JPH1094791A - Method for removing hydrogen sulfide in building waste water - Google Patents

Method for removing hydrogen sulfide in building waste water

Info

Publication number
JPH1094791A
JPH1094791A JP25307296A JP25307296A JPH1094791A JP H1094791 A JPH1094791 A JP H1094791A JP 25307296 A JP25307296 A JP 25307296A JP 25307296 A JP25307296 A JP 25307296A JP H1094791 A JPH1094791 A JP H1094791A
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
waste water
building
peroxide
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25307296A
Other languages
Japanese (ja)
Inventor
Takayoshi Hamaguchi
高嘉 浜口
Kazuyuki Minato
一之 湊
Toshinori Matsumoto
年視 松本
Tadashi Shimomura
正 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP25307296A priority Critical patent/JPH1094791A/en
Publication of JPH1094791A publication Critical patent/JPH1094791A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently remove hydrogen sulfide in building waste water by adding peroxide and metallic salts while aerating a retaining tank. SOLUTION: The pH of the waste water is adjusted at the time of having >=pH 9, though the waste water generally has a pH of 6-8 and is unnecessary to adjust the pH. Successively the peroxide and the metallic salt are added into the pH adjusted waste water. At this time, a building pit is preferably aerated, and a diffuser system or an ejector system is used as an aeration device. As the peroxide, hydrogen peroxide is preferably used by 0.5-10mol to hydrogen sulfide. As the metallic salt, either of anhydride or hydride is used preferably by 0.1-10mg/l to metallic atom in the flow-in waste water. As a result, the hydrogen sulfide in the building waste water is removed in a short time to drastically suppress the diffusion of harmful and malodorous hydrogen sulfide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ビル廃水中の硫化
水素の除去に関するものである。更に詳しくは、ビル廃
水中の硫化水素を迅速に少ない薬注量で除去する方法で
ある。
The present invention relates to the removal of hydrogen sulfide from building wastewater. More specifically, it is a method for quickly removing hydrogen sulfide from building wastewater with a small chemical injection amount.

【0002】[0002]

【従来の技術】都市の市街地のビルの高層化に伴い地下
街を有するビルが増えている。こうした地下街を有する
ビルの廃水は一度地下の廃水槽(以下ビルピットと記
す)に貯蔵され、そこからポンプによって公共下水道へ
放流される。また、ホテル、結婚式場のように食品を加
工する業者は、廃水のBOD等が高いため水処理を行っ
て公共下水道へ放流するが、この時にも廃水は一時廃水
槽に貯蔵され、廃水処理後公共下水道へ放流される。ビ
ルピットには厨房、洗面手洗い、浴室等からの廃水が貯
められる。この廃水には硫酸塩等の無機物、硫黄化合物
を含む有機化合物が含まれているが、貯溜しているうち
に廃水中の有機物等の腐敗が進行する。この時廃水中に
存在する硫酸還元菌は、廃水中の硫酸塩を硫化水素に還
元し増殖する。その結果、廃水は嫌気化し硫酸還元菌の
増殖に加速がかかり廃水中の硫化水素の含有量は更に増
大し気相に放散される。放散された硫化水素は、毒性の
ある不快な物質でマンホールの隙間等からビル街へ拡散
し悪臭問題となっている。更にこの硫化水素は気相中の
硫黄酸化細菌により酸化されミスト中に溶け込み硫酸を
生成する。こうして生成した硫酸はコンクリートや金属
を腐蝕し建築物の構造に致命的な欠陥をもたらす原因と
なっている。
2. Description of the Related Art Buildings with underground shopping centers are increasing along with the rise of urban buildings. Wastewater from buildings with such underground malls is once stored in an underground wastewater tank (hereinafter referred to as a building pit), and then discharged to a public sewer by a pump. Food processing companies, such as hotels and wedding halls, treat wastewater and discharge it to public sewers due to the high BOD of wastewater. At this time, the wastewater is temporarily stored in a wastewater tank. Released into the public sewer. The building pit stores wastewater from kitchens, washbasins, bathrooms, etc. This wastewater contains inorganic substances such as sulfates and organic compounds containing sulfur compounds, and while stored, the organic substances and the like in the wastewater decompose. At this time, the sulfate-reducing bacteria existing in the wastewater reduce the sulfate in the wastewater to hydrogen sulfide and proliferate. As a result, the wastewater is anaerobically accelerated to accelerate the growth of sulfate-reducing bacteria, and the content of hydrogen sulfide in the wastewater further increases and is released to the gas phase. Dissipated hydrogen sulfide is a toxic and unpleasant substance, which diffuses into the building through gaps in manholes and causes odor problems. Further, the hydrogen sulfide is oxidized by sulfur oxidizing bacteria in the gas phase and dissolves in the mist to form sulfuric acid. The sulfuric acid produced in this way corrodes concrete and metal, causing fatal defects in the structure of buildings.

