JPH1094201A - Rotor for electric motor - Google Patents

Rotor for electric motor

Info

Publication number
JPH1094201A
JPH1094201A JP8279822A JP27982296A JPH1094201A JP H1094201 A JPH1094201 A JP H1094201A JP 8279822 A JP8279822 A JP 8279822A JP 27982296 A JP27982296 A JP 27982296A JP H1094201 A JPH1094201 A JP H1094201A
Authority
JP
Japan
Prior art keywords
magnet
axis
rotor
width
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8279822A
Other languages
Japanese (ja)
Inventor
Kenji Tanaka
剣治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Elec Co
Original Assignee
Aichi Elec Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Elec Co filed Critical Aichi Elec Co
Priority to JP8279822A priority Critical patent/JPH1094201A/en
Publication of JPH1094201A publication Critical patent/JPH1094201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a bridge portion of a rotor from deforming due to centrifugal force thereby avoiding its swelling beyond a predetermined outer diameter by making the width of an iron core portion between the end portion of the magnet and the outer peripheral portion of the iron core gradually larger than the width corresponding to the magnet at the counter-shaft side compared to the width corresponding to a magnet at the shaft side. SOLUTION: Width T1 , T2 of a bridge portion 6a, 7a between the outer peripheral portion of an iron core 1a and an end portion of an almost C-shaped section of a magnet 2a, 3a of a rotor is formed in such a manner that the width T2 corresponding to a magnet 3a at the shaft side is made larger than the width T1 corresponding to a magnet 2a at the counter-shaft side. When a rotor turns, a stress due to a centrifugal force applied to a portion at the counter-shaft side acts including a magnet 2a at the counter-shaft side for a bridge portion 6a and also including a magnet 3a at shaft side for the bridge portion 7a, but T2 is formed larger than T1 so that the bridge portion 7a is deformed by the centrifugal force and thus the portion at the counter-shaft portion of the magnet 3a does not swell beyond the predetermined outer diameter of the rotor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷凍機や空調機の圧縮
機駆動用電動機等に代表される永久磁石を装着した内転
型回転子に関し、特に回転子の鉄心の内部に磁石を埋め
込んで構成するいわゆるインテリアル・パーマネントマ
グネット・モータ(IPM)の回転子に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adduction type rotor having a permanent magnet mounted thereon, such as a motor for driving a compressor of a refrigerator or an air conditioner, and more particularly, to a rotor in which a magnet is embedded inside an iron core. And a rotor of a so-called interior permanent magnet motor (IPM).

【0002】[0002]

【従来の技術】上記電動機の回転子として、図4に示す
構成のものが知られており、例えば電気学会回転機研究
会資料RM−96−22に開示されている。図4に示す
回転子は回転軸4に垂直な断面を示しており、この軸4
は円柱状の積層鉄心1bの中心に設けた軸孔に嵌入され
ている。また鉄心1bには軸4と平行に磁石と略相似形
の複数の収容孔が設けられており、この収容孔に磁石2
b,3bが例えば圧入等によりそれぞれ挿入されて構成
されている。
2. Description of the Related Art As a rotor of the above-mentioned electric motor, one having a configuration shown in FIG. 4 is known, which is disclosed, for example, in RM-96-22 of the Institute of Electrical Engineers of Japan. The rotor shown in FIG. 4 shows a cross section perpendicular to the rotation axis 4.
Is fitted into a shaft hole provided at the center of the cylindrical laminated core 1b. The iron core 1b is provided with a plurality of receiving holes substantially similar in shape to the magnet in parallel with the shaft 4, and the receiving holes
b and 3b are respectively inserted by press fitting or the like.

【0003】磁石2b,3bは、図示する軸4に垂直な
断面において略C字形をなし、その凸面側を軸4に向け
て鉄心1bに埋め込まれている。界磁を形成する各極は
反軸側磁石2bと軸側磁石3bの2重の磁石によって1
極が構成され、各磁石の中央を磁極中心として着磁され
て構成されている。
The magnets 2b and 3b are substantially C-shaped in a cross section perpendicular to the axis 4 shown in the figure, and are embedded in the iron core 1b with the convex side facing the axis 4. Each pole forming the field is formed by a double magnet of the anti-axis side magnet 2b and the axis side magnet 3b.
The poles are formed, and are magnetized with the center of each magnet being the center of the magnetic pole.

