-09-20 1996-09-20 Silver-containing zeolite, separation of gas using the same and production of zeolite

Country Status (1)

Country Link
JP (1) JPH1095612A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000040332A1 (en) * 1998-12-30 2000-07-13 The Regents Of The University Of Michigan Lithium-based zeolites containing silver and copper and use thereof for selective adsorption
US6780806B1 (en) 1998-12-30 2004-08-24 The Regents Of The University Of Michigan Lithium-based zeolites containing silver and copper and use thereof for selective absorption
WO2007037195A1 (en) * 2005-09-27 2007-04-05 Sinanen Zeomic Co., Ltd. Antibacterial zeolite and antibacterial resin composition
US8491141B2 (en) 2010-08-02 2013-07-23 Rengo Co., Ltd. Photoluminescent material containing silver ion
WO2015098762A1 (en) * 2013-12-25 2015-07-02 ニッカウヰスキー株式会社 Device and method for removing unwanted component included in beverage
WO2015151854A1 (en) * 2014-04-01 2015-10-08 日本碍子株式会社 Zeolite, separation membrane structure, and process for producing zeolite

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000040332A1 (en) * 1998-12-30 2000-07-13 The Regents Of The University Of Michigan Lithium-based zeolites containing silver and copper and use thereof for selective adsorption
US6780806B1 (en) 1998-12-30 2004-08-24 The Regents Of The University Of Michigan Lithium-based zeolites containing silver and copper and use thereof for selective absorption
WO2007037195A1 (en) * 2005-09-27 2007-04-05 Sinanen Zeomic Co., Ltd. Antibacterial zeolite and antibacterial resin composition
JP2007091501A (en) * 2005-09-27 2007-04-12 Sinanen Zeomic Co Ltd Antibacterial zeolite and antibacterial resin composition
US8361513B2 (en) 2005-09-27 2013-01-29 Sinanen Zeomic Co., Ltd. Antimicrobial zeolite and antimicrobial resin composition
US8491141B2 (en) 2010-08-02 2013-07-23 Rengo Co., Ltd. Photoluminescent material containing silver ion
WO2015098762A1 (en) * 2013-12-25 2015-07-02 ニッカウヰスキー株式会社 Device and method for removing unwanted component included in beverage
JPWO2015098762A1 (en) * 2013-12-25 2017-03-23 ニッカウヰスキー株式会社 Method and apparatus for removing unnecessary components contained in beverage
US11028353B2 (en) 2013-12-25 2021-06-08 The Nikka Whisky Distilling Co., Ltd. Method for removing unwanted component included in beverage
WO2015151854A1 (en) * 2014-04-01 2015-10-08 日本碍子株式会社 Zeolite, separation membrane structure, and process for producing zeolite
JPWO2015151854A1 (en) * 2014-04-01 2017-04-13 日本碍子株式会社 Zeolite, separation membrane structure and method for producing zeolite

Similar Documents

Publication Publication Date Title
JP3776813B2 (en) Argon / oxygen selective X zeolite
CA2021175C (en) Chabazite for gas separation
JP4382885B2 (en) Improvement of PSA method in hydrogen purification
EP1142622B1 (en) Method of adsorptive separation of carbon dioxide
US7608134B1 (en) Decarbonating gas streams using zeolite adsorbents
KR102194141B1 (en) Carbon dioxide adsorbent comprising mesoporous chabazite zeolite and methods for preparing the same
JP2966304B2 (en) Zeolite composition for gas separation and enhanced gas separation method using the same
JP2001526172A (en) Crystalline titanium molecular sieve zeolite with small pores and its use in gas separation processes
JP2020001038A (en) Zeolite adsorbent having large outer surface area and use of zeolite adsorbent
KR20150127131A (en) Adsorbent composition for argon purification
JPH0840719A (en) Crystalline metal silicate composition,its synthesis and adsorptive separation of adsorbed gas
US5573745A (en) High micropore volume low silica EMT-containing metallosilicates
EP2035137B1 (en) Titanium silicate materials, method for their manufacture, and method for using such titanium silicate materials for adsorptive fluid separations
US6780806B1 (en) Lithium-based zeolites containing silver and copper and use thereof for selective absorption
JPH1095612A (en) Silver-containing zeolite, separation of gas using the same and production of zeolite
GB2399775A (en) Preparation of a zeolite molecular sieve.
JP2005520680A (en) Process for the preparation of molecular sieve adsorbents for selective adsorption of nitrogen and argon
JPH1099676A (en) Adsorbent for air separation, its production and air separation using said adsorbent
JPH1095611A (en) Zeolite for gas adsorption and its production and adsorption and separation of gas using the same
JP2007512119A (en) Method for producing molecular sieve adsorbent for selective adsorption of oxygen from air
CA2148773C (en) Gas separation with lithium-containing zsm-2 metallosilicates
WO2000040332A1 (en) Lithium-based zeolites containing silver and copper and use thereof for selective adsorption
JP2001347123A (en) Adsorptive separation method for carbon dioxide
JP4438145B2 (en) Carbon monoxide adsorption separation method
JPH10118485A (en) Separating agent for nitrogen-oxygen mixed gas and gas separating method using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031202