JPH1093371A - Multiple thin film lc filter - Google Patents

Multiple thin film lc filter

Info

Publication number
JPH1093371A
JPH1093371A JP24053496A JP24053496A JPH1093371A JP H1093371 A JPH1093371 A JP H1093371A JP 24053496 A JP24053496 A JP 24053496A JP 24053496 A JP24053496 A JP 24053496A JP H1093371 A JPH1093371 A JP H1093371A
Authority
JP
Japan
Prior art keywords
thin film
electrode
filter
capacitor
efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24053496A
Other languages
Japanese (ja)
Inventor
Hidekuni Sugawara
英州 菅原
Yoshio Sato
由郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP24053496A priority Critical patent/JPH1093371A/en
Publication of JPH1093371A publication Critical patent/JPH1093371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Filters And Equalizers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high efficiency in a thin film capacitor resulting in improving an entire efficiency of a thin film LC device. SOLUTION: In the multiple thin film LC filter consisting of a thin film inductor employing a thin film soft magnetic material and a thin film capacitor employing a thin film dielectric material 19, a structure of very thin comb-lines is adopted for a ground side electrode 18 and a signal side electrode 17 for each thin film capacitor so as to improve the nonuniformity of electric field thereby applying an electric field uniformly between the electrodes even at a high frequency band and improving the efficiency of the thin film capacitor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜インダクタ、
及び薄膜誘電体を用いた薄膜キャパシタにより構成され
る集中定数型多連薄膜LCフィルタに関し、特に高効率
の薄膜キャパシタを用いた薄膜LCフィルタに関するも
のである。ここで用いる薄膜インダクタは、空心コイル
を用いたインダクタ、及び薄膜磁性体を磁心に用いた高
効率のインダクタである。薄膜キャパシタは低損失の誘
電体を使用した高効率特性であり、先の高効率インダク
タと合わせて使用することで高い効率の薄膜デバイスを
得ることができる。
TECHNICAL FIELD The present invention relates to a thin film inductor,
More particularly, the present invention relates to a lumped-constant multiple-layer thin-film LC filter constituted by a thin-film capacitor using a thin-film dielectric, and particularly to a thin-film LC filter using a high-efficiency thin-film capacitor. The thin-film inductors used here are an inductor using an air-core coil and a high-efficiency inductor using a thin-film magnetic material for a magnetic core. The thin-film capacitor has high efficiency characteristics using a low-loss dielectric, and a high-efficiency thin-film device can be obtained by using it together with the high-efficiency inductor.

【0002】このような高効率の薄膜LCフィルタは、
ローパスフィルタ及びバンドパスフィルタとして用いら
れる電子デバイスであり、その用途は高周波回路の発振
部及び電波の受信部、並びに高周波回路から発振するノ
イズを防ぐ必要のある電子回路に用いられ、薄膜インダ
クタのインダクタンス及び薄膜キャパシタのキャパシタ
ンスを適時調整して所定のフィルタ特性又は組み込まれ
た回路での所望の特性を得るために用いられる。
[0002] Such a high efficiency thin film LC filter is
It is an electronic device used as a low-pass filter and a band-pass filter, and is used for the oscillating part of a high-frequency circuit and the receiving part of radio waves, and the electronic circuit that needs to prevent noise oscillating from the high-frequency circuit, And to adjust the capacitance of the thin film capacitor in a timely manner to obtain a predetermined filter characteristic or a desired characteristic in a built-in circuit.

【0003】[0003]

【従来の技術】従来、多連薄膜LCフィルタとしては空
心インダクタが使われ、スパイラルコイル及びミアンダ
コイルがチップキャパシタ及び薄膜キャパシタと組み合
わされて使用される。これらの薄膜LC部品は、使用さ
れるシステムの集積化と共に小型化される傾向にあり、
チップインダクタ又はチップキャパシタの部品が302
5タイプ、2012タイプ、1608タイプ、1005
タイプ、0530タイプと小型化されると共に、薄膜イ
ンダクタL又は薄膜キャパシタの様な小型薄膜部品が求
められるようになってきた。
2. Description of the Related Art Conventionally, an air-core inductor is used as a multiple thin film LC filter, and a spiral coil and a meander coil are used in combination with a chip capacitor and a thin film capacitor. These thin-film LC components tend to be miniaturized with the integration of the systems used,
The chip inductor or chip capacitor component is 302
5 types, 2012 types, 1608 types, 1005
Type and 0530 type, and a small-sized thin-film component such as a thin-film inductor L or a thin-film capacitor has been required.