【0003】これら臭気の発生や構造物の腐蝕を防止す
る手段としては、活性炭に硫化水素を吸着させる活性炭
処理があるが、吸着量が飽和に達すると、新しい活性炭
に交換するか再生処理する必要があり、交換作業の煩雑
さと再生費用が高いなど経済性にも問題があった。他の
方法として担体に保持した生物の充填層を通過させ脱臭
する方法がある。しかしこの方法は装置が大きくなるこ
と及び生物の維持管理が難しいといった問題がある。更
に汚水のpHをアルカリ性にし硫化水素の放散を抑制す
る方法もあるが、これは硫化水素そのものを分解もしく
は除去するわけではないので、中和した際、硫化水素が
再発生したり、アルカリスケールが発生するなど充分な
処理とは言えない。
As a means for preventing the generation of these odors and the corrosion of structures, there is an activated carbon treatment for adsorbing hydrogen sulfide on activated carbon. However, when the amount of adsorption reaches saturation, it is necessary to replace the activated carbon with new activated carbon or regenerate it. However, there is also a problem in economics such as complicated replacement work and high regeneration cost. As another method, there is a method of deodorizing by passing through a packed bed of organisms held on a carrier. However, this method has a problem that the apparatus becomes large and it is difficult to maintain and control the living things. There is also a method of making the pH of sewage alkaline and suppressing the emission of hydrogen sulfide.However, this does not decompose or remove hydrogen sulfide itself. It cannot be said that this is a sufficient process such as generation.

【0004】[0004]

【発明が解決しようとする課題】本発明は、ビル廃水中
の硫化水素を温和な条件で効率良く分解除去し、臭気の
拡散及び施設の腐蝕を防止する方法の提供を目的とする
ものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for efficiently decomposing and removing hydrogen sulfide in building wastewater under mild conditions to prevent odor diffusion and facility corrosion. .

【0005】[0005]

【課題を解決するための手段】発明者等は、ビル廃水中
の硫化水素の除去方法を解決すべく鋭意研究した結果、
ビル廃水に、好ましくは滞留槽を曝気しながら、過酸化
物と金属塩を添加することによりビル廃水中の硫化水素
が効率的に除去できることを見いだし、本発明を完成し
た。すなわち、本発明はビル廃水中の硫化水素の処理に
おいて、好ましくは曝気しながら過酸化物と金属塩を添
加することを特徴とするビル廃水中の硫化水素の除去方
法である。
Means for Solving the Problems The inventors have conducted intensive studies to solve the method of removing hydrogen sulfide from building wastewater,
The inventors have found that hydrogen sulfide in building wastewater can be efficiently removed by adding a peroxide and a metal salt to the building wastewater, preferably while aerating the residence tank, and completed the present invention. That is, the present invention is a method for removing hydrogen sulfide in building wastewater, which comprises adding a peroxide and a metal salt while preferably aerating in the treatment of hydrogen sulfide in building wastewater.

【0006】本発明による方法の第一の利点は、気相に
放散された硫化水素を捕捉・除去するわけではなく液相
の硫化水素に対して作用するため、装置が簡便で小型化
できる点にある。すなわち、生物処理法は、生物を担持
させた充填相に硫化水素を含んだガスを流入するが、硫
化水素濃度が高い場合は、装置を大型化しなければなら
ず、更に生物の維持管理が煩雑であるという欠点を有し
ていた。しかしながら本発明方法によれば液相の硫化水
素に直接作用するためにその欠点を解決することが可能
となる。
A first advantage of the method according to the present invention is that the apparatus operates simply on hydrogen sulfide in a liquid phase, instead of capturing and removing hydrogen sulfide released in a gas phase. It is in. In other words, in the biological treatment method, a gas containing hydrogen sulfide flows into the packed phase supporting the organism, but when the concentration of hydrogen sulfide is high, the apparatus must be enlarged, and the maintenance and management of the organism is complicated. Had the disadvantage that However, according to the method of the present invention, it is possible to solve the drawback since it directly acts on hydrogen sulfide in the liquid phase.