【0004】上記回転子は、三相巻線を有する固定子内
に所定の空隙を介して対向するように配置されて永久磁
石型の同期電動機を構成し、インバータを介して固定子
巻線を励磁することによって回転を行うようになってい
る。このように構成されるIPMの場合、逆突極性を特
徴としているため、これにより生じるリラクタンストル
クと磁石により生じる主磁束トルクの双方を利用すべく
制御駆動されるようになっている。
The above-mentioned rotors are arranged in a stator having three-phase windings so as to face each other with a predetermined gap therebetween to constitute a permanent magnet type synchronous motor. Rotation is performed by excitation. The IPM configured as described above is characterized by the reverse saliency, and is controlled and driven to use both the reluctance torque generated thereby and the main magnetic flux torque generated by the magnet.

【0005】[0005]

【発明が解決しようとする課題】図4に示したようなI
PMの回転子においては、図5に拡大して示すように、
磁石2b,3bの略C字形断面の凸面と凹面の端部と鉄
心1bの外周部との間に介在する鉄心部分(以下ブリッ
ジ部と称す)6b,7bの幅T1,T2は非常に薄く形
成されている。これは、このブリッジ部6bを磁気飽和
させることによってIPMのd軸インダクタンスとq軸
インダクタンスの比、即ち突極比を大きくしてリラクタ
ンストルクを有効に活用するためである。ところが反軸
側磁石2bに対応するブリッジ部6bの幅T1と軸側磁
石3bに対応するブリッジ部7bの幅T2との関係につ
いては従来何等考慮されておらず、一般に、図5に磁石
端部を延長した破線で示されるようにT1とT2は概略
同一寸法に形成されている。
SUMMARY OF THE INVENTION As shown in FIG.
In the PM rotor, as shown in FIG.
The widths T1 and T2 of the iron core portions (hereinafter referred to as bridge portions) 6b and 7b interposed between the convex and concave ends of the substantially C-shaped cross sections of the magnets 2b and 3b and the outer peripheral portion of the iron core 1b are formed extremely thin. Have been. This is because the bridge portion 6b is magnetically saturated to increase the ratio of the d-axis inductance and the q-axis inductance of the IPM, that is, the salient pole ratio, to effectively utilize the reluctance torque. However, the relationship between the width T1 of the bridge portion 6b corresponding to the non-axis-side magnet 2b and the width T2 of the bridge portion 7b corresponding to the axis-side magnet 3b has not been considered at all in the past, and in general, FIG. T1 and T2 are formed to have substantially the same dimensions as indicated by a broken line extending from FIG.

【0006】このような回転子が回転を行う場合、ブリ
ッジ部6bに対しては反軸側磁石2bを含めてこれより
反軸側部分に加わる遠心力によって応力が働き、一方ブ
リッジ部7bに対しては軸側磁石3bを含めてこれより
反軸側部分に加わる遠心力によって応力が働くことにな
る。従って反軸側磁石2bに対応するブリッジ部6bよ
りも軸側磁石3bに対応するブリッジ部7bの方がはる
かに大きな応力を受けるため、ブリッジ部7bが遠心力
によって変形して回転子における軸側磁石3bより反軸
側部分が回転子の所定外径よりも膨れてしまい、振動、
騒音が発生したり固定子と接触して回転不能となる恐れ
がある。
When such a rotor rotates, a stress acts on the bridge portion 6b due to the centrifugal force applied to the anti-axis side portion including the anti-axis side magnet 2b including the anti-axis side magnet 2b. In addition, a stress acts on the shaft-side magnet 3b, including the shaft-side magnet 3b, due to the centrifugal force applied to the non-shaft side portion. Therefore, since the bridge portion 7b corresponding to the shaft-side magnet 3b receives much greater stress than the bridge portion 6b corresponding to the anti-axis-side magnet 2b, the bridge portion 7b is deformed by centrifugal force, and the shaft side of the rotor is rotated. The portion on the opposite side to the magnet 3b swells beyond a predetermined outer diameter of the rotor, causing vibration,
There is a danger that noise will occur or the rotor will not rotate due to contact with the stator.

