JPH1094390A - Production of new peripheral blood stem cell - Google Patents

Production of new peripheral blood stem cell

Info

Publication number
JPH1094390A
JPH1094390A JP8250125A JP25012596A JPH1094390A JP H1094390 A JPH1094390 A JP H1094390A JP 8250125 A JP8250125 A JP 8250125A JP 25012596 A JP25012596 A JP 25012596A JP H1094390 A JPH1094390 A JP H1094390A
Authority
JP
Japan
Prior art keywords
cells
peripheral blood
stem cells
blood stem
stimulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8250125A
Other languages
Japanese (ja)
Inventor
Tadaaki Sonoda
精昭 薗田
Takafumi Kimura
貴文 木村
Kiyoshi Yasukawa
清 保川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP8250125A priority Critical patent/JPH1094390A/en
Publication of JPH1094390A publication Critical patent/JPH1094390A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtian the subject blood stem cell useful for treating disorders after a superhigh administration dose chemotherapy using a large dose of an anticancer medicine aiming a therapy for annihilating cancer cells by bringing peripheral blood stem cells with into contact with a factor capable of stimulating gp 130. SOLUTION: This method for producing new peripheral blood stem cells comprises bringing peripheral blood stem cells comprising peripheral blood- originated CD 34 positive cells into contact with interleukin-6 (IL-6) or interleukin-6 receptor (IL-6R) as a factor capable of stimulating gp 130 and further interleukin-3 (IL-3) and stem cell factor(SCF) in the wells of a 96 hole plate. When all of IL-6, IL-6R, IL-3 and SCF are added, the most amplified peripheral blood stem cells are obtained as understood from cell numbers expressed by void bars expressing 8-50 cells/well, black-colored bars expressing 51-500 cells/well and oblique line bars expressing >=501 cells/well.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、近年注目されてい
る末梢血幹細胞移植を実施する際に好適な、末梢血幹細
胞の製造法に関するものである。更に詳しくは、インタ
−ロイキン−6(IL−6)やインタ−ロイキン−6レ
セプタ−(IL−6R)等のgp130を刺激し得る刺
激因子を使用することを特徴とする、末梢血幹細胞の製
造法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing peripheral blood stem cells, which is suitable for performing peripheral blood stem cell transplantation, which has recently attracted attention. More specifically, production of peripheral blood stem cells, characterized by using a stimulating factor such as inter-leukin-6 (IL-6) or inter-leukin-6 receptor (IL-6R) capable of stimulating gp130. It is about the law.

【0002】[0002]

【従来の技術】末梢血幹細胞移植は、癌細胞の全滅によ
る治癒を目的とし、抗癌薬を通常の投与量の数倍以上を
用いる超高投与量化学療法において、不可避の毒性(骨
髄の荒廃)を再構築するため、予め患者から末梢血幹細
胞を採取・保存しておき、化学療法後に患者に輸注する
治療法である。
2. Description of the Related Art Peripheral blood stem cell transplantation aims to cure cancer cells by annihilation, and inevitably causes toxicity (degradation of bone marrow) in ultra-high dose chemotherapy using anticancer drugs several times higher than usual dose. This is a treatment method in which peripheral blood stem cells are collected and stored in advance from a patient in order to reconstruct), and then transfused into the patient after chemotherapy.

【0003】末梢血幹細胞移植は、同種骨髄移植、自家
骨髄移植に次ぐ第3の移植療法として注目されている。
この方法には、同種骨髄移植や自家骨髄移植と比較し
て、全身麻酔を必要としないこと、移植後の好中球や血
小板の回復が早いこと、移植後の免疫能の回復が早いと
いう利点がある。日本では1994年4月に保険診療と
して認められ、実施症例数が飛躍的に増えているが、自
家骨髄移植の実施症例数が減少し、同種骨髄移植の実施
症例数が横ばいなのと対照的である。
[0003] Peripheral blood stem cell transplantation has attracted attention as a third transplantation therapy after allogeneic bone marrow transplantation and autologous bone marrow transplantation.
Compared to allogeneic bone marrow transplantation or autologous bone marrow transplantation, this method has the advantages of not requiring general anesthesia, faster recovery of neutrophils and platelets after transplantation, and faster recovery of immune competence after transplantation. There is. In Japan, it was recognized as an insurance practice in April 1994, and the number of cases performed has dramatically increased. In contrast, the number of cases undergoing autologous bone marrow transplantation has decreased, and the number of cases undergoing allogeneic bone marrow transplantation has been flat. is there.

【0004】[0004]

【発明が解決しようとする課題】末梢血幹細胞移植によ
り速やかな造血回復と持続的な造血回復の両方を起こさ
せるためには、輸注する細胞中に、顆粒球/マクロファ
−ジ系コロニ−形成細胞(CFU−GM)、赤芽球バ−
スト形成細胞(BFU−E)、巨核球系コロニ−形成細
胞(CFU−Mk)、混合コロニ−形成細胞(CFU−
Mix)等のCD34陽性細胞が十分量含まれているこ
とが望ましい。
In order to cause both rapid hematopoietic recovery and continuous hematopoietic recovery by peripheral blood stem cell transplantation, granulocyte / macrophage colony-forming cells must be included in the cells to be transfused. (CFU-GM), erythroid cell bar
Strike-forming cells (BFU-E), megakaryocyte colony-forming cells (CFU-Mk), mixed colony-forming cells (CFU-M)
It is desirable that a sufficient amount of CD34-positive cells such as Mix.

【0005】造血回復に必要な造血幹細胞の輸注量は、
CFU−GMでは体重1kgあたり10万〜50万個、
コロニ−形成細胞が通常30〜40%ほど含まれるCD
34陽性細胞では体重1kgあたり100万〜200万
個と言われている(薗田、末梢血幹細胞移植−基礎から
臨床まで、南江堂、5−15、1995年参照)。
[0005] The amount of hematopoietic stem cells required for hematopoietic recovery is
In CFU-GM, 100,000-500,000 per kg of body weight,
CD containing colony-forming cells usually in an amount of about 30 to 40%
It is said that the number of 34 positive cells is 1 to 2 million per kg of body weight (Sonoda, peripheral blood stem cell transplantation-from basic to clinical, Nankodo, 5-15, 1995).

【0006】このように、造血回復を促進するためには
十分量の幹細胞を輸注することが望ましいが、幹細胞の
取得には限界がある。例えば、シクロフォスファミド、
エトポシド、あるいはサイトシンアラビノサイト等の抗
癌薬等を用いた抗癌化学療法後に顆粒球コロニ−刺激因
子(G−CSF)を投与して末梢血に幹細胞を動員し、
アフェレ−シスによりCD34陽性細胞を得る方法で
は、急性骨髄性白血病等の一部の患者で十分量の幹細胞
を確保することは困難である。
As described above, it is desirable to inject a sufficient amount of stem cells in order to promote hematopoietic recovery, but there is a limit in obtaining stem cells. For example, cyclophosphamide,
After anticancer chemotherapy using etoposide or an anticancer drug such as cytosine arabinosite or the like, granulocyte colony-stimulating factor (G-CSF) is administered to mobilize stem cells to peripheral blood,
With the method of obtaining CD34-positive cells by apheresis, it is difficult to secure a sufficient amount of stem cells in some patients such as acute myeloid leukemia.