【0007】第二の利点は、ビル廃水のpHをアルカリ
性とし、硫化水素の放散を抑制する方法では、硫化水素
自体を分解するわけではなく、硫化水素をHS- 、S2-
のイオンにし、気相への放散を抑制するもので、中和す
ると硫化水素が再発生する。また、アルカリ剤によるス
ケールが発生するという欠点を有していた。しかしなが
ら本発明によれば、硫化水素を分解してしまうため効果
は充分で、しかも通常のビル廃水のpH(6〜8)で処
理を行うことができ、更に本発明の処理を行うことによ
るpHの変動はないことから、放流時にpHを再調整す
る必要がなく、その欠点を解決することが可能になる。
A second advantage is that the method of making the pH of building wastewater alkaline and suppressing the emission of hydrogen sulfide does not decompose the hydrogen sulfide itself, but converts the hydrogen sulfide into HS and S 2−.
And suppresses emission to the gas phase. When neutralized, hydrogen sulfide is regenerated. In addition, there is a disadvantage that scale is generated by the alkali agent. However, according to the present invention, the effect is sufficient because hydrogen sulfide is decomposed, and the treatment can be performed at the pH (6 to 8) of ordinary building wastewater. Since there is no fluctuation in pH, it is not necessary to readjust the pH at the time of discharge, and the disadvantage can be solved.

【0008】[0008]

【発明の実施の形態】つぎに本発明の方法を具体的に説
明する。本発明のビル廃水は、オフィスビル、レストラ
ン、結婚式場、マンション等より排出される廃水のこと
で具体的には、公道桝もしくは公共下水道へ放流される
以前の廃水が含まれる。本発明による方法では、一般的
には廃水のpHは6〜8でありpHの調整を必要とせず
処理を行える。しかしながらpHが9以上の場合は酸を
用いて所定のpHに調整後処理する。この時使用される
酸としては、硫酸、塩酸、硝酸、リン酸等の無機酸、蟻
酸、酢酸等の有機酸であり、単独またはそれらの組み合
わせが使用され得るが、硫酸、塩酸が好適に使用され
る。これらpH調整剤とビル廃水との混合のためには、
攪拌混合槽、攪拌翼等の混合装置が使用できるが、ビル
廃水とpH調整剤が混合できる装置であればいずれの方
法でも良い。pH調整にはpHコントローラーを使用す
ることにより本操作を自動化することができる。
Next, the method of the present invention will be described specifically. The building wastewater of the present invention refers to wastewater discharged from office buildings, restaurants, wedding halls, condominiums, and the like, and specifically includes wastewater before being discharged to a public road basin or a public sewer. In the method according to the present invention, the pH of the wastewater is generally 6 to 8, and the treatment can be performed without adjusting the pH. However, when the pH is 9 or more, the mixture is adjusted to a predetermined pH with an acid and then treated. The acid used at this time is an inorganic acid such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid, and an organic acid such as formic acid and acetic acid, and may be used alone or in combination, but sulfuric acid and hydrochloric acid are preferably used. Is done. In order to mix these pH adjusters and building wastewater,
Although a mixing device such as a stirring mixing tank and a stirring blade can be used, any method may be used as long as it can mix building wastewater and a pH adjuster. This operation can be automated by using a pH controller for pH adjustment.

【0009】続いてpHが調整された廃水に過酸化物と
金属塩を添加する。本発明による方法で使用される過酸
化物としては、過酸化水素、過酢酸、過硫酸塩、過炭酸
塩、過ホウ素酸塩、その他無機、有機の過酸化物が使用
し得るが、好ましくは過酸化水素が使用される。過酸化
物の使用量は、硫化水素量に対して0.5〜20倍モ
ル、好ましくは0.5〜10倍モル使用する。過酸化水
素は35重量%、60重量%の濃度のものが市販されて
いるが、これをそのまま使用しても良く、また希釈して
使用しても良い。
Subsequently, a peroxide and a metal salt are added to the wastewater whose pH has been adjusted. As the peroxide used in the method according to the present invention, hydrogen peroxide, peracetic acid, persulfate, percarbonate, perborate, and other inorganic and organic peroxides can be used, but it is preferable. Hydrogen peroxide is used. The peroxide is used in an amount of 0.5 to 20 moles, preferably 0.5 to 10 moles, per mole of the hydrogen sulfide. Hydrogen peroxide having a concentration of 35% by weight or 60% by weight is commercially available, but it may be used as it is or may be used after being diluted.