【0007】これを回避するためにブリッジ部6b及び
7bの幅T1及びT2を共に広く形成すると、ブリッジ
部6bの幅T1については必要以上の幅となってしま
い、この部分の磁気飽和が不十分となり、IPMの突極
比が小さくなってリラクタンストルク分が減少して電動
機効率が悪化する欠点があった。
If the widths T1 and T2 of the bridge portions 6b and 7b are both widened to avoid this, the width T1 of the bridge portion 6b becomes unnecessarily large, and the magnetic saturation of this portion is insufficient. Thus, the salient pole ratio of the IPM becomes small, the reluctance torque is reduced, and the motor efficiency is deteriorated.

【0008】[0008]

【課題を解決するための手段】本発明は、軸に垂直な断
面形状が略C字形または略V字形等一方に凸面他方に凹
面を有する磁石を各極毎に前記凸面側を前記軸に向けて
鉄心の反軸側から軸側へわたって多重に埋め込んで構成
する電動機の回転子において、前記凸面と凹面の両端部
が前記鉄心の外周部に近接するように前記磁石を配置す
るとともに、前記磁石の端部と前記鉄心の外周部との間
に介在する鉄心部分の幅を反軸側に配置した磁石に対応
する幅よりも軸側に配置した磁石に対応する幅を順次広
くして構成するものである。
According to the present invention, a magnet having a convex surface on one side, such as a substantially C-shaped or V-shaped cross section perpendicular to the axis, is provided with the convex side facing the axis for each pole. In the rotor of the electric motor configured to be embedded multiple from the anti-axis side of the iron core to the shaft side, the magnets are arranged so that both ends of the convex surface and the concave surface are close to the outer peripheral portion of the iron core. The width of the core portion interposed between the end portion of the magnet and the outer peripheral portion of the iron core is configured such that the width corresponding to the magnet arranged on the axial side is sequentially increased from the width corresponding to the magnet arranged on the opposite axis side. Is what you do.

【0009】また、軸に垂直な断面において、径方向に
隣接する反軸側磁石と軸側磁石のそれぞれの端部と前記
鉄心の外周部との間に介在する鉄心部分の幅寸法をそれ
ぞれT1,T2とし、この鉄心部分と軸心とを結ぶ線が
磁極中心線となす角をそれぞれα1,α2とし、前記反
軸側磁石を含めてこれより反軸側部分の全質量と軸心か
らその重心までの距離とをそれぞれM1,R1、前記軸
側磁石を含めてこれより反軸側部分の全質量と軸心から
その重心までの距離とをそれぞれM2,R2としたと
き、前記T2をT1×(M2R2sinα2)/(M1
R1sinα1)以上とするものである。
In the section perpendicular to the axis, the width of the core portion interposed between each end portion of the non-axial side magnet and the axial side magnet adjacent in the radial direction and the outer peripheral portion of the core is set to T1. , T2, angles formed by lines connecting the iron core portion and the axis with the magnetic pole center line are α1 and α2, respectively, and from the total mass and the axis of the anti-axis side portion including the anti-axis side magnet, When the distance to the center of gravity is M1 and R1, respectively, and the total mass of the non-axis side portion including the shaft-side magnet and the distance from the axis to the center of gravity are M2 and R2, respectively, T2 is T1. × (M2R2 sinα2) / (M1
R1 sin α1) or more.

【0010】[0010]

【作用】図3に示す回転子の模式図において、1は鉄
心、2は反軸側磁石、3は軸側磁石、Oは軸心、8は磁
石2及び3の磁極中心線をそれぞれ示している。図3
(a)における斜線部は反軸側磁石2の軸心側円弧より
反軸側部分を示しており、この部分の質量をM1としそ
の重心P1までの半径をR1とする。また幅寸法がT1
なる反軸側磁石2に対応するブリッジ部6と軸心Oとを
結ぶ線が磁極中心線8となす角度の最大をα1とする。
即ちブリッジ部に作用する遠心力による応力を考えると
き、ブリッジ部の幅寸法が最も狭い箇所で且つ磁極中心
線8から最も離れた地点が条件的に厳しいものとなるた
め、該地点と軸心Oとを結ぶ線をもって角度α1を定義
する。これは後述する角度α2についても同様である。
In the schematic diagram of the rotor shown in FIG. 3, 1 is an iron core, 2 is an anti-axis side magnet, 3 is an axis side magnet, O is an axis center, and 8 is a magnetic pole center line of the magnets 2 and 3, respectively. I have. FIG.
The hatched portion in (a) indicates a portion on the opposite axis side from the arc on the axis side of the opposite axis magnet 2, the mass of this portion is M1, and the radius to the center of gravity P1 is R1. The width is T1
The maximum angle formed by the line connecting the bridge portion 6 and the axis O corresponding to the non-axis side magnet 2 with the magnetic pole center line 8 is α1.
That is, when considering the stress due to the centrifugal force acting on the bridge, the point where the width of the bridge is the narrowest and the point farthest from the magnetic pole center line 8 is conditionally severe. An angle α1 is defined by a line connecting. This is the same for the angle α2 described later.

