JPH1095050A - Manufacture of polypropylene resin molded body - Google Patents

Manufacture of polypropylene resin molded body

Info

Publication number
JPH1095050A
JPH1095050A JP25162096A JP25162096A JPH1095050A JP H1095050 A JPH1095050 A JP H1095050A JP 25162096 A JP25162096 A JP 25162096A JP 25162096 A JP25162096 A JP 25162096A JP H1095050 A JPH1095050 A JP H1095050A
Authority
JP
Japan
Prior art keywords
isotacticity
polypropylene resin
temperature
sample
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25162096A
Other languages
Japanese (ja)
Inventor
Koichi Kitao
幸市 北尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP25162096A priority Critical patent/JPH1095050A/en
Publication of JPH1095050A publication Critical patent/JPH1095050A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve resistance to impact by retaining a molded body formed by melt molding polypropylene resin of specified isotacticity rate and then water cooling the resin in a specified temperature range for a given time. SOLUTION: A molded body formed by melt molding polyprepylene resin of isotacticity rate of 95% or more and then water cooling the resin is retained in a temperature range of 120 deg.C or higher to the melting point or lower for a given time. When the isotacticity rate is less than 95%, the increase of impact absorbing energy is not larger compared with the processes heretofore available. When the retaining temperature is lower than 120 deg.C, the increase of impact absorbing energy is not larger either compared with the processes heretofore available. In that case, it is not necessary to retain the molded body at the given temperature, but the temperature gradient can be generated in the temperature range. As the time of retaining heat treatment is vaired by the thickness and shape of the molded body, the optimum time is determined each time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリプロピレン樹
脂成形体、特に耐衝撃性の優れたポリプロピレン樹脂成
形体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a molded article of a polypropylene resin, particularly a molded article of a polypropylene resin having excellent impact resistance.

【0002】[0002]

【従来の技術】プラスティック樹脂では、一般にその分
子量を大きくすると耐衝撃性は向上するが、成形性が劣
る。そこで、特開昭56ー84728号公報などには、
分子量がそれほど大きくなく成形性に優れるポリプロピ
レン樹脂にエラストマーを添加し、80℃以上融点以下
の温度で熱処理して、成形性を損なうことなく耐衝撃性
や低温靭性を改善する方法が提案されている。
2. Description of the Related Art In general, when the molecular weight of a plastic resin is increased, impact resistance is improved, but moldability is poor. Therefore, Japanese Patent Application Laid-Open No. 56-84728,
A method has been proposed in which an elastomer is added to a polypropylene resin having a high molecular weight and excellent in moldability and is heat-treated at a temperature of 80 ° C. or higher and a melting point or lower to improve impact resistance and low-temperature toughness without impairing moldability. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開昭
56ー84728号公報に記載された方法では、エラス
トマーを添加しているために剛性が低下したり、高温特
性が劣化するという問題がある。
However, the method described in Japanese Patent Application Laid-Open No. 56-84728 has a problem that the rigidity is reduced and the high-temperature characteristics are deteriorated due to the addition of the elastomer.

【0004】本発明はこのような問題を解決するために
なされたもので、他の特性を劣化させることなく耐衝撃
性の優れたポリプロピレン樹脂成形体を製造し得る方法
を提供することを目的とする。
The present invention has been made to solve such a problem, and has as its object to provide a method for producing a polypropylene resin molded article having excellent impact resistance without deteriorating other characteristics. I do.

【0005】[0005]

【課題を解決するための手段】上記課題は、アイソタク
ティシティ率が95%以上のポリプロピレン樹脂を溶融
成形後水冷して作製した成形体を、120℃以上融点未
満の温度範囲に所定の時間保持することを特徴とするポ
リプロピレン樹脂成形体の製造方法により解決される。
SUMMARY OF THE INVENTION The object of the present invention is to maintain a molded article produced by melt-molding a polypropylene resin having an isotacticity of 95% or more and then cooling with water for a predetermined time in a temperature range of 120 ° C. or more and less than a melting point. The problem is solved by a method for producing a molded polypropylene resin article.

【0006】ここで、アイソタクティシティ率とは、文
献1〔Macromolecules,6,926(1
973)〕に記載された方法、すなわち13CーNMRを
使用して測定されるポリプロピレンの分子鎖のペンタッ
ド単位でのアイソタクティシティ分率のことである。
Here, the isotacticity ratio is described in reference 1 [Macromolecules, 6, 926 (1).
973)], that is, the isotacticity fraction in pentad units of the molecular chain of polypropylene measured using 13 C-NMR.