【0007】十分量の幹細胞を確保するために期待され
る新しい方法は、幹細胞のインビトロでの製造(増幅)
である。これが可能になれば、現行量を大きく上回るC
D34陽性細胞を輸注できるだけでなく、アフェレ−シ
スにかける血液量を減らすことにより患者の負担を大幅
に軽減することもできる。実際、骨髄由来のCD34陽
性細胞や臍帯血由来のCD34陽性細胞については、幹
細胞のインビトロでの製造、すなわち幹細胞の増幅と赤
血球、白血球、血小板への分化誘導には、c−kitや
gp130を刺激することが効果的であること、そのた
めに幹細胞因子(SCF)、IL−6、IL−6R等を
添加してCD34陽性細胞を培養すれば良いことが報告
されている(Suiら、Proc.Natl Aca
d.Sci.USA、92、2859−2863、19
95年参照)。
[0007] A new method expected to secure a sufficient amount of stem cells is the production (expansion) of stem cells in vitro.
It is. If this becomes possible, C will greatly exceed the current amount
Not only can D34-positive cells be infused, but the burden on the patient can be greatly reduced by reducing the amount of blood subjected to apheresis. In fact, for CD34 + cells derived from bone marrow and umbilical cord blood, c-kit and gp130 are stimulated for in vitro production of stem cells, that is, for expansion of stem cells and induction of differentiation into red blood cells, white blood cells, and platelets. Has been reported to be effective, and for that purpose, CD34-positive cells may be cultured by adding stem cell factor (SCF), IL-6, IL-6R and the like (Sui et al., Proc. Natl. Aca
d. Sci. USA, 92, 2859-2863, 19
1995).

【0008】従って、末梢血に由来するCD34陽性細
胞から上述のようにして幹細胞をインビトロ製造するこ
とが可能となれば末梢血幹細胞移植の際に効果的であ
る。しかし、骨髄や臍帯血に由来する細胞と末梢血に由
来する細胞では種々の性質が相違する。例えば、抗癌化
学療法後にG−CSFにより動員した末梢血由来のCD
34陽性細胞は、骨髄のCD34陽性細胞と比べると、
HLA−DR抗原、CD33抗原、CD13抗原の発現
率が高く、一方、c−kitの発現率が低いことが報告
されている(薗田、末梢血幹細胞移植−基礎から臨床ま
で、南江堂、5−15、1995年参照)。このため、
骨髄由来のCD34陽性細胞や臍帯血由来のCD34陽
性細胞から幹細胞を製造する方法が末梢血由来のCD3
4陽性細胞からの幹細胞製造法に効果的であるという保
証はなかった。末梢血由来のCD34陽性細胞中に含ま
れる幹細胞の増幅と分化には、SCF、IL−3、顆粒
球マクロファ−ジコロニ−刺激因子(GM−CSF)、
G−CSF、エリスロポイエチン等が有効であることが
報告されているのみである(Sonodaら、Bloo
d、81、624−630、1993年、Sonoda
ら、Blood、84、4099−4106、1994
年参照)。
[0008] Therefore, if stem cells can be produced in vitro from CD34-positive cells derived from peripheral blood as described above, it is effective for peripheral blood stem cell transplantation. However, various properties are different between cells derived from bone marrow or cord blood and cells derived from peripheral blood. For example, peripheral blood-derived CD mobilized by G-CSF after anticancer chemotherapy
34 positive cells, compared to CD34 positive cells in bone marrow,
It has been reported that the expression rate of HLA-DR antigen, CD33 antigen, and CD13 antigen is high, while the expression rate of c-kit is low (Sonoda, Peripheral Blood Stem Cell Transplantation-from basic to clinical, Nankodo, 5-15 , 1995). For this reason,
A method for producing stem cells from bone marrow-derived CD34-positive cells or cord blood-derived CD34-positive cells is directed to peripheral blood-derived CD3.
There was no guarantee that it would be effective in producing stem cells from 4 positive cells. For expansion and differentiation of stem cells contained in peripheral blood-derived CD34-positive cells, SCF, IL-3, granulocyte macrophage colony-stimulating factor (GM-CSF),
It has only been reported that G-CSF, erythropoietin and the like are effective (Sonoda et al., Blood
d, 81, 624-630, 1993, Sonoda.
Et al., Blood, 84, 4099-4106, 1994.
Year).

【0009】[0009]

【課題を解決するための手段】本発明者らは、末梢血由
来のCD34陽性細胞に含まれる幹細胞の増幅と分化に
ついて検討した結果、同細胞がgp130を発現してお
り、その増幅にIL−6、IL−6R、IL−3、SC
F等が効果的であることを見い出すに至った。即ち本発
明は、末梢血幹細胞をgp130を刺激し得る因子と接
触させることを特徴とする、増幅された末梢血幹細胞の
製造法である。また本発明は、gp130を刺激し得る
因子を含む、末梢血幹細胞を増幅するための組成物であ
る。更に本発明は、インターロイキン−6レセプター発
現細胞を取得することを特徴とする、末梢血由来CD3
4陽性細胞中の分化細胞の調製方法、インターロイキン
−6レセプター未発現細胞を取得することを特徴とす
る、末梢血由来CD34陽性細胞中の末梢血幹細胞含有
画分の調製方法である。以下、本発明を詳細に説明す
る。
The present inventors examined the expansion and differentiation of stem cells contained in CD34-positive cells derived from peripheral blood. As a result, the cells expressed gp130, and IL- 6, IL-6R, IL-3, SC
F and others have found that they are effective. That is, the present invention is a method for producing expanded peripheral blood stem cells, which comprises contacting peripheral blood stem cells with a factor capable of stimulating gp130. The present invention is also a composition for expanding peripheral blood stem cells, comprising a factor capable of stimulating gp130. The present invention further provides a peripheral blood-derived CD3, which comprises obtaining an interleukin-6 receptor-expressing cell.
A method for preparing a differentiated cell among 4 positive cells, and a method for preparing a peripheral blood stem cell-containing fraction in peripheral blood-derived CD34 positive cells, which comprises obtaining interleukin-6 receptor non-expressing cells. Hereinafter, the present invention will be described in detail.

【0010】gp130は、ゲル電気泳動(SDS−P
AGE)による見かけの分子量が130kDaの糖蛋白
質であり、IL−6とIL−6Rの複合体からの刺激を
細胞に伝達する役割を有する。本発明においては、gp
130を発現している末梢血由来幹細胞(末梢血幹細
胞)について適用されるものである。末梢血幹細胞は、
例えば、CD34抗原を発現している細胞(CD34陽
性細胞)画分として調製されたものを使用することがで
きる。そしてこのような細胞に対して本発明を適用する
ことにより、その数を増幅したり、CFU−GM・BF
U−E・CFU−Mk・CFU−Mix等への分化を誘
導することが可能である。
Gp130 is obtained by gel electrophoresis (SDS-P
AGE) is a glycoprotein having an apparent molecular weight of 130 kDa, and has a role of transmitting stimulation from a complex of IL-6 and IL-6R to cells. In the present invention, gp
This is applied to peripheral blood-derived stem cells expressing 130 (peripheral blood stem cells). Peripheral blood stem cells
For example, those prepared as a cell (CD34-positive cell) fraction expressing the CD34 antigen can be used. By applying the present invention to such cells, the number of the cells can be increased, or CFU-GM-BF can be amplified.
It is possible to induce differentiation into EE, CFU-Mk, CFU-Mix and the like.

【0011】gp130を刺激し得る因子として本発明
で使用できるものは、例えばIL−6、IL−6R、イ
ンタ−ロイキン−11(IL−11)、オンコスタチン
Mである。gp130の刺激は、例えば上述のようにI
L−6とIL−6Rの複合体により引き起こされるが、
増幅させようとする末梢血幹細胞がgp130以外にI
L−6Rをも発現している場合、IL−6のみをgp1
30を刺激し得る因子として使用することで本発明の効
果を達成することができる。しかし、CD34陽性細胞
等の通常造血幹細胞はIL−6Rを発現していないた
め、IL−6及びIL−6Rを併用するか、あるいは単
独でgp130を刺激し得るIL−11等の他の因子を
使用することが好ましい。
[0011] Factors capable of stimulating gp130 that can be used in the present invention are, for example, IL-6, IL-6R, inter-leukin-11 (IL-11), and oncostatin M. The stimulation of gp130 can be, for example, I
Triggered by a complex of L-6 and IL-6R,
Peripheral blood stem cells to be expanded have I other than gp130.
When L-6R is also expressed, only IL-6 is gp1
The effect of the present invention can be achieved by using 30 as a stimulable factor. However, since normal hematopoietic stem cells such as CD34-positive cells do not express IL-6R, other factors such as IL-11 that can stimulate gp130 alone or in combination with IL-6 and IL-6R alone may be used. It is preferred to use.