【0011】上記条件において重心P1に作用する遠心
力F1は、角速度をωとすると、
Under the above conditions, the centrifugal force F1 acting on the center of gravity P1 is given by:

【数1】 で表される。この遠心力F1によってブリッジ部6の幅
T1なる部分の断面に加わる力Ft1は、
(Equation 1) It is represented by The force Ft1 applied to the cross section of the portion having the width T1 of the bridge portion 6 by the centrifugal force F1 is:

【数2】 となり、回転子の軸方向長をLとすると、応力σ1は、(Equation 2) Assuming that the axial length of the rotor is L, the stress σ1 is

【数3】 で表される。(Equation 3) It is represented by

【0012】図3(b)における斜線部は軸側磁石3の
軸心側円弧より反軸側部分を示しており、この部分の質
量をM2としその重心P2までの半径をR2とする。ま
た幅寸法がT2なる軸側磁石3に対応するブリッジ部7
と軸心Oとを結ぶ線が磁極中心線8となす角度の最大を
α2とする。この状態において重心P2に作用する遠心
力F2は、
The hatched portion in FIG. 3 (b) indicates a portion of the shaft-side magnet 3 opposite to the arc on the shaft center side. The mass of this portion is M2, and the radius up to the center of gravity P2 is R2. Also, a bridge portion 7 corresponding to the shaft-side magnet 3 having a width dimension of T2.
The maximum angle formed by a line connecting the magnetic pole center line 8 with the line connecting the axis P and the axis O is α2. In this state, the centrifugal force F2 acting on the center of gravity P2 is

【数4】 となる。ここでF2は、図3(b)の斜線部から図3
(a)の斜線部を除いた部分に作用する遠心力に数1の
遠心力F1を加えたものであるから、F2>F1の関係
が成立する。この遠心力F2によってブリッジ部7の幅
T2なる部分の断面に加わる力Ft2は、
(Equation 4) Becomes Here, F2 is calculated from the hatched portion in FIG.
(A) is obtained by adding the centrifugal force F1 of Formula 1 to the centrifugal force acting on the portion excluding the hatched portion, so that the relationship of F2> F1 holds. The force Ft2 applied to the cross section of the portion having the width T2 of the bridge portion 7 by the centrifugal force F2 is:

【数5】 となり、従って応力σ2は、(Equation 5) And therefore the stress σ2 is

【数6】 で表される。即ち、ブリッジ部6及び磁石2と磁石3と
の間に介在する鉄心部分が十分に強固であれば、ブリッ
ジ部7にはσ2なる応力が加わることになる。
(Equation 6) It is represented by That is, if the bridge portion 6 and the iron core portion interposed between the magnet 2 and the magnet 3 are sufficiently strong, a stress of σ2 is applied to the bridge portion 7.

【0013】従って、ブリッジ部6の幅T1は、数3に
おけるσ1の値が降伏応力内にとどまるように設定する
必要がある。よって、
Therefore, it is necessary to set the width T1 of the bridge portion 6 so that the value of σ1 in Equation 3 stays within the yield stress. Therefore,

【数7】 なる関係が成立する。同様にブリッジ部7の幅T2は、
数6におけるσ2の値が降伏応力内にとどまるように設
定する必要があり、前述のF2>F1の関係及びα2>
α1の関係より必然的にFt2>Ft1であるため、ブ
リッジ部6の幅T1よりも広くなる。即ち、
(Equation 7) Is established. Similarly, the width T2 of the bridge portion 7 is
It is necessary to set so that the value of σ2 in Equation 6 stays within the yield stress, and the relationship of F2> F1 and α2>
Since Ft2> Ft1 is inevitable due to the relationship of α1, the width is wider than the width T1 of the bridge portion 6. That is,

【数8】 となるように設定すればよい。(Equation 8) What is necessary is just to set.