【0007】アイソタクティシティ率を95%以上に限
定するのは、後に実施例に示すごとく、95%未満では
衝撃吸収エネルギーの増加が従来法に比して大きくない
からである。また、保持温度を120℃以上に限定する
のは、やはり実施例に示すように、120℃未満の保持
温度では、衝撃吸収エネルギーの増加が従来法に比して
大きくないからである。
[0007] The reason why the isotacticity ratio is limited to 95% or more is that, as will be shown later in the examples, when the isotacticity ratio is less than 95%, the increase in shock absorption energy is not so large as compared with the conventional method. The reason why the holding temperature is limited to 120 ° C. or higher is that, as shown in the examples, when the holding temperature is lower than 120 ° C., the increase in the impact absorption energy is not so large as compared with the conventional method.

【0008】また、上記課題は、アイソタクティシティ
率が95%以上のポリプロピレン樹脂を溶融成形後冷却
するに際し、融点未満の温度から80℃までの温度範囲
に所定の時間保持することを特徴とするポリプロピレン
樹脂成形体の製造方法によっても解決される。
Another object of the present invention is to melt-mold a polypropylene resin having an isotacticity of 95% or more, and then cool the same in a temperature range from a temperature lower than the melting point to 80 ° C. for a predetermined time. The problem is also solved by a method for producing a polypropylene resin molded article.

【0009】保持温度を80℃以上に限定するのは、実
施例に示すように、80℃未満の保持温度では、衝撃吸
収エネルギーの増加が従来法に比して大きくないからで
ある。更に、いずれの場合も、所定の時間保持後、10
℃/min以下の冷却速度で冷却すると、より優れた耐
衝撃性が得られる。
The reason why the holding temperature is limited to 80 ° C. or higher is that, as shown in the examples, when the holding temperature is lower than 80 ° C., the increase in the impact absorption energy is not so large as compared with the conventional method. Further, in any case, after holding for a predetermined time, 10
Cooling at a cooling rate of not more than ° C./min provides better impact resistance.

【0010】[0010]

【発明の実施の形態】溶融成形後水冷して製造した成形
体を120℃以上融点未満の温度範囲に所定の時間保持
したり、溶融成形後冷却するに際し融点未満の温度から
80℃までの温度範囲に所定の時間保持する場合、一定
温度に保持する必要はなく、その温度範囲において温度
勾配があっても同様な効果が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION A molded body produced by water cooling after melt molding is kept for a predetermined time in a temperature range of 120 ° C. or more and less than a melting point, or a temperature from a temperature lower than the melting point to 80 ° C. upon cooling after melt molding. When the temperature is maintained in the range for a predetermined time, it is not necessary to maintain the temperature at a constant value.

【0011】[0011]

【実施例】本発明者等は、ポリプロピレン樹脂成形体の
耐衝撃性を改善する目的で、以下の検討を行った。
EXAMPLES The present inventors conducted the following studies in order to improve the impact resistance of a molded article of a polypropylene resin.

【0012】種々のアイソタクティシティ率を有するポ
リプロピレン樹脂を用い、溶融成形後水冷して厚さ5m
mのシート状試料を作製した。そして、140℃で24
時間保持の熱処理を施した後、下記の方法で40℃にお
ける衝撃吸収エネルギーを測定した。
A polypropylene resin having various isotacticity ratios is melt-molded and then water-cooled to a thickness of 5 m.
m sheet-shaped samples were prepared. And at 140 ° C, 24
After the heat treatment for keeping the time, the impact absorption energy at 40 ° C. was measured by the following method.

【0013】衝撃吸収エネルギーは、レーザで先端に深
さ0.5mmの切り込みを入れた深さ2mm、角度45
°のVノッチを設けた長さ55mm、幅10mmの試験
片を用い、40mmのスパンで打撃速度3.8m/秒で
シャルピー試験により求めた単位面積当たりの吸収エネ
ルギーである。
[0013] The shock absorption energy is 2 mm deep with a 0.5 mm deep cut at the tip by a laser and an angle of 45 mm.
This is the absorbed energy per unit area determined by the Charpy test using a test piece having a length of 55 mm and a width of 10 mm provided with a V notch at an impact speed of 3.8 m / sec over a span of 40 mm.