【0004】即ち、チップL、チップC素子は、SMT
(表面実装技術)を使うためその形が一定である。その
為、図8の3連LCフィルタのような電気的な等価回路
をチップL素子(L1,L2,L3)、チップC素子
(C1,C2,C3)で構成すると、図9に示すように
1608系チップC素子23、2012系チップC素子
24を使用した場合、素子配置は制限され、LCフィル
タは個々の単体素子の寸法、1608及び2012まで
は小さくすることができなかった。更に、素子全体の効
率も個々の素子効率に制約されている。
That is, the chip L and chip C elements are SMT
(Surface mounting technology), so its shape is constant. Therefore, if an electrical equivalent circuit such as the triple LC filter of FIG. 8 is configured by the chip L elements (L1, L2, L3) and the chip C elements (C1, C2, C3), as shown in FIG. When the 1608-based chip C element 23 and the 2012-based chip C element 24 were used, the element arrangement was limited, and the LC filter could not be reduced to the dimensions of individual single elements, 1608 and 2012. Further, the efficiency of the entire device is also limited by the efficiency of each device.

【0005】そこで、薄膜L、薄膜C素子を用いて薄膜
LC素子を構成すると、基板上に必要要素のみが配置さ
れるため、チップLC素子に比較して大幅に小型化可能
である。その結果、3025及び2012の寸法に3連
LCフィルタを形成することができる。
[0005] Therefore, when a thin film LC element is formed using the thin film L and thin film C elements, only necessary elements are arranged on the substrate, so that the size can be greatly reduced as compared with the chip LC element. As a result, a triple LC filter having dimensions of 3025 and 2012 can be formed.

【0006】更に、薄膜デバイスは、新しい用途開拓の
為に高効率化が求められており、必要要素のみを直接配
置できる構造は素子全体の高効率化という点でメリット
が大きい。
Further, thin film devices are required to have high efficiency in order to cultivate new applications, and a structure in which only necessary elements can be directly arranged has a great merit in terms of increasing the efficiency of the entire device.

【0007】一般に、従来のLCフィルタ等磁気素子を
用いた回路設計では、インダクタンス値及びキャパシタ
ンス値はあらかじめ設計値に合わせて作製する。その全
体の効率は使用する個々の素子特性に依存し、たとえ数
種のL、C部品が高効率であっても、ある一つの素子の
効率が悪い場合は全体の効率ダウンにつながる。そこ
で、薄膜デバイスでは個々の薄膜インダクタ、薄膜キャ
パシタ等の薄膜素子に高効率が求められている。
Generally, in a circuit design using a magnetic element such as a conventional LC filter, an inductance value and a capacitance value are prepared in advance in accordance with design values. The overall efficiency depends on the characteristics of the individual devices used, and even if several L and C components have high efficiency, if the efficiency of one device is low, the overall efficiency is reduced. Therefore, in thin film devices, high efficiency is required for thin film elements such as individual thin film inductors and thin film capacitors.

【0008】[0008]

【発明が解決しようとする課題】まず、薄膜インダクタ
の中で空心インダクタと磁心インダクタを比較すると、
同じインダクタンスを得るには空心インダクタ面積及び
巻き線数は磁心インダクタの十倍程度必要である。その
為、空芯を用いた薄膜インダクタは導体抵抗が増加する
とか、低周波で効率が低い、コイルに起因する浮遊容量
の影響を受けやすい等の問題があった。それに対して磁
心インダクタは高透磁率の軟磁性薄膜を使うと低周波で
も少ない巻き数で大きなインダクタンスを得やすく、そ
の結果巻き線による抵抗の増加が少なく、絶縁層から生
ずる浮遊容量の影響も受けにくいので小型で高効率の薄
膜インダクタとなる。
First, comparing the air-core inductor and the magnetic-core inductor among the thin-film inductors,
To obtain the same inductance, the area of the air-core inductor and the number of windings are required to be about ten times that of the magnetic core inductor. Therefore, the thin film inductor using the air core has problems such as an increase in conductor resistance, low efficiency at low frequency, and susceptibility to stray capacitance caused by the coil. On the other hand, when a magnetic core inductor uses a soft magnetic thin film with high magnetic permeability, it is easy to obtain a large inductance with a small number of windings even at a low frequency. Because it is difficult, it becomes a small and highly efficient thin film inductor.