【0014】[0014]

【実施例】図1は本発明の実施例を示し、回転軸4に垂
直な断面を示している。この軸4は円柱状の鉄心1aの
中心に設けた軸孔に嵌入されており、回転子が固定子と
所定の空隙を介して対向するように回転子を支持してい
る。また鉄心1aには軸4と平行に磁石と略相似形の複
数の収容孔が設けられており、この収容孔には反軸側磁
石2aと軸側磁石3aが例えば圧入等によりそれぞれ挿
入されて構成されている。
FIG. 1 shows an embodiment of the present invention, and shows a cross section perpendicular to a rotating shaft 4. The shaft 4 is fitted into a shaft hole provided at the center of the cylindrical iron core 1a, and supports the rotor so that the rotor faces the stator with a predetermined gap. The iron core 1a is provided with a plurality of receiving holes parallel to the shaft 4 and substantially similar in shape to the magnet. In the receiving holes, the non-axial-side magnet 2a and the axial-side magnet 3a are inserted by, for example, press fitting. It is configured.

【0015】鉄心1aは、所定形状に打ち抜いた薄鉄板
を軸方向に多数積層して形成されており、各薄鉄板に設
けた打ち出し突起による凹凸部を軸方向に隣接する薄鉄
板相互で嵌合させて固定する周知のカシメクランプ手段
等によって固定されている。磁石2a,3aはフェライ
ト磁石または希土類磁石よりなり、図示する軸4に垂直
な断面において略C字形をなし、その凸面側を軸4に向
けて鉄心1aに埋め込まれている。界磁を形成する各極
は反軸側磁石2aと軸側磁石3aの2重の磁石によって
1極が構成され、各磁石の中央を磁極中心として着磁さ
れるものであり、図示の回転子の場合4極の界磁を形成
している。5は鉄心1aを軸方向に貫通するカシメピン
であり、これにより軸方向両端部に端板等が固定されて
磁石2a,3aに蓋がなされるようになっている。
The iron core 1a is formed by laminating a large number of thin iron plates punched into a predetermined shape in the axial direction, and the uneven portions formed by the projections provided on each thin iron plate are fitted to each other in the axially adjacent thin iron plates. It is fixed by well-known caulking clamp means or the like for fixing. The magnets 2a and 3a are made of ferrite magnets or rare earth magnets, have a substantially C shape in a cross section perpendicular to the axis 4 shown, and are embedded in the iron core 1a with the convex side facing the axis 4. Each pole forming a field is formed by a double magnet of the anti-axis side magnet 2a and the axis side magnet 3a, and one pole is formed. The magnet is magnetized with the center of each magnet as the center of the magnetic pole. In this case, a four-pole field is formed. Reference numeral 5 denotes a caulking pin which penetrates through the iron core 1a in the axial direction. End plates and the like are fixed to both ends in the axial direction, and the magnets 2a and 3a are covered.

【0016】図1に示した回転子においては、図2に拡
大して示すように、磁石2a,3aの略C字形断面の端
部と鉄心1aの外周部との間のブリッジ部6a,7aの
幅T1,T2は、磁石3aの端部を延長して示す破線に
より明らかなように、反軸側磁石2aに対応する幅T1
よりも軸側磁石3aに対応する幅T2が大きく形成され
ている。即ち、T1は磁石による磁束によってブリッジ
部6aが磁気飽和するように極力薄くするとともに、遠
心力に伴う応力に十分耐えられるように数7に従って十
分な強度を持たせて形成するものである。一方T2はブ
リッジ部7aが遠心力に伴う応力に十分耐えられるよう
に構成する必要上、T1と比較した場合は数8に従っ
て、T1×(M2R2sinα2)/(M1R1sin
α1)以上となるように構成するものである。
In the rotor shown in FIG. 1, as shown in an enlarged view in FIG. 2, bridge portions 6a, 7a between the ends of the substantially C-shaped cross sections of the magnets 2a, 3a and the outer peripheral portion of the iron core 1a. The widths T1 and T2 of the widths T1 and T2 correspond to the width of the opposite axis magnet 2a, as is apparent from the broken line extending from the end of the magnet 3a.
The width T2 corresponding to the shaft-side magnet 3a is formed to be larger than that. That is, T1 is formed so as to be as thin as possible so that the magnetic flux of the magnet causes the bridge portion 6a to be magnetically saturated, and to have sufficient strength according to Equation 7 so as to sufficiently withstand the stress caused by centrifugal force. On the other hand, T2 needs to be configured so that the bridge portion 7a can sufficiently withstand the stress caused by the centrifugal force. When compared with T1, according to Equation 8, T1 × (M2R2 sin α2) / (M1R1 sin
α1) or more.