【0014】図1に、溶融成形後水冷し、その後140
℃で24時間の熱処理を施した試料の40℃における衝
撃吸収エネルギーとアイソタクティシティ率の関係を示
す。
FIG. 1 shows that after melt-molding, water-cooling is performed,
4 shows the relationship between the impact absorption energy at 40 ° C. and the isotacticity of a sample that has been heat treated at 24 ° C. for 24 hours.

【0015】アイソタクティシティ率が95%以上の樹
脂を用い、120℃以上融点未満の温度範囲にある14
0℃に所定の時間保持すれば、従来の、すなわち溶融成
形後水冷したままの試料に比較し、耐衝撃性が大きく改
善されていることがわかる。
A resin having an isotacticity of 95% or more and having a temperature in the range of 120 ° C. or higher and lower than the melting point is used.
It can be seen that when the sample is kept at 0 ° C. for a predetermined time, the impact resistance is greatly improved as compared with a conventional sample, that is, a sample which is still water-cooled after melt molding.

【0016】次に、種々のアイソタクティシティ率を有
するポリプロピレン樹脂を溶融成形後冷却するに際し、
60℃と120℃の温度で2時間保持の熱処理を施して
厚さ5mmのシート状試料を作製した。そして、上記の
方法で40℃における衝撃吸収エネルギーを測定した。
Next, when the polypropylene resin having various isotacticity rates is melt-molded and then cooled,
The sheet was heat-treated at 60 ° C. and 120 ° C. for 2 hours to prepare a 5 mm thick sheet sample. Then, the impact absorption energy at 40 ° C. was measured by the above method.

【0017】図2に、溶融成形後の冷却過程で、60℃
と120℃で2時間の熱処理を施した試料の40℃にお
ける衝撃吸収エネルギーとアイソタクティシティ率の関
係を示す。
FIG. 2 shows that during the cooling process after the melt molding,
4 shows the relationship between the impact absorption energy at 40 ° C. and the isotacticity of the sample subjected to heat treatment at 120 ° C. for 2 hours.

【0018】アイソタクティシティ率が95%以上の樹
脂を用い、融点未満の温度から80℃までの温度範囲に
ある120℃で所定の時間保持すれば、従来の、すなわ
ち溶融成形後水冷した場合に比較し、耐衝撃性が大きく
改善されていることがわかる。
If a resin having an isotacticity of 95% or more is used and held for a predetermined time at 120 ° C. in a temperature range from a temperature lower than the melting point to 80 ° C., the conventional method, that is, when water-cooled after melt molding, is used. In comparison, it can be seen that the impact resistance is greatly improved.

【0019】一方、60℃の温度で熱処理しても、従来
の場合より耐衝撃性が改善されることはない。
On the other hand, even if the heat treatment is performed at a temperature of 60 ° C., the impact resistance is not improved as compared with the conventional case.

【0020】こうした熱処理による耐衝撃性が改善され
る原因は必ずしも明確ではないが、この温度範囲の熱処
理によりポリマーのエンタングルメント(絡み合い)が
最適化されたためと考えられる。
The reason why the impact resistance is improved by such a heat treatment is not necessarily clear, but it is considered that the entanglement (entanglement) of the polymer is optimized by the heat treatment in this temperature range.

【0021】いずれの場合も、エラストマーなどの特別
な添加物を加えてないので、剛性や高温特性などの劣化
は認められなかった。
In each case, since no special additives such as elastomers were added, deterioration of rigidity and high temperature characteristics was not recognized.

【0022】なお、熱処理の保持時間は成形体の厚みや
形状によって変わるので、その都度最適時間を決定する
必要がある。
Since the holding time of the heat treatment varies depending on the thickness and shape of the compact, it is necessary to determine the optimum time each time.

【0023】次に、アイソタクティシティ率及び熱処理
条件と衝撃吸収エネルギーの関係を調べるため、更に詳
細な実験を行った。
Next, a more detailed experiment was conducted to examine the relationship between the isotacticity ratio and the heat treatment conditions and the impact absorption energy.

【0024】まず、三井石油化学(株)社製のホモポリ
マーの押出しグレードで、アイソタクティシティ率が9
8.5%、95.0%、92.0%のポリプロピレン樹
脂を用い、従来法をシミュレートした条件、すなわち熱
プレスにて200℃で5分の溶融成形後、20℃に水冷
された冷プレスにて10MPaの圧力で5分冷却する条
件で、厚さ5mmのシート状試料を作製した。
First, a homopolymer extrusion grade manufactured by Mitsui Petrochemical Co., Ltd. having an isotacticity of 9
Using 8.5%, 95.0%, and 92.0% polypropylene resin, the conventional method was simulated, that is, melt molding was performed at 200 ° C. for 5 minutes by a hot press, and then the water was cooled to 20 ° C. A sheet-like sample having a thickness of 5 mm was prepared under the condition of cooling with a press at a pressure of 10 MPa for 5 minutes.