【0012】前述のようにIL−6は、細胞膜上に発現
したIL−6R又は可溶性のIL−6Rと複合体を形成
することで細胞膜上に発現したgp130を通して細胞
内に刺激を伝える蛋白質である。本発明ではリコンビナ
ント及び天然からの精製物のいずれのIL−6をも使用
し得るが、均一性の観点からはリコンビナントIL−6
が好ましい。リコンビナントIL−6として、例えば、
大腸菌由来のリコンビナントIL−6(Yasukaw
aら、Biotech.Lett.、12、419−4
24、1990年参照)が例示できる。IL−6と併用
するIL−6Rも、リコンビナント及び天然からの精製
物のいずれのIL−6Rを使用し得るが、均一性の観点
からはリコンビナントIL−6Rが好ましい。特にその
細胞外領域に相当する部分を欠失したIL−6Rは、可
溶性であるため製造・取扱いが容易である等の理由か
ら、IL−6Rを発現していない末梢血幹細胞に本発明
を適用する場合、特に好ましい。このような可溶性IL
−6Rとして、細胞外領域の344アミノ酸から構成さ
れるCHO細胞由来リコンビナントIL−6Rが例示で
きる(Yasukawa、J.Biotech.、10
8、673−676、1990年参照)。
As described above, IL-6 is a protein that forms a complex with IL-6R expressed on the cell membrane or soluble IL-6R to transmit stimulus into cells through gp130 expressed on the cell membrane. . In the present invention, both recombinant and natural purified IL-6 can be used, but from the viewpoint of homogeneity, recombinant IL-6 is used.
Is preferred. As the recombinant IL-6, for example,
Recombinant IL-6 derived from Escherichia coli (Yasukawa
a et al., Biotech. Lett. , 12, 419-4
24, 1990). As IL-6R used in combination with IL-6, either IL-6R of recombinant or purified from nature can be used, but from the viewpoint of homogeneity, recombinant IL-6R is preferable. In particular, the present invention is applied to peripheral blood stem cells that do not express IL-6R, because IL-6R lacking a portion corresponding to the extracellular region is soluble and thus easy to manufacture and handle. Is particularly preferred. Such soluble IL
As -6R, a recombinant CHO cell-derived IL-6R composed of 344 amino acids in the extracellular region can be exemplified (Yasukawa, J. Biotech., 10).
8, 673-676, 1990).

【0013】例えばgp130を刺激し得る因子として
IL−6とIL−6Rを用いた場合には、更にIL−3
或いはIL−3及びSCFを併用することが好ましい。
IL−3或いはIL−3及びSCFはgp130を刺激
し得る因子とは考えられないが、その併用により末梢血
幹細胞の増幅・分化効果を増強することが可能となる。
IL−3やSCFについても、リコンビナント及び天然
からの精製物のいずれでも使用し得るが、均一性の観点
等からはリコンビナントIL−3やリコンビナントSC
Fが好ましい(Martinら、CELL、63、20
3−212、1990年参照)。また更には、gp13
0を刺激する因子(例えばIL−6とIL−6Rの組み
合わせ)を、前記IL−3等以外に、例えばFLK2リ
ガンド、トロンボポイエチン(TPO)又はG−CSF
等のサイトカイン等と併用することもできる。
For example, when IL-6 and IL-6R are used as factors capable of stimulating gp130, IL-3 and IL-6R are further added.
Alternatively, it is preferable to use IL-3 and SCF together.
Although IL-3 or IL-3 and SCF are not considered to be factors that can stimulate gp130, their combined use can enhance the effect of expanding and differentiating peripheral blood stem cells.
As for IL-3 and SCF, either recombinant or purified from nature can be used, but from the viewpoint of homogeneity, etc., recombinant IL-3 and recombinant SC
F is preferred (Martin et al., CELL, 63, 20).
3-212, 1990). Furthermore, gp13
0 (for example, a combination of IL-6 and IL-6R), in addition to the above-mentioned IL-3, etc., for example, FLK2 ligand, thrombopoietin (TPO) or G-CSF
, Etc. can also be used in combination.

【0014】本発明においては、末梢血幹細胞をgp1
30を刺激し得る因子と接触させるが、この操作は、例
えばIL−6及びIL−6R、更に目的により例えばI
L−3等を含有する培地中で末梢血幹細胞を培養する等
すれば良い。培養条件(培地、温度、pH等)も常法に
従って行うことができる。
In the present invention, the peripheral blood stem cells are gp1
30 is contacted with an agent capable of stimulating, for example, IL-6 and IL-6R, and for further purposes, eg, I
Peripheral blood stem cells may be cultured in a medium containing L-3 or the like. Culture conditions (medium, temperature, pH, etc.) can also be performed according to a conventional method.

【0015】本発明を適用する、増幅・分化されるべき
末梢血幹細胞は常法に従って採取することができる。こ
こで、後述の実施例に示すように、末梢血由来のCD3
4陽性細胞について、既に分化した細胞ではIL−6R
が発現され、未だ分化していない細胞ではIL−6Rは
発現されていない。従って、末梢血幹細胞を含むCD3
4陽性細胞について、そのIL−6Rの発現を調査する
ことで分化細胞を調製し、又は末梢血幹細胞含有画分を
調製(確保)することが可能である。
The peripheral blood stem cells to be expanded and differentiated to which the present invention is applied can be collected according to a conventional method. Here, as shown in Examples described later, peripheral blood-derived CD3
For 4 positive cells, IL-6R
Is expressed, and IL-6R is not expressed in cells that have not yet differentiated. Thus, CD3 containing peripheral blood stem cells
By examining the expression of IL-6R for the 4 positive cells, differentiated cells can be prepared, or a peripheral blood stem cell-containing fraction can be prepared (secured).

【0016】[0016]

【発明の実施の形態】以下、本発明を更にに詳細に説明
するために実施例を示すが、本発明はこれら実施例に限
定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

【0017】実施例1.末梢血由来CD34陽性細胞の
表面抗原の解析 末梢血を各種モノクローナル抗体で免疫染色した後、常
法に従ってフロ−サイトメトリ−(ベクトンデッキンソ
ン社製)にかけ、CD34陽性細胞のIL−6R、gp
130、c−kit、IL−3R(α鎖)の発現率を解
析した。結果を図1に示す。図1から明らかなように、
CD34陽性細胞は、IL−6Rの発現率が約80%、
gp130の発現率がほぼ100%、c−kitの発現
率が約20%、IL−3R(α鎖)の発現率がほぼ10
0%であった。
Embodiment 1 FIG. Analysis of surface antigen of peripheral blood-derived CD34-positive cells After peripheral blood is immunostained with various monoclonal antibodies, it is subjected to flow cytometry (manufactured by Becton Dickinson) according to a conventional method, and IL-6R, gp of CD34-positive cells is analyzed.
The expression rates of 130, c-kit, and IL-3R (α chain) were analyzed. The results are shown in FIG. As is clear from FIG.
CD34-positive cells have an IL-6R expression rate of about 80%,
The expression rate of gp130 is almost 100%, the expression rate of c-kit is about 20%, and the expression rate of IL-3R (α chain) is about 10%.
It was 0%.

【0018】次に、フロ−サイトメトリ−によりCD3
4陽性IL−6R陽性細胞とCD34陽性IL−6R陰
性細胞を分画し、その特性について検討した。その結
果、CD34陽性IL−6R陽性細胞は分化しており、
大部分がCFU−GMであることが判明した。従って、
従来CD34陽性中に含まれる未分化な幹細胞はCD3
4陽性IL−6R陰性分画に含まれることになり、以下
の実験にはこの分画を用いた。
Next, CD3 was analyzed by flow cytometry.
4-positive IL-6R-positive cells and CD34-positive IL-6R-negative cells were fractionated and examined for their properties. As a result, the CD34-positive IL-6R-positive cells are differentiated,
Most were found to be CFU-GM. Therefore,
Undifferentiated stem cells conventionally contained in CD34 positivity are CD3
It was included in the 4 positive IL-6R negative fraction, and this fraction was used in the following experiments.