【0017】図1に示したような回転子が回転を行う場
合、ブリッジ部6aに対しては反軸側磁石2aを含めて
これより反軸側部分に加わる遠心力による応力が働き、
一方ブリッジ部7aに対しては軸側磁石3aを含めてこ
れより反軸側部分に加わる遠心力による応力が働くこと
になるが、上記のようにT1よりもT2が大きく形成さ
れているためにブリッジ部7aが遠心力によって変形し
て磁石3aより反軸側部分が回転子の所定外径よりも膨
れたりすることがない。
When the rotor as shown in FIG. 1 rotates, the bridge portion 6a receives a stress due to the centrifugal force applied to the non-axial side portion including the non-axial side magnet 2a.
On the other hand, a stress due to the centrifugal force applied to the anti-axial side portion, including the axial side magnet 3a, acts on the bridge portion 7a, but because T2 is formed larger than T1 as described above. The bridge portion 7a is not deformed by the centrifugal force, and the portion on the opposite side of the magnet 3a from the magnet 3a does not expand beyond the predetermined outer diameter of the rotor.

【0018】またT1を必要以上大きくすることがない
ので、ブリッジ部6aを十分に磁気飽和させて突極比を
大きくでき、リラクタンストルクを有効に活用すること
ができて電動機効率を向上させ得るものである。尚、本
発明の採用によって軸側磁石3aのブリッジ部7aの幅
T2が広くなるが、軸側磁石3aは反軸側磁石2aと比
べ面積及び体格が大きいため磁束量が多く、ブリッジ部
7aは容易に磁気飽和するために特性上の支障は生じな
い。またブリッジ部の幅が広くなることによってリラク
タンストルクに寄与する固定子磁束の流出入がスムーズ
となる効果があり、この面からも電動機の特性を向上さ
せ得るものである。
Further, since T1 is not increased unnecessarily, the bridge portion 6a can be sufficiently magnetically saturated to increase the salient pole ratio, and the reluctance torque can be effectively used to improve the motor efficiency. It is. The width T2 of the bridge portion 7a of the shaft-side magnet 3a is widened by adopting the present invention. However, the shaft-side magnet 3a has a larger area and physique than the anti-axis-side magnet 2a, so that the amount of magnetic flux is large. Since magnetic saturation easily occurs, there is no problem in characteristics. Also, the wider bridge portion has the effect that the stator flux contributing to the reluctance torque flows in and out smoothly, and from this aspect also the characteristics of the electric motor can be improved.

【0019】以上の実施例においては回転子の界磁各極
を2重の磁石2a,3aによって構成する例を示した
が、3重の磁石等さらに多重の構成としてもよいことは
勿論である。その場合は、径方向に隣接する反軸側磁石
と軸側磁石のそれぞれのブリッジ部の幅寸法をそれぞれ
T1,T2として、これらを上記の寸法関係に構成すれ
ばよい。また実施例に示した回転子と異なる磁石形状と
して、軸4に垂直な断面において略V字形をなすような
磁石形状を採用した場合においても、本発明の構成は同
様に適用可能である。
In the above embodiment, each pole of the rotor field is constituted by the double magnets 2a and 3a. However, it is needless to say that a triple magnet or the like may be used. . In this case, the widths of the bridge portions of the non-axial side magnet and the axial side magnet adjacent in the radial direction may be T1 and T2, respectively, and these may be configured in the above-described dimensional relationship. Further, the configuration of the present invention can be similarly applied to a case where a magnet shape having a substantially V-shaped cross section perpendicular to the shaft 4 is adopted as a magnet shape different from the rotor shown in the embodiment.