【0010】本発明による方法で使用される金属塩とし
ては、鉄、マンガン、銅、亜鉛、銀、クロム、コバル
ト、ニッケル、スズ、鉛等の硫酸塩、硝酸塩、ハロゲン
化物、過塩素酸塩、水酸化物、等の無機塩、シュウ酸
塩、蟻酸塩等の有機塩、酸化物等が例示され、無水塩、
含水塩の何れでも良い。更に鉄塩としてはポリ硫酸第二
鉄等も使用できる。金属塩の使用量は、金属原子の重量
として流入する廃水に対して0.01mg/L〜20m
g/L、好ましくは0.05mg/L〜15mg/L、
更に好ましくは0.1mg/L〜10mg/Lの濃度に
なる量である。過酸化物と金属塩は同時にビルピットに
添加しても良いしあらかじめ混合したものを添加しても
良い。また、廃水の流入配管から添加しても良い。
The metal salts used in the method according to the present invention include sulfates, nitrates, halides, perchlorates, such as iron, manganese, copper, zinc, silver, chromium, cobalt, nickel, tin and lead. Inorganic salts such as hydroxides, oxalates, organic salts such as formate, oxides and the like are exemplified, and anhydrous salts,
Any of hydrous salts may be used. Further, as the iron salt, ferric polysulfate can be used. The amount of the metal salt used is 0.01 mg / L to 20 m with respect to the wastewater flowing in as the weight of metal atoms.
g / L, preferably 0.05 mg / L to 15 mg / L,
The amount is more preferably 0.1 mg / L to 10 mg / L. The peroxide and the metal salt may be added to the building pit at the same time, or may be added in a premixed state. Also, the wastewater may be added from an inflow pipe.

【0011】更に、過酸化物、金属塩を添加する際にビ
ルピットを曝気すると好ましい。曝気装置は、ディフュ
ーザー方式、もしくはエジェクター方式等が使用し得る
が、曝気装置であればいずれの方法でも良い。本発明に
よる方法を効率的に行うために、過酸化物、金属塩を添
加する際、ビル廃水との混合のために攪拌することが好
ましいが、その際用いられる攪拌方法としては、攪拌混
合槽、攪拌翼、インラインミキサー等ビル廃水と過酸化
物、金属塩が混合できる方法であればいずれの方法でも
良い。薬剤の添加方法としては、ダイヤフラム式、プラ
ンジャー式の定量ポンプ等薬品を正確に供給できる方式
であればいずれの方法でも良い。
Further, it is preferable to aerate the building pit when adding a peroxide or a metal salt. As the aeration device, a diffuser type, an ejector type, or the like can be used, but any method may be used as long as it is an aeration device. In order to efficiently carry out the method according to the present invention, when adding peroxides and metal salts, it is preferable to stir for mixing with building wastewater. Any method may be used as long as it can mix building waste water with peroxides and metal salts, such as stirring blades and in-line mixers. As a method of adding the drug, any method such as a diaphragm type or a plunger type metering pump may be used as long as it can supply the drug accurately.

【0012】[0012]

【実施例】次に本発明の方法を実施例により更に具体的
に説明する。但し、本発明はこれらの実施例によって限
定されるものではない。 比較例1 硫化水素20mg/Lを含有するpH6.8のビルピッ
トに滞留しているビル廃水100mlに、7重量%の過
酸化水素水溶液を廃水に対し100%過酸化水素として
30mg/Lとなる量(42.9mg:硫化水素の1.
5倍モル)を添加し、液相の硫化水素の濃度の経時変化
を酢酸鉛試験紙を用いた比色法によって測定した。結果
を表1に示す。 実施例1 金属塩として鉄(III)イオンが5mg/Lとなる量
の塩化第二鉄六水和物を2.4mg添加した他は、比較
例1と同様に処理を行った。結果を表1に示す。 実施例2 金属塩としてマンガン(II)イオンが5mg/Lとな
る量の硝酸マンガン六水和物を2.6mg添加した他
は、比較例1と同様に処理を行った。結果を表1に示
す。 実施例3 金属塩として銅イオンが5mg/Lとなる量の硫酸銅五
水和物を2.0mg添加した他は、比較例1と同様に処
理を行った。結果を表1に示す。 実施例4 金属塩として亜鉛イオンが5mg/Lとなる量の塩化亜
鉛1.0mgを添加した他は、比較例1と同様に処理を
行った。結果を表1に示す。 実施例5 金属塩として銀イオンが5mg/Lとなる量の硝酸銀を
0.8mg添加した他は、比較例1と同様に処理を行っ
た。結果を表1に示す。
Next, the method of the present invention will be described more specifically with reference to examples. However, the present invention is not limited by these examples. Comparative Example 1 In 100 ml of building waste water retained in a building pit having a pH of 6.8 containing 20 mg / L of hydrogen sulfide, a 7% by weight aqueous solution of hydrogen peroxide was converted to 30 mg / L as 100% hydrogen peroxide with respect to the waste water. (42.9 mg: 1.
(5 times mol) was added, and the change over time in the concentration of hydrogen sulfide in the liquid phase was measured by a colorimetric method using lead acetate test paper. Table 1 shows the results. Example 1 A treatment was performed in the same manner as in Comparative Example 1, except that 2.4 mg of ferric chloride hexahydrate was added as an amount of iron (III) ions to be 5 mg / L as a metal salt. Table 1 shows the results. Example 2 The same treatment as in Comparative Example 1 was performed, except that 2.6 mg of manganese nitrate hexahydrate was added as a metal salt so that manganese (II) ions became 5 mg / L. Table 1 shows the results. Example 3 A treatment was performed in the same manner as in Comparative Example 1, except that 2.0 mg of copper sulfate pentahydrate was added as a metal salt so that copper ions became 5 mg / L. Table 1 shows the results. Example 4 A treatment was performed in the same manner as in Comparative Example 1, except that 1.0 mg of zinc chloride was added as a metal salt so that zinc ions became 5 mg / L. Table 1 shows the results. Example 5 The same treatment as in Comparative Example 1 was performed, except that 0.8 mg of silver nitrate was added as a metal salt so that silver ions became 5 mg / L. Table 1 shows the results.