【0009】次に、一般に薄膜キャパシタは、電極間に
誘電体薄膜を配置することでキャパシタンスが得られ
る。薄膜キャパシタの効率を左右する要因はいくつか有
り、誘電体薄膜組成、膜質、誘電体と接する電極表面、
キャパシタ構造、電極形状等が挙げられる。特に100
MHzから数GHzで動作するLCフィルタの場合は、
電極に流れる高周波電流の不均一性による電場の不均質
に起因してキャパシタ効率が低下するという問題があっ
た。その為、キャパシタの効率改善を図る必要があっ
た。
Next, in general, a thin film capacitor has a capacitance obtained by disposing a dielectric thin film between electrodes. There are several factors that affect the efficiency of a thin film capacitor, such as the composition of the dielectric thin film, the film quality, the electrode surface in contact with the dielectric,
Examples include a capacitor structure and an electrode shape. Especially 100
For an LC filter operating from MHz to several GHz,
There is a problem in that the efficiency of the capacitor is reduced due to the inhomogeneity of the electric field due to the inhomogeneity of the high-frequency current flowing through the electrodes. Therefore, it was necessary to improve the efficiency of the capacitor.

【0010】本発明は、薄膜キャパシタにおける高効率
を得、その結果薄膜LCデバイス全体の効率改善を図る
ことを目的としている。
An object of the present invention is to obtain high efficiency in a thin film capacitor, and as a result, to improve the efficiency of the whole thin film LC device.

【0011】[0011]

【課題を解決するための手段】薄膜キャパシタは電極間
に誘電体を配置することでキャパシタンスを生じ、電極
の面積が広い場合、直流電場では電極間に均等な電場を
生ずるが、GHzの高周波帯域では渦電流損失及びスキ
ンデプス(磁束侵入深さ)が薄くなる為に電極面内で電
場の不均一性を生ずる。その不均一性は主に大面積の中
心と端では顕著と考えられ、薄膜キャパシタの高周波帯
の効率低下を招く一因と見積もられる。そこで、本発明
では、薄膜軟磁性体使用の薄膜インダクタと薄膜誘電体
使用の薄膜キャパシタから構成される多連薄膜LCフィ
ルタにおいて、使用する誘電体及び絶縁体の効率Qを電
極及び導体の微細化により向上させることで、電場の不
均一性を改善し、高周波帯域でも電極間で均等に電場が
掛かり、薄膜キャパシタの効率を改善している。
In a thin film capacitor, a capacitance is generated by arranging a dielectric between electrodes, and when the area of the electrodes is large, a uniform electric field is generated between the electrodes by a DC electric field, but a high frequency band of GHz is used. In this case, the eddy current loss and skin depth (magnetic flux penetration depth) become thin, so that the electric field becomes non-uniform in the electrode surface. The non-uniformity is considered to be remarkable mainly at the center and the edge of the large area, and is estimated to be one of the causes of the reduction in the efficiency of the high frequency band of the thin film capacitor. Therefore, in the present invention, in a multiple thin film LC filter composed of a thin film inductor using a thin film soft magnetic material and a thin film capacitor using a thin film dielectric, the efficiency Q of the dielectric and insulator used is reduced by miniaturizing the electrodes and conductors. , The non-uniformity of the electric field is improved, the electric field is evenly applied between the electrodes even in a high frequency band, and the efficiency of the thin film capacitor is improved.

【0012】[0012]

【発明の実施の形態】以下、本発明の一実施の形態を図
面に基づいて説明する。本発明は図1のような薄膜コイ
ルに代表される薄膜インダクタと、図2に代表されるよ
うな薄膜誘電体を薄膜導体で挟んだ薄膜キャパシタを用
いることを特徴としている。図3に本発明で取り扱う薄
膜L、薄膜Cを用いた薄膜3連LCフィルタの平面図の
一例を示した。
An embodiment of the present invention will be described below with reference to the drawings. The present invention is characterized by using a thin film inductor represented by a thin film coil as shown in FIG. 1 and a thin film capacitor having a thin film dielectric sandwiched between thin film conductors as represented by FIG. FIG. 3 shows an example of a plan view of a thin film triple LC filter using the thin films L and C handled in the present invention.

【0013】図1の5は磁性体、6は導体コイル、7は
基板である。図2の8は上部電極、9は誘電層、10は
下部電極、11は基板という構成からなっている。図3
の12は薄膜インダクタ(L1,L2,L3)で、13
は薄膜キャパシタ(C1,C2,C3)で、14は信号
線電極で、15はグランド線電極である。
In FIG. 1, 5 is a magnetic material, 6 is a conductor coil, and 7 is a substrate. In FIG. 2, 8 is an upper electrode, 9 is a dielectric layer, 10 is a lower electrode, and 11 is a substrate. FIG.
12 is a thin film inductor (L1, L2, L3), and 13
Is a thin film capacitor (C1, C2, C3), 14 is a signal line electrode, and 15 is a ground line electrode.