【0019】実施例2.末梢血由来CD34陽性IL−
6R陰性細胞の、顆粒球・マクロファ−ジ・赤芽球バ−
ストのコロニ−形成 メチルセルロ−ス法を用いるクロ−ン培養を、Sono
daら(Blood、84、4099−4106、19
94年参照)に基づいて行った。実施例1で分画したC
D34陽性IL−6R陰性細胞200個を含むα−培地
(30%の牛胎児血清(表1のA)又は牛胎児血清非存
在下(表1のB)に、それぞれ1%牛血清アルブミン、
5×10-5M 2−メルカプトエタノ−ル及び表1に記
載した各種因子を含む。各種因子の濃度は次の通り:I
L−3;10ng/mL、GM−CSF;10ng/m
L、G−CSF;20ng/mL、Epo;2U/m
L、SCF;20ng/mL、IL−6;20ng/m
L、可溶性IL−6R(sIL−6R);1μg/m
L)1mLを直径35mmのペトリ皿に入れ、2週間培養
した。
Embodiment 2 FIG. Peripheral blood-derived CD34-positive IL-
Granulocyte / macrophage / erythroid bar of 6R negative cells
Colony formation of strike Clonal culture using the methylcellulose method
da et al. (Blood, 84, 4099-4106, 19)
1994). C fractionated in Example 1
Α-medium containing 200 D34-positive IL-6R-negative cells (1% bovine serum albumin, respectively, in the absence of 30% fetal bovine serum (A in Table 1) or in the absence of fetal bovine serum (B in Table 1)
5 × 10 −5 M 2-mercaptoethanol and various factors described in Table 1. The concentrations of the various factors are as follows: I
L-3; 10 ng / mL, GM-CSF; 10 ng / m
L, G-CSF; 20 ng / mL, Epo; 2 U / m
L, SCF; 20 ng / mL, IL-6: 20 ng / m
L, soluble IL-6R (sIL-6R); 1 μg / m
L) 1 mL was placed in a 35 mm diameter petri dish and cultured for 2 weeks.

【0020】培養後、各種コロニ−を常法により算定し
た。結果を表1に示す。なお表中、CSFsはSCF、
IL−3、GM−CSF、G−CSF及びEpoの混合
物を示す。
After the cultivation, various colonies were calculated by a conventional method. Table 1 shows the results. In the table, CSFs are SCF,
3 shows a mixture of IL-3, GM-CSF, G-CSF and Epo.

【0021】[0021]

【表1】 [Table 1]

【0022】表1から明らかなように、顆粒球、マクロ
ファ−ジ、赤芽球バ−ストを形成させる因子としてよく
知られているSCF、IL−3、GM−CSF、G−C
SFとエリスロポイエチン(Epo)を添加した場合
(表1A又はBのCSFsの行)のコロニ−数を100
%とした場合、SCF、IL−3、IL−6、IL−6
Rの組み合わせ(表1A又はBのSCF+IL−3+I
L−6+可溶性IL−6R(sIL−6R)の行)でほ
ぼ同等(表1Aで77.6%、表1Bで101%)のコ
ロニ−数が得られた。なお、表1中Gは顆粒球コロニー
の数、Mはマクロファージコロニーの数、GMは顆粒球
マクロファージの数、Bは赤血球バーストコロニーの
数、Eoは好酸球コロニーの数、そしてE−Mixは混
合コロニーの数をそれぞれ示す。また表1中の数字は全
て平均±SD値である。
As is apparent from Table 1, SCF, IL-3, GM-CSF, and GC, which are well known as factors that form granulocyte, macrophage, and erythroid bursts, are known.
When SF and erythropoietin (Epo) were added (Table 1A or B, row of CSFs), the colony number was 100.
%, SCF, IL-3, IL-6, IL-6
Combination of R (SCF + IL-3 + I in Table 1A or B)
L-6 + soluble IL-6R (sIL-6R) row) gave approximately the same (77.6% in Table 1A, 101% in Table 1B) colony numbers. In Table 1, G is the number of granulocyte colonies, M is the number of macrophage colonies, GM is the number of granulocyte macrophages, B is the number of erythrocyte burst colonies, Eo is the number of eosinophil colonies, and E-Mix is the number of eosinophil colonies. The number of mixed colonies is shown. The numbers in Table 1 are all mean ± SD values.

【0023】この結果は、これまで顆粒球やマクロファ
−ジを形成させるのに必須であると言われていたG−C
SF、赤芽球バ−ストを形成させるのに必須であると言
われていたEpoの非存在下で、SCF、IL−3、I
L−6、IL−6Rの組み合わせにより顆粒球、マクロ
ファージ又は赤芽球バ−スト等が形成されることを示
す。すなわち、gp130の刺激により、骨髄幹細胞等
と同様に、末梢血幹細胞(CD34陽性細胞)の増幅及
び顆粒球等への分化を誘導できることを示している。
This result indicates that GC, which has been said to be essential for forming granulocytes and macrophages, has been used.
In the absence of SF, Epo, which was said to be essential for the formation of erythroid bursts, SCF, IL-3, I
This shows that granulocytes, macrophages, erythroid blasts and the like are formed by the combination of L-6 and IL-6R. In other words, it is shown that the stimulation of gp130 can induce the expansion of peripheral blood stem cells (CD34-positive cells) and the differentiation into granulocytes and the like, similarly to bone marrow stem cells and the like.

【0024】実施例3.末梢血由来CD34陽性IL−
6R陰性細胞の巨核球形成 実施例1で分画したCD34陽性IL−6R陰性細胞2
00個を含むα−培地(10%のヒト血漿(表2のA)
又はヒト血漿非存在下(表2のB)に、それぞれ1%牛
血清アルブミン、5×10-5M 2−メルカプトエタノ
−ル及び表2に記載した各種因子を含む。各種因子の濃
度は次の通り。トロンボポイエチン(TPO);100
ng/mL、それ以外は実施例2と同様)20mLを、
直径35mmのペトリ皿20枚に入れ、2週間培養した。
Embodiment 3 FIG. Peripheral blood-derived CD34-positive IL-
Megakaryocyte formation of 6R-negative cells CD34-positive IL-6R-negative cells 2 fractionated in Example 1
Α-medium containing 100 cells (10% human plasma (A in Table 2)
Alternatively, 1% bovine serum albumin, 5 × 10 −5 M 2-mercaptoethanol and various factors described in Table 2 are contained in the absence of human plasma (B in Table 2). The concentrations of various factors are as follows. Thrombopoietin (TPO); 100
ng / mL, otherwise as in Example 2) 20 mL
It was placed in 20 Petri dishes having a diameter of 35 mm and cultured for 2 weeks.

【0025】培養後、各種コロニ−を常法により計数し
た。結果を表2に示す。
After the cultivation, various colonies were counted by a conventional method. Table 2 shows the results.

【0026】[0026]

【表2】 [Table 2]

【0027】表2から明らかなように、巨核球(メガカ
リオサイト)を形成させる因子としてよく知られている
TPOを添加した場合(表2A、BのTPOの行)に巨
核球のコロニ−が出現(Aでは203個、Bでは126
個)したのに対し、SCF、IL−3、IL−6、IL
−6Rの組み合わせ(表2のSCF+IL−3+IL−
6+可溶性IL−6R(sIL−6R)の行)では、ヒ
ト血漿存在下では総計でほぼ同等数の巨核球のコロニ−
(24個)及び巨核球を含むコロニ−数(162個)、
ヒト血漿非存在下でも半数の巨核球を含む混合コロニ−
数(60個)が得られた。なお、表2中Megは巨核球
コロニーの数を、M−Mixは巨核球を含む混合コロニ
ーの数をそれぞれ示す。また表2中の数字は全て平均±
SD値である。
As is clear from Table 2, when TPO, which is well known as a factor for forming megakaryocytes (megakaryosites), was added (Table 2A, B, TPO rows), the colony of megakaryocytes was changed. Appearance (203 in A, 126 in B
SCF, IL-3, IL-6, IL
-6R combination (SCF + IL-3 + IL- in Table 2)
6+ soluble IL-6R (sIL-6R) row), in the presence of human plasma, a colony of approximately the same number of megakaryocytes in total.
(24) and colonies including megakaryocytes (162),
Mixed colonies containing half of megakaryocytes even in the absence of human plasma
Numbers (60) were obtained. In Table 2, Meg indicates the number of megakaryocyte colonies, and M-Mix indicates the number of mixed colonies containing megakaryocytes. The numbers in Table 2 are all mean ±
SD value.