【0013】実施例6 金属塩としてクロムイオンが5mg/Lとなる量の硝酸
クロム九水和物を3.9mg添加した他は、比較例1と
同様に処理を行った。結果を表1に示す。 実施例7 金属塩としてコバルトイオンが5mg/Lとなる量の塩
化コバルト六水和物を2.0mg添加した他は、比較例
1と同様に処理を行った。結果を表1に示す。 実施例8 金属塩としてニッケルイオンが5mg/Lとなる量の硝
酸ニッケル六水和物を2.5mg添加した他は、比較例
1と同様に処理を行った。結果を表1に示す。 実施例9 金属塩としてスズイオンが5mg/Lとなる量の塩化ス
ズ五水和物を1.5mg添加した他は、比較例1と同様
に処理を行った。結果を表1に示す。 実施例10 金属塩として鉛イオンが5mg/Lとなる量の酢酸鉛三
水和物を0.9mg添加した他は、比較例1と同様に処
理を行った。結果を表1に示す。 実施例11 金属塩として鉄(II)イオンが5mg/Lとなる量の
塩化第一鉄四水和物を1.8mg添加した他は、比較例
1と同様に処理を行った。結果を表1に示す。 比較例2 過酸化水素、金属塩を添加せずに、そのまま放置した結
果を表1に示す。
Example 6 The same treatment as in Comparative Example 1 was carried out except that 3.9 mg of chromium nitrate nonahydrate was added as a metal salt so that chromium ions became 5 mg / L. Table 1 shows the results. Example 7 The same treatment as in Comparative Example 1 was carried out, except that 2.0 mg of cobalt chloride hexahydrate was added as an amount of cobalt ion to be 5 mg / L as a metal salt. Table 1 shows the results. Example 8 The same treatment as in Comparative Example 1 was performed except that 2.5 mg of nickel nitrate hexahydrate was added as a metal salt so that nickel ions became 5 mg / L. Table 1 shows the results. Example 9 The same treatment as in Comparative Example 1 was carried out, except that 1.5 mg of tin chloride pentahydrate was added in an amount of 5 mg / L of tin ions as a metal salt. Table 1 shows the results. Example 10 A treatment was performed in the same manner as in Comparative Example 1, except that 0.9 mg of lead acetate trihydrate was added as a metal salt so that lead ion became 5 mg / L. Table 1 shows the results. Example 11 The same treatment as in Comparative Example 1 was performed, except that 1.8 mg of ferrous chloride tetrahydrate was added as an amount of iron (II) ions to be 5 mg / L as a metal salt. Table 1 shows the results. Comparative Example 2 Table 1 shows the results of standing without adding hydrogen peroxide and a metal salt.