【0020】[0020]

【発明の効果】本発明によれば、回転子のブリッジ部が
遠心力によって変形して所定外径より膨れるようなこと
がなくなり、振動や騒音の少ない電動機が構成できる。
同時に、回転子が固定子と接触して回転不能となったり
する恐れもなく、品質に優れた電動機とすることができ
る。またブリッジ部が変形し難くするために、降伏応力
を高める目的で硬度の高い高価な鉄心材料等を用いる必
要がなく、低廉な回転子が構成できる特長がある。また
突極比が大きくできたり、固定子磁束の流出入がスムー
ズになったりすることによってリラクタンストルクを有
効に活用することができ、電動機の特性を向上させるこ
とができる。
According to the present invention, the bridge portion of the rotor is prevented from being deformed by the centrifugal force and swelling beyond a predetermined outer diameter, and a motor having less vibration and noise can be constructed.
At the same time, there is no possibility that the rotor comes into contact with the stator and cannot be rotated, so that an electric motor with excellent quality can be obtained. Further, since the bridge portion is hardly deformed, there is no need to use an expensive iron core material having high hardness for the purpose of increasing the yield stress, and there is a feature that a low-cost rotor can be configured. Further, since the salient pole ratio can be increased and the inflow and outflow of the stator magnetic flux can be made smooth, the reluctance torque can be effectively utilized, and the characteristics of the electric motor can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す回転子の平面断面図。FIG. 1 is a plan sectional view of a rotor showing an embodiment of the present invention.

【図2】図1の要部拡大図。FIG. 2 is an enlarged view of a main part of FIG.

【図3】遠心力とブリッジ部に加わる応力を説明する回
転子平面断面の模式図。
FIG. 3 is a schematic plan view of a rotor illustrating a centrifugal force and a stress applied to a bridge portion.

【図4】従来例を示す回転子の平面断面図。FIG. 4 is a plan sectional view of a rotor showing a conventional example.

【図5】図4の要部拡大図。FIG. 5 is an enlarged view of a main part of FIG. 4;

【符号の説明】[Explanation of symbols]

1,1a,1b 鉄心 2,2a,2b,3,3a,3b 磁石 4 軸 5 カシメピン 6,6a,6b,7,7a,7b ブリッジ部 1, 1a, 1b Iron core 2, 2a, 2b, 3, 3a, 3b Magnet 4 axis 5 Caulking pin 6, 6a, 6b, 7, 7a, 7b Bridge section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 軸に垂直な断面形状が略C字形または略
V字形等一方に凸面他方に凹面を有する磁石を各極毎に
前記凸面側を前記軸に向けて鉄心の反軸側から軸側へわ
たって多重に埋め込んで構成する電動機の回転子におい
て、前記凸面と凹面の両端部が前記鉄心の外周部に近接
するように前記磁石を配置するとともに、前記磁石の端
部と前記鉄心の外周部との間に介在する鉄心部分の幅を
反軸側に配置した磁石に対応する幅よりも軸側に配置し
た磁石に対応する幅を順次広くしたことを特徴とする電
動機の回転子。
1. A magnet having a substantially C-shaped or substantially V-shaped cross section perpendicular to the axis and having a convex surface on one side and a concave surface on the other side. In the rotor of the electric motor configured to be embedded multiple over the side, the magnets are arranged so that both ends of the convex surface and the concave surface are close to the outer peripheral portion of the iron core, and the ends of the magnet and the core A rotor for an electric motor, wherein a width of an iron core interposed between an outer peripheral portion and a width corresponding to a magnet arranged on an axial side is sequentially increased from a width corresponding to a magnet arranged on an opposite axis side.
【請求項2】 軸に垂直な断面において、径方向に隣接
する反軸側磁石と軸側磁石のそれぞれの端部と前記鉄心
の外周部との間に介在する鉄心部分の幅寸法をそれぞれ
T1,T2とし、この鉄心部分と軸心とを結ぶ線が磁極
中心線となす角をそれぞれα1,α2とし、前記反軸側
磁石を含めてこれより反軸側部分の全質量と軸心からそ
の重心までの距離とをそれぞれM1,R1、前記軸側磁
石を含めてこれより反軸側部分の全質量と軸心からその
重心までの距離とをそれぞれM2,R2としたとき、前
記T2をT1×(M2R2sinα2)/(M1R1s
inα1)以上としたことを特徴とする請求項1記載の
電動機の回転子。
2. In a cross section perpendicular to the axis, a width dimension of a core portion interposed between each end portion of the non-axial side magnet and the axial side magnet radially adjacent to each other and the outer peripheral portion of the core is set to T1. , T2, angles formed by lines connecting the iron core portion and the axis with the magnetic pole center line are α1 and α2, respectively, and from the total mass and the axis of the anti-axis side portion including the anti-axis side magnet, When the distance to the center of gravity is M1 and R1, respectively, and the total mass of the non-axis side portion including the shaft-side magnet and the distance from the axis to the center of gravity are M2 and R2, respectively, T2 is T1. × (M2R2sinα2) / (M1R1s
2. The rotor for an electric motor according to claim 1, wherein inα1) or more.
JP8279822A 1996-09-13 1996-09-13 Rotor for electric motor Pending JPH1094201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8279822A JPH1094201A (en) 1996-09-13 1996-09-13 Rotor for electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8279822A JPH1094201A (en) 1996-09-13 1996-09-13 Rotor for electric motor