【0028】この結果は、巨核球コロニ−を形成させる
のに重要なTPOの非存在下で、SCF、IL−3、I
L−6、IL−6Rの組み合わせにより巨核球が形成さ
れることを示す。すなわち、gp130の刺激により、
骨髄幹細胞等と同様に、末梢血幹細胞(CD34陽性細
胞)の増幅及び巨核球への分化を誘導できることを示し
ている。
This result indicates that SCF, IL-3, I-C, in the absence of TPO, which is important for the formation of megakaryocyte colonies.
It shows that megakaryocytes are formed by the combination of L-6 and IL-6R. That is, by the stimulation of gp130,
It shows that peripheral blood stem cells (CD34-positive cells) can be induced to expand and differentiate into megakaryocytes, similarly to bone marrow stem cells and the like.

【0029】実施例4.顆粒球・マクロファ−ジ・赤芽
球バ−ストの形成に対する各種中和抗体の効果 実施例1で分画したCD34陽性IL−6R陽性細胞2
00個を含むα−培地(30%の牛胎児血清、1%牛血
清アルブミン、5×10-5M 2−メルカプトエタノ−
ル、IL−3;10ng/mL、SCF;20ng/m
L、IL−6;20ng/mL)に、更に対照血清;通
常マウス血清と通常ウサギ血清の混合血清を1/100
希釈したもの、抗G−CSF血清;1/100希釈・ウ
サギ由来、抗SCF抗体;20μg/mL・マウス由
来、抗IL−3血清;1/100希釈・ウサギ由来、抗
IL−6R抗体;5μg/mL・マウス由来、抗gp1
30抗体;抗gp130モノクローナル抗体混合物(G
PX−7、GPX−22及びGPZ−35の混合物・マ
ウス由来・特開平5−304986号参照・合計1μg
/mL)或いは上記抗SCF抗体、抗IL−3血清、抗
IL−6R抗体及び抗gp130抗体の混合抗体を添加
し、その1mLを直径35mmのペトリ皿2枚にまいて
2週間培養した。
Embodiment 4 FIG. Effect of Various Neutralizing Antibodies on the Formation of Granulocyte, Macrophage, and Erythroid Burst CD34 + IL-6R + cells 2 fractionated in Example 1
Α-medium containing 30 cells (30% fetal bovine serum, 1% bovine serum albumin, 5 × 10 −5 M 2-mercaptoethanol-
, IL-3: 10 ng / mL, SCF: 20 ng / m
L, IL-6; 20 ng / mL) and control serum; 1/100 of a mixed serum of normal mouse serum and normal rabbit serum.
Diluted, anti-G-CSF serum; 1/100 dilution, rabbit-derived, anti-SCF antibody; 20 μg / mL, mouse-derived, anti-IL-3 serum; 1/100 dilution, rabbit-derived, anti-IL-6R antibody; 5 μg / ML mouse origin, anti-gp1
30 antibody; anti-gp130 monoclonal antibody mixture (G
Mixture of PX-7, GPX-22 and GPZ-35, mouse-derived, see JP-A-5-304986, total 1 μg
/ ML) or a mixed antibody of the above-mentioned anti-SCF antibody, anti-IL-3 serum, anti-IL-6R antibody and anti-gp130 antibody, and 1 mL thereof was spread on two 35 mm diameter Petri dishes and cultured for 2 weeks.

【0030】培養終了後、各種コロニーを常法により計
数した。結果を表3Aに示す。
After completion of the culture, various colonies were counted by a conventional method. The results are shown in Table 3A.

【0031】一方、実施例1で分画したCD34陽性I
L−6R陰性細胞200個を含むα−培地(30%の牛
胎児血清、1%牛血清アルブミン、5×10-5M 2−
メルカプトエタノ−ル、IL−3;10ng/mL、S
CF;20ng/mL、IL−6;20ng/mL、可
溶性IL−6R(sIL−6R);1μg/mL)に、
更に対照血清;通常マウス血清と通常ウサギ血清の混合
血清を1/100希釈したもの、抗Epo抗体;5μg
/mL・マウス由来、抗SCF抗体;20μg/mL・
マウス由来、抗IL−3血清;1/100希釈・ウサギ
由来、抗IL−6R抗体;5μg/mL・マウス由来、
抗gp130抗体;抗gp130モノクローナル抗体混
合物(GPX−7、GPX−22及びGPZ−35の混
合物・マウス由来・特開平5−304986号参照・合
計1μg/mL)或いは上記抗SCF抗体、抗IL−3
血清、抗IL−6R抗体及び抗gp130抗体の混合抗
体を添加しその1mLを直径35mmのペトリ皿2枚に
まいて2週間培養した。培養終了後、各種コロニーを常
法により計数した。結果を表3Bに示す。
On the other hand, CD34-positive I fractionated in Example 1
Α-medium containing 200 L-6R negative cells (30% fetal bovine serum, 1% bovine serum albumin, 5 × 10 −5 M 2-
Mercaptoethanol, IL-3; 10 ng / mL, S
CF: 20 ng / mL, IL-6: 20 ng / mL, soluble IL-6R (sIL-6R); 1 μg / mL)
Further, control serum; a mixed serum of normal mouse serum and normal rabbit serum diluted 1/100, anti-Epo antibody; 5 μg
/ ML mouse-derived, anti-SCF antibody; 20 μg / mL
Mouse, anti-IL-3 serum; 1/100 dilution, rabbit, anti-IL-6R antibody; 5 μg / mL, mouse,
Anti-gp130 antibody; anti-gp130 monoclonal antibody mixture (mixture of GPX-7, GPX-22 and GPZ-35, mouse-derived, see JP-A-5-304986, total 1 μg / mL) or the above-mentioned anti-SCF antibody, anti-IL-3
A mixed antibody of serum, anti-IL-6R antibody and anti-gp130 antibody was added, and 1 mL thereof was spread on two 35 mm diameter Petri dishes and cultured for 2 weeks. After completion of the culture, various colonies were counted by a conventional method. The results are shown in Table 3B.

【0032】[0032]

【表3】 [Table 3]

【0033】表3Aに示した系では、顆粒球マクロファ
−ジのコロニ−が45個形成された(表3Aの「non
e」の行、GMの列)が、抗G−CSF抗体はこのコロ
ニー形成に阻害効果を示さなかった。一方、抗SCF抗
体、抗IL−3血清、抗IL−6R抗体又は抗gp13
0抗体は、それぞれこの顆粒球マクロファージコロニー
の形成を阻害した。特に抗SCF抗体、抗IL−3血
清、抗IL−6R抗体及び抗gp130抗体を混合した
場合は、顆粒球マクロファ−ジのコロニ−は形成されな
かった。(表3AのGMの列の比較)。
In the system shown in Table 3A, 45 granulocyte macrophage colonies were formed ("non" in Table 3A).
e), GM column), the anti-G-CSF antibody had no inhibitory effect on this colony formation. On the other hand, anti-SCF antibody, anti-IL-3 serum, anti-IL-6R antibody or anti-gp13
Antibodies 0 each inhibited the formation of this granulocyte macrophage colony. In particular, when an anti-SCF antibody, anti-IL-3 serum, anti-IL-6R antibody and anti-gp130 antibody were mixed, colonies of granulocyte macrophages were not formed. (Comparison of GM columns in Table 3A).