【0014】図3に示される薄膜3連LCフィルタは、
インダクタのコイル部はソレノイド(ラセン)型、スパ
イラル型、ミアンダー型などインダクタンスの値に応じ
て各種コイル形状を使用できる。キャパシタ部は、模式
図の様に、インダクタとキャパシタが互いに隣り合って
配置され、C1のようにL1とL2の間を繋ぐ導体の間
に接続されるとか、又はC2の様にL2とL3を繋ぐ導
体がキャパシタになるとか、C3の様に電極部分に形成
されるとか、色々の形態が有る。
The thin film triple LC filter shown in FIG.
Various coil shapes such as a solenoid (helix) type, a spiral type, and a meander type can be used for the coil portion of the inductor according to the inductance value. As shown in the schematic diagram, the capacitor section is configured such that an inductor and a capacitor are arranged adjacent to each other and are connected between conductors connecting L1 and L2 like C1 or L2 and L3 like C2. There are various forms such as a connecting conductor serving as a capacitor or being formed on an electrode portion like C3.

【0015】このような多連薄膜LCフィルタの薄膜キ
ャパシタにおいて、電極部を櫛状又は階段状に電極部を
分割し、高周波帯での電極の中心部と端部における渦電
流分布の異なることに起因する電界の不均質を押さえ、
薄膜キャパシタの効率を向上させることができる。
In such a thin film capacitor of the multiple thin film LC filter, the electrode portion is divided into a comb shape or a step shape so that an eddy current distribution at a center portion and an end portion of the electrode in a high frequency band is different. Suppress the inhomogeneity of the resulting electric field,
The efficiency of the thin film capacitor can be improved.

【0016】図4、図5に本発明の櫛形電極及び階段状
電極を有する薄膜キャパシタを示す。16が基板、17
が信号線電極及び階段状電極で、18が本発明の櫛形キ
ャパシタ電極、19が薄膜誘電体である。図4は信号線
側の電極が一体でキャパシタ電極側が櫛状であり、図5
は信号線側の電極が階段状で、キャパシタ電極側が櫛状
である。
FIGS. 4 and 5 show a thin film capacitor having a comb-shaped electrode and a stepped electrode according to the present invention. 16 is a substrate, 17
Is a signal line electrode and a step-like electrode, 18 is a comb capacitor electrode of the present invention, and 19 is a thin film dielectric. FIG. 4 shows that the electrode on the signal line side is integrated and the capacitor electrode side is comb-shaped.
Has a step-like electrode on the signal line side and a comb-like electrode on the capacitor electrode side.

【0017】以下、上記した薄膜キャパシタを有する薄
膜LCフィルタにおいて、薄膜キャパシタの効率を改善
することにより得られる効果について説明する。薄膜キ
ャパシタは電極が櫛状になっており、その上に誘電体薄
膜を成膜し、更に信号線を兼ねた電極を成膜する。図6
及び図7は本発明の薄膜キャパシタの断面図である。図
6は信号線が分割無しに成膜されているのに対して、図
7は上に配置される信号線が階段状に分割されている。
図6の場合は電極を信号線が包むように配置されるた
め、下層電極周りの渦電流が各電極毎に分断され、電極
に対する電場の発生が効果的である。
Hereinafter, the effect obtained by improving the efficiency of the thin film capacitor in the thin film LC filter having the above thin film capacitor will be described. The thin film capacitor has a comb-shaped electrode, on which a dielectric thin film is formed, and further, an electrode also serving as a signal line is formed. FIG.
7 is a sectional view of the thin film capacitor of the present invention. In FIG. 6, the signal lines are formed without division, whereas in FIG. 7, the signal lines disposed above are divided in a stepwise manner.
In the case of FIG. 6, the electrodes are arranged so that the signal lines surround the electrodes, so that the eddy current around the lower electrode is divided for each electrode, and the generation of an electric field to the electrodes is effective.