【0025】このシート状試料を表1に示す条件で熱処
理し、試料1〜試料6を作成した。そして、上記の方法
で40℃における衝撃吸収エネルギーを測定した。
This sheet sample was heat-treated under the conditions shown in Table 1 to prepare Samples 1 to 6. Then, the impact absorption energy at 40 ° C. was measured by the above method.

【0026】なお、用いたポリプロピレン樹脂のメルト
フローレートMFRは、JISK6758にしたがい温
度230℃、荷重2.16kgで測定したところ、2.
0g/10分であった。
The melt flow rate MFR of the polypropylene resin used was measured at a temperature of 230 ° C. and a load of 2.16 kg according to JIS K6758.
It was 0 g / 10 minutes.

【0027】試料1は、アイソタクティシティ率が9
8.5%で、140℃×24時間の熱処理後、10℃/
minで冷却した本発明法による試料である。
Sample 1 has an isotacticity ratio of 9
After 8.5% heat treatment at 140 ° C for 24 hours, 10 ° C /
5 is a sample according to the method of the present invention cooled in min.

【0028】試料2は、アイソタクティシティ率が9
8.5%で、120℃×24時間の熱処理後、10℃/
minで冷却した本発明法による試料である。
Sample 2 has an isotacticity ratio of 9
After 8.5% heat treatment at 120 ° C. for 24 hours, 10 ° C. /
5 is a sample according to the method of the present invention cooled in min.

【0029】試料3は、アイソタクティシティ率が9
8.5%で、100℃×24時間の熱処理後、10℃/
minで冷却した本発明外の試料である。(熱処理温度
が本発明の下限値である120℃より低い。)試料4
は、アイソタクティシティ率が95.0%で、140℃
×24時間の熱処理後、10℃/minで冷却した本発
明法による試料である。
Sample 3 has an isotacticity ratio of 9
After 8.5% heat treatment at 100 ° C for 24 hours, 10 ° C /
It is a sample outside the present invention cooled in min. (The heat treatment temperature is lower than the lower limit of 120 ° C. of the present invention.) Sample 4
Has an isotacticity of 95.0% and a temperature of 140 ° C.
This is a sample according to the method of the present invention cooled at 10 ° C./min after a heat treatment of × 24 hours.

【0030】試料5は、アイソタクティシティ率が9
2.0%で、120℃×24時間の熱処理後、10℃/
minで冷却した本発明外の試料である。(アイソタク
ティシティ率が本発明の下限である95%より低い。) 試料6は、アイソタクティシティ率が98.5%で、熱
処理の施されてない水冷ままの従来法による試料であ
る。
Sample 5 has an isotacticity ratio of 9
2.0%, heat treatment at 120 ° C. × 24 hours, 10 ° C. /
It is a sample outside the present invention cooled in min. (The isotacticity ratio is lower than 95%, which is the lower limit of the present invention.) Sample 6 is a sample with an isotacticity ratio of 98.5% and a water-cooled conventional method that has not been subjected to heat treatment.

【0031】結果を表1に示す。本発明法で作製された
試料は、いずれも従来法に比べ衝撃吸収エネルギーが大
きく向上していることがわかる。一方、本発明外の試料
では、従来法による試料並の衝撃吸収エネルギーしか得
られない。
The results are shown in Table 1. It can be seen that all of the samples produced by the method of the present invention have greatly improved impact absorption energy as compared with the conventional method. On the other hand, in the samples other than the present invention, only the impact absorption energy equivalent to that of the samples obtained by the conventional method can be obtained.

【0032】[0032]

【表1】 [Table 1]

【0033】次に、前記のと同様なポリプロピレン樹脂
を用い、熱プレスにて200℃で5分の溶融成形後、冷
却途中において表2に示す条件で熱処理して、厚さ5m
mのシート状試料7〜試料12を作製した。そして、上
記の方法で40℃における衝撃吸収エネルギーを測定し
た。
Next, the same polypropylene resin as above was melt-molded at 200 ° C. for 5 minutes by a hot press, and then heat-treated during cooling under the conditions shown in Table 2 to a thickness of 5 m.
m sheet-shaped samples 7 to 12 were prepared. Then, the impact absorption energy at 40 ° C. was measured by the above method.