【0034】また表3Bに示した系では、赤芽球バ−ス
トのコロニーが69個形成された(表3Bの「non
e」の行、Bの列)が、抗Epo抗体はこのコロニー形
成に阻害効果を示さなかった。一方、抗SCF抗体、抗
IL−3血清、抗IL−6R抗体、抗gp130抗体又
は抗SCF抗体、或いは抗IL−3血清、抗IL−6R
抗体及び抗gp130抗体を混合した場合は、赤芽球バ
−ストのコロニーは形成されなかった(表3BのBの列
の比較)。なお、表3中のGMは顆粒球コロニー刺激因
子のコロニー数を、Bは赤芽球バ−ストのコロニー数
を、E−Mixは赤芽球を含む混合コロニーの数をそれ
ぞれ示す。また表3中の数字は全て平均±SD値であ
り、*は「none」の行、「B」の列に対してP<
0.01の条件で有意差があることを、**は「non
e」の行、「B」の列に対してP<0.001の条件で
有意差があることを、そしてNSは有意差がないことを
それぞれ示す。
In the system shown in Table 3B, 69 erythroid burst colonies were formed ("non" in Table 3B).
e), column B), anti-Epo antibody showed no inhibitory effect on this colony formation. On the other hand, anti-SCF antibody, anti-IL-3 serum, anti-IL-6R antibody, anti-gp130 antibody or anti-SCF antibody, or anti-IL-3 serum, anti-IL-6R
When the antibody and the anti-gp130 antibody were mixed, no erythroid burst colonies were formed (comparison of row B in Table 3B). In Table 3, GM indicates the number of colonies of granulocyte colony-stimulating factor, B indicates the number of erythroid burst colonies, and E-Mix indicates the number of mixed colonies containing erythroblasts. The numbers in Table 3 are all mean ± SD values. * Indicates P <for the row of “none” and the column of “B”.
** indicates that there is a significant difference under the condition of 0.01.
The row “e” and the column “B” indicate that there is a significant difference under the condition of P <0.001, and NS indicates that there is no significant difference.

【0035】以上の結果は、末梢血幹細胞をSCF、I
L−3、IL−6及びIL−6Rの組み合わせを加えて
培養することにより支持される顆粒球、マクロファ−
ジ、赤芽球バ−ストの形成が、G−CSFやEpoに影
響されないことを示すものである。
The above results indicate that peripheral blood stem cells were
Granulocytes, macrophages supported by culturing with the addition of a combination of L-3, IL-6 and IL-6R
This shows that the formation of erythroid blasts is not affected by G-CSF or Epo.

【0036】実施例5.巨核球を含むコロニ−の形成に
対する各種中和抗体の効果 実施例1で分画したCD34陽性IL−6R陰性細胞2
00個を含むα−培地(10%のヒト血漿、1%牛血清
アルブミン、5×10-5M 2−メルカプトエタノ−
ル)に、更に対照血清;通常マウス血清と通常ウサギ血
清の混合血清を1/100希釈したもの、抗TPO抗
体;5μg/mL・マウス由来、抗TPOレセプタ−
(c−Mpl)抗体;20μg/mL・マウス由来、抗
SCF抗体;20μg/mL・マウス由来、抗IL−3
血清;1/100希釈・ウサギ由来、抗IL−6R抗
体;5μg/mL・マウス由来、抗gp130抗体;抗
gp130モノクローナル抗体混合物(GPX−7、G
PX−22及びGPZ−35の混合物・マウス由来・特
開平5−304986号参照・合計1μg/mL)或い
は上記抗SCF抗体、抗IL−3血清、抗IL−6R抗
体及び抗gp130抗体の混合抗体を添加し、その1m
Lを直径35mmのペトリ皿2枚にまいて2週間培養し
た。培養終了後、各種コロニーを常法により計数した。
結果を表4に示す。
Embodiment 5 FIG. Effect of various neutralizing antibodies on the formation of colonies containing megakaryocytes CD34-positive IL-6R-negative cells 2 fractionated in Example 1
Α-medium containing 10 cells (10% human plasma, 1% bovine serum albumin, 5 × 10 −5 M 2-mercaptoethanol-
And a control serum; a mixture of normal mouse serum and normal rabbit serum diluted 1/100; anti-TPO antibody; 5 μg / mL mouse-derived anti-TPO receptor
(C-Mpl) antibody; 20 μg / mL mouse, anti-SCF antibody; 20 μg / mL mouse, anti-IL-3
Serum; 1/100 dilution, rabbit-derived, anti-IL-6R antibody; 5 μg / mL, mouse-derived, anti-gp130 antibody; anti-gp130 monoclonal antibody mixture (GPX-7, G
A mixture of PX-22 and GPZ-35, mouse-derived, see JP-A-5-304986, total 1 μg / mL) or a mixed antibody of the above-mentioned anti-SCF antibody, anti-IL-3 serum, anti-IL-6R antibody and anti-gp130 antibody 1m
L was spread on two 35 mm diameter Petri dishes and cultured for 2 weeks. After completion of the culture, various colonies were counted by a conventional method.
Table 4 shows the results.

【0037】[0037]

【表4】 [Table 4]

【0038】表4から明らかなように、巨核球を含むコ
ロニーが25個形成された(表4の「none」の行、
M−Mixの列)が、抗TPO抗体又は抗c−Mpl抗
体はこのコロニー形成に阻害効果を示さなかった。一
方、抗SCF抗体、抗IL−3血清、抗IL−6R抗体
又は抗gp130抗体、或いは抗IL−3血清、抗IL
−6R抗体及び抗gp130抗体を混合した場合は、そ
れぞれこの巨核球を含むコロニーの形成を阻害した(表
4のM−mixの列の比較)。なお、表4中のMegは
巨核球のコロニー数を、M−Mixは巨核球を含む混合
コロニー数ををそれぞれ示す。また表4中の数字は全て
平均±SD値であり、*は「none」の行、「M−M
ix」の列に対してP<0.05の条件で有意差がある
ことを、**は「none」の行、「M−Mix」の列
に対してP<0.005の条件で有意差があることを、
そしてNSは有意差がないことをそれぞれ示す。
As is evident from Table 4, 25 colonies containing megakaryocytes were formed (see the row of "none" in Table 4;
M-Mix column), anti-TPO antibody or anti-c-Mpl antibody showed no inhibitory effect on this colony formation. On the other hand, anti-SCF antibody, anti-IL-3 serum, anti-IL-6R antibody or anti-gp130 antibody, or anti-IL-3 serum, anti-IL
When the -6R antibody and the anti-gp130 antibody were mixed, the formation of the megakaryocyte-containing colony was inhibited (comparison of the M-mix column in Table 4). In Table 4, Meg indicates the number of megakaryocyte colonies, and M-Mix indicates the number of mixed colonies containing megakaryocytes. In addition, the numbers in Table 4 are all mean ± SD values, and * indicates a row of “none” and “MM”.
** indicates that there is a significant difference under the condition of P <0.05, and ** indicates a significant difference under the condition of P <0.005 with respect to the row of “none” and the column of “M-Mix”. That there is a difference
NS indicates that there is no significant difference.

【0039】以上の結果は、末梢血幹細胞をSCF、I
L−3、IL−6、IL−6Rの組み合わせを加えて培
養することによる巨核球の形成がTPOに影響されない
ことを示すものである。
The above results indicate that peripheral blood stem cells were
It is shown that megakaryocyte formation by adding and culturing a combination of L-3, IL-6, and IL-6R is not affected by TPO.