【0018】それに対して、図7は下層の櫛状電極に対
応して上部電極が階段状に配置されるので、渦電流発生
に伴う電界の不均質が生じにくくなり、各階段状電極の
方が効率は向上する。更に、図6は下部電極を上部信号
線電極が覆うため電極間の誘電層厚みが均一でなくなり
薄膜キャパシタンス値がバラつくとか、電極間がショー
トするなどの原因になり易いのに対して、図7は電極面
が平坦な為電極厚みの均一性は保たれ、ショート等の問
題が少ない。それ故、グランド側電極を櫛状にし、更に
グランド側電極に合わせて信号側電極も階段状にする方
がより効果的である。
On the other hand, in FIG. 7, since the upper electrode is arranged in a stepwise manner corresponding to the lower comb-like electrode, inhomogeneity of the electric field due to the generation of the eddy current hardly occurs. However, efficiency is improved. Further, FIG. 6 shows that the lower electrode is covered by the upper signal line electrode, so that the thickness of the dielectric layer between the electrodes is not uniform and the thin film capacitance value varies, or the electrodes are likely to be short-circuited. In No. 7, since the electrode surface is flat, uniformity of the electrode thickness is maintained, and there is little problem such as short circuit. Therefore, it is more effective to make the ground-side electrode comb-shaped, and further to make the signal-side electrode stepwise in accordance with the ground-side electrode.

【0019】本発明になる多連薄膜LCフィルタは、薄
膜キャパシタンスの特性効率を改善することにより、こ
れまで低効率が原因で大きな減衰量が得られないとか、
急峻な減衰特性が得られない為使えなかった新しい応用
分野に適用が可能となる。即ち、ローパスフィルタ、バ
ンドパスフィルタ、などの薄膜フィルタがある。例え
ば、これまでの表面波フィルタの苦手とする±30MH
z程度の広帯域バンドパスフィルタ分野にも活用するこ
とができる。即ち、表面波フィルタのハーメチックシー
ルは、表面波素子部分を覆うのに必要な部品であり、コ
ストアップ要因である。その点、本発明になる多連薄膜
LCフィルタは作製工程は表面波フィルタと同じ薄膜工
程を用いるが、ハーメチックシールなどのコストアップ
要因が無く低コストである。更に全体厚みについても薄
膜LCフィルタは数10μmと薄くハーメチックシール
の数mm厚より二桁薄い。その結果、システム全体の小
型化を図ることが可能となる。
The multi-layered thin film LC filter according to the present invention improves the characteristic efficiency of the thin film capacitance so that a large amount of attenuation cannot be obtained due to low efficiency.
Since steep attenuation characteristics cannot be obtained, it can be applied to new application fields that could not be used. That is, there are thin-film filters such as a low-pass filter and a band-pass filter. For example, ± 30 MH, which is weak in conventional surface acoustic wave filters
It can also be used in the field of a wideband bandpass filter of about z. That is, the hermetic seal of the surface acoustic wave filter is a component necessary for covering the surface acoustic wave element portion, and is a factor of cost increase. In this regard, the multiple thin film LC filter according to the present invention uses the same thin film process as the surface acoustic wave filter for the manufacturing process, but has no cost increase factors such as hermetic sealing and is low in cost. Further, the overall thickness of the thin film LC filter is as thin as several tens of μm, which is two orders of magnitude smaller than the thickness of several mm of the hermetic seal. As a result, the size of the entire system can be reduced.

【0020】次に、システムの小型化は動作周波数の高
周波化と密接に関連し、高周波ノイズが発生する。即
ち、小型化されたため、近接したストリップライン間を
高周波が伝搬し、他の関係ない信号線及び電源線にノイ
ズが侵入する。この侵入したノイズの低減には数100
MHz〜2GHzという広帯域で−30dBという高減
衰量を示す本発明の薄膜LCフィルタが有効である。
Next, the downsizing of the system is closely related to the higher operating frequency, and high frequency noise is generated. That is, because of the miniaturization, a high frequency propagates between adjacent strip lines, and noise enters other unrelated signal lines and power supply lines. Several hundreds of these noises are reduced.
The thin film LC filter of the present invention, which exhibits a high attenuation of −30 dB in a wide band of MHz to 2 GHz, is effective.