Publications (1)

Publication Number Publication Date
JPH1094201A true JPH1094201A (en) 1998-04-10

Family

ID=17616405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8279822A Pending JPH1094201A (en) 1996-09-13 1996-09-13 Rotor for electric motor

Country Status (1)

Country Link
JP (1) JPH1094201A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1032115A2 (en) * 1999-02-22 2000-08-30 Kabushiki Kaisha Toshiba Reluctance type rotating machine with permanent magnets
KR100677526B1 (en) 2005-07-29 2007-02-02 엘지전자 주식회사 Rotary compressor and airconditioner with this
WO2007125753A1 (en) * 2006-04-24 2007-11-08 Fujitsu General Limited Buried magnet rotor, motor using this rotor, and compressor using this motor
US9063110B2 (en) 2010-04-30 2015-06-23 Agellis Group Ab Measurements in metallurgical vessels

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1032115A2 (en) * 1999-02-22 2000-08-30 Kabushiki Kaisha Toshiba Reluctance type rotating machine with permanent magnets
EP1032115A3 (en) * 1999-02-22 2002-04-17 Kabushiki Kaisha Toshiba Reluctance type rotating machine with permanent magnets
EP1401083A3 (en) * 1999-02-22 2005-08-31 Kabushiki Kaisha Toshiba Permanent magnet and reluctance type rotating machine
KR100677526B1 (en) 2005-07-29 2007-02-02 엘지전자 주식회사 Rotary compressor and airconditioner with this
WO2007125753A1 (en) * 2006-04-24 2007-11-08 Fujitsu General Limited Buried magnet rotor, motor using this rotor, and compressor using this motor
AU2007244512B2 (en) * 2006-04-24 2011-03-03 Fujitsu General Limited Buried magnet rotor, motor using this rotor, and compressor using this motor
US8212447B2 (en) 2006-04-24 2012-07-03 Fujitsu General Limited Magnet embedded rotor, electric motor using the same rotor, and compressor using the same motor
US9063110B2 (en) 2010-04-30 2015-06-23 Agellis Group Ab Measurements in metallurgical vessels

Similar Documents

Publication Publication Date Title
EP0917272B1 (en) Permanent magnet rotor type electric motor
JP4396537B2 (en) Permanent magnet type motor
US6717315B1 (en) Permanent magnet type motor and method of producing permanent magnet type motor
JP3801477B2 (en) Synchronous induction motor rotor, synchronous induction motor, fan motor, compressor, air conditioner, and refrigerator
EP1610444A1 (en) Synchronous electric motor
JP5259927B2 (en) Permanent magnet rotating electric machine
JP2002084722A (en) Permanent magnet motor
WO2014046228A1 (en) Permanent magnet-embedded electric motor
JP3602392B2 (en) Permanent magnet embedded motor
JP3821183B2 (en) Permanent magnet motor
JP4084889B2 (en) Permanent magnet motor rotor
JP2000333389A (en) Permanent magnet motor
JP4602958B2 (en) Permanent magnet motor, hermetic compressor and fan motor
JP5067365B2 (en) motor
JP2001095182A (en) Permanent magent electric motor
JP3703907B2 (en) Brushless DC motor
JP3747107B2 (en) Electric motor
WO2001097363A1 (en) Permanent magnet synchronous motor
JP2001333553A (en) Permanent magnet motor
JP2001268824A (en) Compressor
JP2000245087A (en) Permanent magnet motor
JP2001086673A (en) Permanent magnet motor
JP4080273B2 (en) Permanent magnet embedded motor
JP3832540B2 (en) Permanent magnet motor
JP3507680B2 (en) Embedded magnet type rotor