【0040】実施例6.単一CD34陽性IL−6R陰
性細胞における各種因子の効果1 実施例1で分画したCD34陽性IL−6R陰性細胞1
個を含むα−培地(30%の牛胎児血清、1%牛血清ア
ルブミン、5×10-5M 2−メルカプトエタノ−ル及
び表5に記載した各種因子を含む。各種因子の濃度は実
施例2と同様)0.2mLを96穴プレ−トの各ウエル
に入れ培養した。14日目に形成されたコロニ−数と種
類について計数した。結果を表5に示す。
Embodiment 6 FIG. Effect of various factors on single CD34-positive IL-6R-negative cell 1 CD34-positive IL-6R-negative cell 1 fractionated in Example 1
Medium containing 30% fetal bovine serum, 1% bovine serum albumin, 5 × 10 −5 M 2-mercaptoethanol and the various factors described in Table 5. 0.2 ml) was placed in each well of a 96-well plate and cultured. The number and type of colonies formed on day 14 were counted. Table 5 shows the results.

【0041】[0041]

【表5】 [Table 5]

【0042】表5から明らかにように、SCF、IL−
6、IL−6Rを組み合わせて使用した場合、3.5%
のウエルにてコロニーが形成された。特に、SCF、I
L−3、IL−6、IL−6Rを組み合わせを使用する
ことにより、コロニーが形成されたウエルの頻度は3
8.1%と向上し、更に全ての種類の造血細胞のコロニ
−の形成が認められた。
As apparent from Table 5, SCF, IL-
6, 3.5% when used in combination with IL-6R
Colonies were formed in the wells. In particular, SCF, I
By using a combination of L-3, IL-6 and IL-6R, the frequency of colony-formed wells was 3
It increased to 8.1%, and colony formation of all types of hematopoietic cells was observed.

【0043】以上の結果は、末梢血幹細胞の増幅・分化
の誘導にSCF、IL−6及びIL−6Rの組み合わせ
が効果を有し、特にSCF、IL−3、IL−6及びI
L−6Rの組み合わせが効果的であることを示すもので
ある。
The above results indicate that the combination of SCF, IL-6 and IL-6R has an effect on the induction of proliferation and differentiation of peripheral blood stem cells, and in particular, SCF, IL-3, IL-6 and I-6
This shows that the combination of L-6R is effective.

【0044】実施例7.単一CD34陽性IL−6R陰
性細胞における各種因子の効果2 実施例1で分画したCD34陽性IL−6R陰性細胞1
個を含むα−培地(30%の牛胎児血清、1%牛血清ア
ルブミン、5×10-5M 2−メルカプトエタノ−ル及
び図2に記載した各種因子を含む。各種因子の濃度は実
施例2と同様)0.2mLを96穴プレ−トの各ウエル
に入れ培養した。培養開始後5日目、10日目、14日
目に細胞の増幅が認められたウエルの数と増幅した細胞
の数を計測した。結果を図2に示す。
Embodiment 7 FIG. Effect of various factors on single CD34-positive IL-6R-negative cell 2 CD34-positive IL-6R-negative cell 1 fractionated in Example 1
Medium containing 30% fetal bovine serum, 1% bovine serum albumin, 5 × 10 −5 M 2-mercaptoethanol and the various factors described in FIG. 0.2 ml) was placed in each well of a 96-well plate and cultured. On the fifth, tenth, and fourteenth days after the start of the culture, the number of wells in which cell expansion was observed and the number of expanded cells were counted. The results are shown in FIG.

【0045】図2から明らかなように、特にSCF、I
L−3、IL−6、IL−6Rの組み合わせを使用する
ことにより、細胞の増幅が認められたウエルの出現頻度
が高くなり、かつ、500細胞以上に細胞が増幅したウ
エルが約半数を占めた。
As is apparent from FIG. 2, especially SCF, I
By using the combination of L-3, IL-6, and IL-6R, the frequency of appearance of wells in which cell expansion was observed was increased, and wells in which cells were amplified to 500 cells or more accounted for about half. Was.

【0046】以上の結果は、実施例6と同様、末梢血幹
細胞の増幅・分化の誘導に、特にSCF、IL−3、I
L−6及びIL−6Rの組み合わせが効果的であること
を強く示唆するものである。
The above results indicate that, similarly to Example 6, the induction of expansion and differentiation of peripheral blood stem cells, particularly SCF, IL-3, I
It strongly suggests that the combination of L-6 and IL-6R is effective.

【0047】[0047]

【発明の効果】gp130を刺激することを特徴とする
末梢血幹細胞の製造法によれば、CFU−GM(顆粒球
/マクロファ−ジ系コロニ−形成細胞)、BFU−E
(赤芽球バ−スト形成細胞)、CFU−Mk(巨核球系
コロニ−形成細胞)、CFU−Mix(混合コロニ−形
成細胞)等を含む末梢血幹細胞をインビトロで効果的に
製造することが可能になる。これにより、近年になって
実施症例数が飛躍的に増加している末梢血幹細胞移植に
必要な幹細胞を容易に製造できるから、抗癌薬の超高投
与化学療法等で不可避の骨髄の荒廃を再構築しつつ、治
療成績の向上することが期待できる。また人工血液の製
造に関する研究・開発等の広範囲の分野で、種々の可能
性を提供できる。
According to the method for producing peripheral blood stem cells characterized by stimulating gp130, CFU-GM (granulocyte / macrophage colony-forming cells), BFU-E
It is possible to effectively produce in vitro peripheral blood stem cells including (erythroid burst-forming cells), CFU-Mk (megakaryocytic colony-forming cells), CFU-Mix (mixed colony-forming cells) and the like. Will be possible. This makes it possible to easily produce stem cells required for peripheral blood stem cell transplantation, which has undergone a dramatic increase in the number of cases performed in recent years. While reconstructing, it can be expected to improve treatment results. In addition, various possibilities can be provided in a wide range of fields such as research and development relating to the production of artificial blood.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の結果を示す、末梢血を各種モノクロ
−ナル抗体で免疫染色した後にフロ−サイトメトリ−で
解析した2次元スキャッタグラムである。(a)はFI
TCを結合させたコントロ−ルIgG及びPE(フィコ
エリスリン)を結合させたコントロ−ルIgGで染色し
たもの、(b)はFITCを結合させた抗CD34抗体
(CD34−FITC)及びPEを結合させたIL−6
Rに対する抗体で染色したもの、(c)はCD34−F
ITC及びPEを結合させたgp130に対する抗体で
染色したもの、(d)CD34−FITC及びPEを結
合させたc−kitに対する抗体で染色したもの、
(e)はCD34−FITC及びPEを結合させたIL
−3R(α鎖)に対する抗体で染色したものの蛍光パタ
−ンを示す。
FIG. 1 is a two-dimensional scattergram showing the results of Example 1 and analyzed by flow cytometry after immunostaining peripheral blood with various monoclonal antibodies. (A) FI
Control IgG conjugated with TC and control IgG conjugated with PE (phycoerythrin), (b) shows binding of anti-CD34 antibody (CD34-FITC) conjugated with FITC and PE IL-6
R stained with an antibody against R, (c) shows CD34-F
Those stained with an antibody against gp130 bound to ITC and PE, (d) those stained with an antibody against c-kit bound to CD34-FITC and PE,
(E) IL bound to CD34-FITC and PE
3 shows the fluorescence pattern of a sample stained with an antibody against -3R (α chain).