【0034】試料7は、アイソタクティシティ率が9
8.5%で、120℃×2時間の熱処理後、20℃/m
inで冷却した本発明法による試料である。
Sample 7 has an isotacticity ratio of 9
8.5%, after heat treatment at 120 ° C. for 2 hours, 20 ° C./m
It is a sample according to the method of the present invention cooled in.

【0035】試料8は、アイソタクティシティ率が9
8.5%で、120℃×2時間の熱処理後、10℃/m
inで冷却した本発明法による試料である。
Sample 8 has an isotacticity ratio of 9
8.5%, heat treatment at 120 ° C x 2 hours, 10 ° C / m
It is a sample according to the method of the present invention cooled in.

【0036】試料9は、アイソタクティシティ率が9
8.5%で、80℃×0.5時間の熱処理後、10℃/
minで冷却した本発明法による試料である。
Sample 9 has an isotacticity ratio of 9
8.5%, heat treatment at 80 ° C. × 0.5 hour, 10 ° C. /
5 is a sample according to the method of the present invention cooled in min.

【0037】試料10は、アイソタクティシティ率が9
8.5%で、70℃×0.5時間の熱処理後、10℃/
minで冷却した本発明外の試料である。(熱処理温度
が本発明の下限である80℃より低い。)
Sample 10 has an isotacticity ratio of 9
After 8.5% heat treatment at 70 ° C. × 0.5 hour, 10 ° C. /
It is a sample outside the present invention cooled in min. (The heat treatment temperature is lower than the lower limit of 80 ° C. of the present invention.)

【0038】試料11は、アイソタクティシティ率が9
5.0%で、120℃×2時間の熱処理後、10℃/m
inで冷却した本発明による試料である。
Sample 11 has an isotacticity ratio of 9
After heat treatment at 5.0% at 120 ° C. for 2 hours, 10 ° C./m
5 is a sample according to the invention cooled in.

【0039】試料12は、アイソタクティシティ率が9
2.0%で、120℃×2時間の熱処理後、10℃/m
inで冷却した本発明外の試料である。(アイソタクテ
ィシティ率が本発明の範囲である95%より低い。)結
果を表2に示す。
Sample 12 has an isotacticity ratio of 9
After heat treatment at 2.0% at 120 ° C for 2 hours, 10 ° C / m
It is a sample outside the present invention cooled in. (The isotacticity ratio is lower than 95%, which is the range of the present invention.) The results are shown in Table 2.

【0040】本発明法で作成された試料は、いずれも従
来法に比べ衝撃吸収エネルギーが大きく向上しているこ
とがわかる。また、試料7と試料8を比較するとわかる
ように、同一の熱処理温度、時間では、冷却速度を10
℃/minと遅くした方が高い衝撃吸収エネルギーが得
られる。本発明外の試料では、従来法による試料並の衝
撃吸収エネルギーしか得られない。
It can be seen that all of the samples prepared by the method of the present invention have greatly improved impact absorption energy as compared with the conventional method. As can be seen from a comparison between Sample 7 and Sample 8, the cooling rate was 10 at the same heat treatment temperature and time.
Higher impact absorption energy can be obtained by slowing down to ° C./min. For samples other than the present invention, only the impact absorption energy equivalent to the sample obtained by the conventional method can be obtained.

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【発明の効果】本発明は以上説明したように構成されて
いるので、他の特性を劣化させることなく耐衝撃性の優
れたポリプロピレン樹脂成形体を製造し得る方法を提供
できる。
Since the present invention is constituted as described above, it is possible to provide a method for producing a polypropylene resin molded article having excellent impact resistance without deteriorating other characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶融成形後水冷し、その後140℃で24時間
の熱処理を施した試料の40℃における衝撃吸収エネル
ギーとアイソタクティシティ率の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the impact absorption energy at 40 ° C. and the isotacticity ratio of a sample that has been subjected to heat treatment at 140 ° C. for 24 hours after water cooling after melt molding.