【0014】 表1 廃水中硫化水素(mg/L)の経時変化 経過時間(分) 1 5 60 180 ────────────────────────────── 比較例1 4 1 0 2 実施例1 3 0 0 0 実施例2 3 0 0 0 実施例3 0 0 0 0 実施例4 3 0 0 0 実施例5 1 0 0 0 実施例6 3 0 0 0 実施例7 2 0 0 0 実施例8 3 0 0 0 実施例9 3 0 0 0 実施例10 3 0 0 0 実施例11 3 0 0 0 比較例2 20 21 28 30 ──────────────────────────────Table 1 Change over time in hydrogen sulfide (mg / L) in wastewater Elapsed time (minutes) 1 60 60 180 ──────────────────────── ────── Comparative Example 1 4 1 0 2 Example 1 3 0 0 0 Example 2 3 0 0 0 Example 3 0 0 0 0 Example 4 3 0 0 0 Example 5 5 0 0 0 0 Example 6 3 00 0 Example 7 2 0 0 0 Example 8 3 0 0 0 Example 9 3 0 0 0 Example 10 3 0 0 0 Example 1 1 3 0 0 0 Comparative example 2 20 21 28 30 ───────────────────────────

【0015】実施例12 硫化水素25mg/Lを含有するpH7.2のビルピッ
トに滞留しているビル廃水100mlに、7重量%の過
酸化水素水溶液を廃水に対し100%過酸化水素として
50mg/Lとなる量(71.4mg:硫化水素の2倍
モル)と塩化第二鉄六水和物を鉄(III)イオンが
0.1mg/Lとなる量(0.05mg)添加し、硫化
水素の濃度の経時変化を見た。結果を表2に示す。 実施例13 鉄(III)イオンが1mg/Lとなる量(0.48m
g)に変えた他は、実施例12と同様に処理を行った。
結果を表2に示す。 実施例14 鉄(III)イオンが10mg/Lとなる量(4.84
mg)に変えた他は、実施例12と同様に処理を行っ
た。結果を表2に示す。
Example 12 To 100 ml of building waste water retained in a building pit having a pH of 7.2 containing 25 mg / L of hydrogen sulfide, a 7% by weight aqueous solution of hydrogen peroxide was added as 100% hydrogen peroxide to the waste water at 50 mg / L. (71.4 mg: twice as much as hydrogen sulfide) and ferric chloride hexahydrate in an amount (0.05 mg) such that the iron (III) ion becomes 0.1 mg / L, Changes in the concentration over time were observed. Table 2 shows the results. Example 13 Amount of iron (III) ion to be 1 mg / L (0.48 m
Except having changed to g), it carried out similarly to Example 12.
Table 2 shows the results. Example 14 Amount (4.84) at which iron (III) ion becomes 10 mg / L
The same treatment as in Example 12 was carried out except that the amount was changed to mg). Table 2 shows the results.

【0016】 表2 廃水中硫化水素(mg/L)の経時変化 経過時間(分) 1 5 60 180 ────────────────────────────── 実施例12 2 1 0 0 実施例13 2 0 0 0 実施例14 2 0 0 0 ────────────────────────────── 以上のように金属塩の添加量は非常に少量で効果が得ら
れる。
Table 2 Temporal change of hydrogen sulfide (mg / L) in wastewater Elapsed time (minutes) 15 60 180 ──────────────────────── {Example 12 12 0 0 Example 13 2 00 0 Example 14 20 00 0}効果 As described above, the effect can be obtained with a very small addition amount of the metal salt.

【0017】実施例15 硫化水素10mg/Lを含有するピットに滞留している
ビル廃水100mlを、pH5に調整し、5重量%の過
酸化水素水溶液60mgを廃水に対し100%過酸化水
素として30mg/Lとなる量(60mg:硫化水素の
3倍モル)と硫酸亜鉛を亜鉛イオンが2.5mg/Lと
なる量(1.1mg)添加し、硫化水素の濃度の経時変
化を見た。結果を表3に示す。 実施例16 pHを7にした他は、実施例15と同様に処理した。結
果を表3に示す。 実施例17 pHを9にした他は、実施例15と同様に処理した。結
果を表3に示す。 比較例3 pHを3にした他は、実施例15と同様に処理した。結
果を表3に示す。 比較例4 pHを11にした他は、実施例15と同様に処理した。
結果を表3に示す。
Example 15 100 ml of building waste water retained in a pit containing 10 mg / L of hydrogen sulfide was adjusted to pH 5, and 60 mg of a 5% by weight aqueous hydrogen peroxide solution was added to 30 mg of the waste water as 100% hydrogen peroxide. / L (60 mg: 3 times the molar amount of hydrogen sulfide) and zinc sulfate (2.5 mg / L) (1.1 mg) were added, and the concentration of hydrogen sulfide was changed over time. Table 3 shows the results. Example 16 Except having changed pH to 7, it processed like Example 15. Table 3 shows the results. Example 17 The same treatment as in Example 15 was carried out except that the pH was changed to 9. Table 3 shows the results. Comparative Example 3 The same treatment as in Example 15 was carried out except that the pH was changed to 3. Table 3 shows the results. Comparative Example 4 The same treatment as in Example 15 was carried out except that the pH was changed to 11.
Table 3 shows the results.