【図2】実施例7の結果を示す図であり、末梢血幹細胞
(CD34陽性IL−6R陰性細胞)を96穴プレ−ト
に1ウエルあたり1個ずつ培養し、各種因子存在下で培
養した場合の、5日目(左のカラム)、10日目(まん
中のカラム)、14日目(右のカラム)の結果を示す。
軸の数字は前記計測日において細胞の増幅が認められた
ウエルの数(個)を示し、各バーは、白抜き(ウエルあ
たり8〜50個の細胞が認められたもの)、黒塗り(ウ
エルあたり51〜500個の細胞が認められたもの)及
び斜線(ウエルあたり501個以上の細胞が認められた
もの)をそれぞれ示す。
FIG. 2 shows the results of Example 7, wherein peripheral blood stem cells (CD34-positive IL-6R-negative cells) were cultured in a 96-well plate, one cell per well, and cultured in the presence of various factors. In each case, the results are shown on day 5 (left column), day 10 (middle column), and day 14 (right column).
The numbers on the axis indicate the number (well) of wells in which cell amplification was observed on the measurement date, and each bar indicates white (8 to 50 cells were observed per well) and black (well). And cells with 51 to 500 cells per well) and oblique lines (cells with 501 or more cells per well) are shown.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】末梢血幹細胞をgp130を刺激し得る因
子と接触させることを特徴とする、増幅された末梢血幹
細胞の製造法。
1. A method for producing expanded peripheral blood stem cells, comprising contacting peripheral blood stem cells with a factor capable of stimulating gp130.
【請求項2】gp130を刺激し得る刺激因子としてイ
ンタ−ロイキン−6及びインタ−ロイキン−6レセプタ
−を使用する、請求項1の末梢血幹細胞の製造法。
2. The method for producing peripheral blood stem cells according to claim 1, wherein inter-leukin-6 and inter-leukin-6 receptor are used as stimulating factors capable of stimulating gp130.
【請求項3】gp130を刺激し得る刺激因子以外に、
更にインタ−ロイキン−3を使用する、請求項1又は2
の末梢血幹細胞の製造法。
3. In addition to a stimulating factor capable of stimulating gp130,
3. The method according to claim 1, further comprising using interleukin-3.
Method for producing peripheral blood stem cells.
【請求項4】gp130を刺激し得る刺激因子以外に、
更にインタ−ロイキン−3及び幹細胞因子を使用する請
求項1又は2の末梢血幹細胞の製造法。
4. In addition to a stimulator capable of stimulating gp130,
The method for producing peripheral blood stem cells according to claim 1 or 2, further comprising using interleukin-3 and stem cell factor.
【請求項5】末梢血幹細胞が末梢血由来CD34陽性細
胞である請求項1〜4いずれかの末梢血幹細胞の製造
法。
5. The method for producing peripheral blood stem cells according to claim 1, wherein the peripheral blood stem cells are CD34-positive cells derived from peripheral blood.
【請求項6】gp130を刺激し得る因子を含む、末梢
血幹細胞を増幅するための組成物。
6. A composition for expanding peripheral blood stem cells, comprising a factor capable of stimulating gp130.
【請求項7】gp130を刺激し得る因子としてインタ
−ロイキン−6及びインタ−ロイキン−6レセプタ−を
含む、請求項6の組成物。
7. The composition according to claim 6, comprising interleukin-6 and an interleukin-6 receptor as factors capable of stimulating gp130.
【請求項8】更にインタ−ロイキン−3を含む、請求項
6又は7の組成物。
8. The composition according to claim 6, further comprising inter-leukin-3.
【請求項9】更にインタ−ロイキン−3及び幹細胞因子
を含む請求項6又は7の組成物。
9. The composition according to claim 6, further comprising interleukin-3 and stem cell factor.
【請求項10】末梢血由来CD34陽性細胞に対して使
用される、請求項6〜9いずれかの組成物。
10. The composition according to claim 6, which is used for peripheral blood-derived CD34-positive cells.
【請求項11】インターロイキン−6レセプター発現細
胞を取得することを特徴とする、末梢血由来CD34陽
性細胞中の分化細胞の調製方法。
11. A method for preparing differentiated cells from peripheral blood-derived CD34-positive cells, which comprises obtaining interleukin-6 receptor-expressing cells.
【請求項12】インターロイキン−6レセプター未発現
細胞を取得することを特徴とする、末梢血由来CD34
陽性細胞中の末梢血幹細胞含有画分の調製方法。
12. Peripheral blood-derived CD34, characterized by obtaining cells not expressing interleukin-6 receptor.
A method for preparing a fraction containing peripheral blood stem cells in positive cells.
JP8250125A 1996-09-20 1996-09-20 Production of new peripheral blood stem cell Pending JPH1094390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8250125A JPH1094390A (en) 1996-09-20 1996-09-20 Production of new peripheral blood stem cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8250125A JPH1094390A (en) 1996-09-20 1996-09-20 Production of new peripheral blood stem cell

Publications (1)

Publication Number Publication Date
JPH1094390A true JPH1094390A (en) 1998-04-14

Family

ID=17203203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8250125A Pending JPH1094390A (en) 1996-09-20 1996-09-20 Production of new peripheral blood stem cell

Country Status (1)

Country Link
JP (1) JPH1094390A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014203A1 (en) * 1998-09-02 2000-03-16 Chugai Seiyaku Kabushiki Kaisha Method for preparing cell fraction containing hematopoietic stem cells
JP2000327585A (en) * 1999-05-24 2000-11-28 Tosoh Corp New leukocyte potentiator
US7510877B2 (en) 2003-09-26 2009-03-31 The Regents Of The University Of Michigan Hematopoietic stem cell identification and isolation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014203A1 (en) * 1998-09-02 2000-03-16 Chugai Seiyaku Kabushiki Kaisha Method for preparing cell fraction containing hematopoietic stem cells
JP2000327585A (en) * 1999-05-24 2000-11-28 Tosoh Corp New leukocyte potentiator
US7510877B2 (en) 2003-09-26 2009-03-31 The Regents Of The University Of Michigan Hematopoietic stem cell identification and isolation
US7919316B2 (en) 2003-09-26 2011-04-05 The Regents Of The University Of Michigan Hematopoietic stem cell identification and isolation
US8383404B2 (en) 2003-09-26 2013-02-26 The Regents Of The University Of Michigan Hematopoietic stem cell identification and isolation

Similar Documents

Publication Publication Date Title
Begley et al. Purified colony stimulating factors (G‐CSF and GM‐CSF) induce differentiation in human HL60 leukemic cells with suppression of clonogenicity
Katayama et al. Stage-specific expression of c-kit protein by murine hematopoietic progenitors
Shah et al. Flt3 ligand induces proliferation of quiescent human bone marrow CD34+ CD38-cells and maintains progenitor cells in vitro
Dexter et al. Stromal cells in haemopoiesis
Hirayama et al. The flt3 ligand supports proliferation of lymphohematopoietic progenitors and early B-lymphoid progenitors
AU665955B2 (en) Method for improving autologous transplantation
Ohmizono et al. Thrombopoietin augments ex vivo expansion of human cord blood-derived hematopoietic progenitors in combination with stem cell factor and flt3 ligand
ES2538305T3 (en) Methods to expand myeloid cell populations and uses thereof
KR100514957B1 (en) Dendritic Cell Stimulatory Factor
KR20040023724A (en) Process for Preparing Hematopoietic Stem Cells
WO1998006422A1 (en) Hematopoietic stem cell proliferating agents
EP2324109B1 (en) Expansion of haemopoietic precursors
US20030124091A1 (en) Endothelial cell derived hematopoietic growth factor
KR20080072748A (en) Methods of improving stem cell homing and engraftment
JPH10510842A (en) How to increase hematopoietic cells
Ku et al. Soluble thrombopoietin receptor (Mpl) and granulocyte colony-stimulating factor receptor directly stimulate proliferation of primitive hematopoietic progenitors of mice in synergy with steel factor or the ligand for Flt3/Flk2
Bruno et al. Different growth factor requirements for the ex vivo amplification of transplantable human cord blood cells in a NOD/SCID mouse model
Roodman et al. Tumor necrosis factor α and the anemia of chronic disease: Effects of chronic exposure to TNF on erythropoiesis in vivo
US20190046578A1 (en) Methods and compositions for expanding long-term hematopoietic stem cell populations
Tsuchiyama et al. Murine spleen stromal cell line SPY3-2 maintains long-term hematopoiesis in vitro
JPH1094390A (en) Production of new peripheral blood stem cell
Olofsson Growth regulation of hematopoietic cells: an overview
JPH04506818A (en) Maturation of hematopoietic cells
JPH08509859A (en) Expansion of stem cells in long-term bone marrow cultures by neutralization of TGF-β
AU782937B2 (en) Cell composition containing macrophages, presenting anti-infectious and hematopoietic properties, and a process for preparing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061003