【図2】溶融成形後の冷却過程で、60℃と120℃で
2時間の熱処理を施した試料の40℃における衝撃吸収
エネルギーとアイソタクティシティ率の関係を示す図で
ある。
FIG. 2 is a diagram showing the relationship between the impact absorption energy at 40 ° C. and the isotacticity of a sample that has been subjected to a heat treatment at 60 ° C. and 120 ° C. for 2 hours in a cooling process after melt molding.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アイソタクティシティ率が95%以上の
ポリプロピレン樹脂を溶融成形後冷却して作製した成形
体を再加熱し、120℃以上融点未満の温度範囲に所定
の時間保持することを特徴とするポリプロピレン樹脂成
形体の製造方法。
The present invention is characterized in that a molded product produced by melt-molding a polypropylene resin having an isotacticity of 95% or more and then cooling is reheated, and is maintained in a temperature range of 120 ° C. or more and less than a melting point for a predetermined time. Of producing a molded polypropylene resin article.
【請求項2】 アイソタクティシティ率が95%以上の
ポリプロピレン樹脂を溶融成形後冷却するに際し、融点
未満の温度から80℃までの温度範囲に所定の時間保持
することを特徴とするポリプロピレン樹脂成形体の製造
方法。
2. A polypropylene resin molded body characterized in that a polypropylene resin having an isotacticity of 95% or more is maintained for a predetermined time in a temperature range from a temperature lower than the melting point to 80 ° C. when cooling after melt molding. Manufacturing method.
【請求項3】 前記所定の時間保持後、10℃/min
以下の冷却速度で冷却することを特徴とする請求項1ま
たは請求項2に記載のポリプロピレン樹脂成形体の製造
方法。
3. After the holding for the predetermined time, 10 ° C./min.
The method for producing a polypropylene resin molded product according to claim 1 or 2, wherein cooling is performed at the following cooling rate.
JP25162096A 1996-09-24 1996-09-24 Manufacture of polypropylene resin molded body Pending JPH1095050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25162096A JPH1095050A (en) 1996-09-24 1996-09-24 Manufacture of polypropylene resin molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25162096A JPH1095050A (en) 1996-09-24 1996-09-24 Manufacture of polypropylene resin molded body

Publications (1)

Publication Number Publication Date
JPH1095050A true JPH1095050A (en) 1998-04-14

Family

ID=17225544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25162096A Pending JPH1095050A (en) 1996-09-24 1996-09-24 Manufacture of polypropylene resin molded body

Country Status (1)

Country Link
JP (1) JPH1095050A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006708A (en) * 2007-05-29 2009-01-15 Sumitomo Chemical Co Ltd Thermoplastic resin molding and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006708A (en) * 2007-05-29 2009-01-15 Sumitomo Chemical Co Ltd Thermoplastic resin molding and its manufacturing method

Similar Documents

Publication Publication Date Title
US20170253012A1 (en) Polyolefin-based elastic film structures, laminates and methods thereof
JPS5947418A (en) Flat yarn having improved heat shrinkability
JPH03250030A (en) Syndiotactic polypropylene molding and its production
JP2015193710A (en) thermoplastic elastomer composition
EP0171733A2 (en) Process for producing a heat-shrinkable polypropylene film
JP5594873B2 (en) Method for producing polyolefin biaxially stretched porous membrane and polyolefin biaxially stretched porous membrane
JPH1095050A (en) Manufacture of polypropylene resin molded body
JPH02504247A (en) polypropylene film
EP2569366B1 (en) Polypropylene blends for non-woven production
JP2000246785A (en) Manufacture of polypropylene sheet
JPS6311968B2 (en)
JPH07125064A (en) Inflation molding of polypropylene
JP3813263B2 (en) Easy tear cast film
JP2002348423A (en) Polypropylene resin composition for oriented film, method for producing the same and oriented film
JP2018119083A (en) Production method of polypropylene microporous film
JP5323281B1 (en) Method for producing polypropylene based material and polypropylene based material
JP5960497B2 (en) Method for producing polypropylene material and polypropylene material
JPH07109386A (en) Polyolefin resin composition and molded form therefrom
JP2818273B2 (en) Molding method for syndiotactic polypropylene
JPS5845976B2 (en) Polypropylene film for shrink wrapping
JPWO2013183342A1 (en) Method for producing polypropylene material and polypropylene material
JPH0378250B2 (en)
KR100402761B1 (en) Multi-component microporous membrane and method for preparing the same
JP2004059652A (en) Polypropylene resin composition and polypropylene stretched film improved in stretchability and its manufacturing method
JPH0853155A (en) Film which is easily tearable in longitudinal direction