【0018】 表3 廃水中硫化水素(mg/L)の経時変化 経過時間(分) pH 1 5 60 ────────────────────────────── 実施例15 5 1 0 0 実施例16 7 1 0 0 実施例17 9 1 0 0 比較例3 3 2 1 1 比較例4 11 2 0 0 ────────────────────────────── 以上のように本発明はpH5〜9の範囲で反応速度が最
大となる。
Table 3 Temporal change of hydrogen sulfide (mg / L) in wastewater Elapsed time (minutes) pH 1560 ──────────────────────── {Example 15 5 10 0 0 Example 16 7 10 0 0 Example 17 9 10 0 0 Comparative example 3 3 2 1 1 Comparative example 4 11 2 0 0}よ う As described above, in the present invention, the reaction rate is maximized in the pH range of 5 to 9.

【0019】以下のビルピットに対して実施を行った。
ビルピット中の廃水の平均の硫化水素濃度は30mg/
Lであり、pHの平均は6.8であった。また水温は2
5℃であった。ビルピットの容積は30m3 であり平均
して8m3 /hの廃水が流入する。 実施例19 ビルピットに鉄(III)イオンが流入水に対して5m
g/Lとなる量の37重量%の塩化第二鉄を5.2g/
minの速度で添加し、流入配管中から35重量%過酸
化水素溶液を13.7g/minの速度で添加した。結
果を表4に示す。 実施例20 ビルピットをエジェクター方式の曝気装置で曝気した他
は、実施例19と同様に処理した。結果を表4に示す。 実施例21 鉄(III)イオンのかわりに亜鉛イオンが流入水に対
して2.5mg/Lとなる量の50重量%の塩化亜鉛を
1.4g/minの速度で添加した他は、実施例20と
同様に処理した。結果を表4に示す。 比較例4 薬剤を添加せずに曝気のみを行った。結果を表4に示
す。
The following building pit was implemented.
The average hydrogen sulfide concentration of wastewater in the building pit is 30 mg /
L and the average pH was 6.8. The water temperature is 2
5 ° C. The volume of the building pit is 30 m 3 , and on average 8 m 3 / h of wastewater flows in. Example 19 Iron (III) ions in a building pit 5 m from inflow water
g / L of 37% by weight of ferric chloride in 5.2 g / L
min, and a 35% by weight hydrogen peroxide solution was added from the inlet pipe at a rate of 13.7 g / min. Table 4 shows the results. Example 20 The same treatment as in Example 19 was carried out except that the building pit was aerated with an ejector type aerator. Table 4 shows the results. Example 21 The procedure of Example 21 was repeated, except that zinc ion was added at a rate of 1.4 g / min in an amount of 2.5 mg / L of zinc ion to the influent water instead of iron (III) ion. Treated as in 20. Table 4 shows the results. Comparative Example 4 Only aeration was performed without adding a drug. Table 4 shows the results.

【0020】 表4 ビルピット気相中の硫化水素(ppm) 平均 最大 最少 ─────────────────────────── 実施例19 40 80 5 実施例20 15 25 0 実施例21 12 30 0 比較例4 120 500< 50 ─────────────────────────── 以上のように薬液の添加とビルピットの曝気を同時に行
えば、効果は更に高まることがわかった。
Table 4 Hydrogen sulfide (ppm) in the gas phase of the building pit Average Maximum Minimum 例 Example 19 40 80 5 Example 20 15 25 0 Example 21 12 30 0 Comparative Example 4 120 500 <50 ° As described above. It was found that the effect was further enhanced by simultaneously adding the chemical solution and aerating the building pit.

【0021】[0021]

【発明の効果】本発明によれば、ビル廃水中の硫化水素
を短時間で除去できる。その結果、有害で不快臭を持つ
硫化水素の放散は大幅に抑えられ、更にセメント、金属
等の腐蝕を防止するための実用的な方法を提供できる。
According to the present invention, hydrogen sulfide in building wastewater can be removed in a short time. As a result, the emission of harmful and unpleasant odorous hydrogen sulfide is greatly suppressed, and a practical method for preventing corrosion of cement, metal and the like can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下村 正 東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社東京研究所内 ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Tadashi Shimomura 6-1-1, Shinjuku, Katsushika-ku, Tokyo Mitsubishi Gas Chemical Co., Ltd. Tokyo Research Laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 硫化水素を含有するビル廃水に過酸化物
と金属塩を添加することを特徴とするビル廃水中の硫化
水素の除去方法。
1. A method for removing hydrogen sulfide in building wastewater, comprising adding a peroxide and a metal salt to the building wastewater containing hydrogen sulfide.
【請求項2】 金属塩が、鉄、銅、マンガン、亜鉛、
銀、クロム、ニッケル、スズ、鉛からなる群から少なく
とも1種の硫酸塩、硝酸塩、ハロゲン化物、過塩素酸
塩、水酸化物である請求項1記載の方法。
2. The method according to claim 1, wherein the metal salt is iron, copper, manganese, zinc,
The method according to claim 1, which is at least one sulfate, nitrate, halide, perchlorate, or hydroxide from the group consisting of silver, chromium, nickel, tin, and lead.
【請求項3】 金属塩の量が金属イオンとしてビル廃水
に対し、0.1〜10mg/Lである請求項2記載の方
法。
3. The method according to claim 2, wherein the amount of the metal salt is 0.1 to 10 mg / L based on the building wastewater as metal ions.
【請求項4】 過酸化物の量がビル廃水中の硫化水素に
対し、0.5〜10倍モルである請求項1記載の方法。
4. The method according to claim 1, wherein the amount of the peroxide is 0.5 to 10 times the molar amount of hydrogen sulfide in the building wastewater.
【請求項5】 過酸化物が過酸化水素である請求項1記
載の方法。
5. The method according to claim 1, wherein the peroxide is hydrogen peroxide.
【請求項6】 処理pHが5〜9である請求項1記載の
方法。
6. The method according to claim 1, wherein the treatment pH is 5 to 9.
【請求項7】 曝気を行いながら添加する請求項1記載
の方法。
7. The method according to claim 1, wherein the addition is performed while performing aeration.
JP25307296A 1996-09-25 1996-09-25 Method for removing hydrogen sulfide in building waste water Pending JPH1094791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25307296A JPH1094791A (en) 1996-09-25 1996-09-25 Method for removing hydrogen sulfide in building waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25307296A JPH1094791A (en) 1996-09-25 1996-09-25 Method for removing hydrogen sulfide in building waste water

Publications (1)

Publication Number Publication Date
JPH1094791A true JPH1094791A (en) 1998-04-14

Family

ID=17246109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25307296A Pending JPH1094791A (en) 1996-09-25 1996-09-25 Method for removing hydrogen sulfide in building waste water

Country Status (1)

Country Link
JP (1) JPH1094791A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006026723A3 (en) * 2004-08-26 2008-01-17 Aceto Corp Odor abatement of organic waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006026723A3 (en) * 2004-08-26 2008-01-17 Aceto Corp Odor abatement of organic waste

Similar Documents

Publication Publication Date Title
Deng et al. Treatment of landfill leachate by the Fenton process
JPH0975993A (en) Treatment of organic matter-containing waste water and device therefor
JP4732845B2 (en) Water treatment method and apparatus
JP2004249258A (en) Wastewater treatment method
JPH1094791A (en) Method for removing hydrogen sulfide in building waste water
JPH10216697A (en) Deodorant
JP3402411B2 (en) Nitrogen treatment method for wastewater
JPH09206790A (en) Treatment of waste water of steel product pickling containing nitrate nitrogen
JP2005021865A (en) Method for treating waste water containing sulfur-containing organic compound
JPH11197675A (en) Functional ceramics water catalytic treatment apparatus, functional ceramics, water treatment system utilizing the same and catalytic water use method
JP2000185290A (en) Deodorizing method
JP7376143B2 (en) Circulating wastewater treatment unit and circulating wastewater treatment system
JP2000005774A (en) Deodorizing method
JP2971444B1 (en) Deodorizing method and apparatus for sewage treatment
JP4862234B2 (en) Method for treating waste water containing hydrazine and chelating organic compound
JPH10216698A (en) Deodorizing method
JP3726851B2 (en) Sludge deodorization method
JP2024108997A (en) Circulating wastewater treatment unit and circulating wastewater treatment system
JPH0520160B2 (en)
JP2001340895A (en) Method and apparatus for deodorizing sewage or sludge
JP2023158004A (en) Circulating wastewater treatment unit and circulating wastewater treatment system
JP2007296436A (en) Treatment method of wastewater containing high-concentration organic matter
JPH0623377A (en) Water treatment method using ozone
JPH10323700A (en) Method for deodorization or odor-prevention for sludge
JP2869410B1 (en) Prevention of bulking in activated sludge treatment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Effective date: 20041124

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A02 Decision of refusal

Effective date: 20050209

Free format text: JAPANESE INTERMEDIATE CODE: A02