【0021】[0021]

【実施例】以下、本発明の一実施例について述べる。薄
膜キャパシタとして従来の平板電極からなる薄膜キャパ
シタと本発明の櫛形電極からなる薄膜キャパシタ(図4
参照)をそれぞれ作製しフィルタ特性を比較検討した。
本発明で作製した図8の等価回路からなる薄膜3連LC
フィルタは、用いた薄膜インダクタの値が、L1=15
0nH、L2=150nH、L3=150nHの値を、
又薄膜キャパシタはC1=30pF、C2=13pF、
C3=14pFの値を有する様に調整し薄膜工程で作製
した。櫛状電極の幅は50から500μmが可能である
が今回は500μm幅とし、電極間幅は20から100
μmの可能設定値に対して100μmに設定した。
An embodiment of the present invention will be described below. As a thin film capacitor, a conventional thin film capacitor including a flat plate electrode and a thin film capacitor including a comb-shaped electrode according to the present invention (FIG. 4)
) Were manufactured, and filter characteristics were compared and examined.
Thin film triple LC consisting of the equivalent circuit of FIG. 8 manufactured by the present invention
In the filter, the value of the thin film inductor used is L1 = 15.
0nH, L2 = 150nH, L3 = 150nH,
The thin film capacitor has C1 = 30 pF, C2 = 13 pF,
It was adjusted to have a value of C3 = 14 pF, and was manufactured in a thin film process. The width of the comb-shaped electrode can be 50 to 500 μm, but this time, the width is 500 μm, and the width between the electrodes is 20 to 100 μm.
It was set to 100 μm for a possible set value of μm.

【0022】得られたローパスフィルタ特性結果を図1
0に示した。図10からわかるように従来の平板電極は
Q値が10前後と低い為ローパスフィルタを構成した際
に、100MHzから200MHzにおけるフィルタ特
性の切れが悪かった。それに対して本発明になる薄膜キ
ャパシタは、グランド側の電極を櫛状にし信号側電極を
その上から被せた場合、Q値が50程度に改善された。
その結果、図10に示すように200MHz付近のフィ
ルタ特性の切れが大幅に改善された。
FIG. 1 shows the obtained low-pass filter characteristic results.
0. As can be seen from FIG. 10, the conventional plate electrode has a low Q value of about 10, so that when a low-pass filter is formed, the cutoff of filter characteristics from 100 MHz to 200 MHz is poor. On the other hand, in the thin film capacitor according to the present invention, the Q value was improved to about 50 when the electrode on the ground side was formed in a comb shape and the electrode on the signal side was covered thereon.
As a result, as shown in FIG. 10, the cutoff of the filter characteristics around 200 MHz was greatly improved.

【0023】次に薄膜キャパシタとして従来の平板電極
からなる薄膜キャパシタと、図5に示すように櫛状グラ
ンド側電極と階段状信号側電極からなる薄膜キャパシタ
をそれぞれ作製してフィルタ特性を比較検討した。図1
1にその3連LCフィルタ特性の測定結果を示した。各
薄膜L、薄膜Cの値は実施例と同様である。グランド側
の櫛状電極の幅は実施例1と同様に50から500μm
の設定可能幅に対して500μmとし、電極間幅は20
から100μmの設定可能幅に対して100μmに設定
した。信号側の電極はグランド側の電極の上に成膜する
ためグランド側櫛状電極の幅より狭くし、その結果信号
側電極の幅は広くなる。
Next, as a thin film capacitor, a thin film capacitor having a conventional flat plate electrode and a thin film capacitor having a comb-like ground side electrode and a step-like signal side electrode as shown in FIG. . FIG.
FIG. 1 shows the measurement results of the triple LC filter characteristics. The values of the thin films L and C are the same as in the embodiment. The width of the comb electrode on the ground side is 50 to 500 μm as in the first embodiment.
Is 500 μm with respect to the settable width of
Was set to 100 μm for a settable width of from 100 μm. The electrode on the signal side is formed narrower than the electrode on the ground side so as to form a film on the electrode on the ground side. As a result, the width of the electrode on the signal side becomes wider.

【0024】図11からわかるように、従来の平板電極
に比較して、本発明の薄膜CはQ値が100程度に改善
されたため100MHzから200MHzにおけるフィ
ルタ特性の切れ、更にゲインの増加が見られた。
As can be seen from FIG. 11, the thin film C of the present invention has a Q value improved to about 100 as compared with the conventional flat plate electrode, so that the filter characteristic is cut off from 100 MHz to 200 MHz and the gain is further increased. Was.

【0025】[0025]

【発明の効果】図1に示すような3連LCフィルタの等
価回路について、一体の薄膜LCフィルタを薄膜工程を
用いて作製しフィルタ特性、減衰量及び減衰帯域を評価
して本発明の効果を確認した。図に示した各値は代表例
であり、C1〜3は薄膜キャパシタのキャパシタンス
値、L1〜3は薄膜インダクタのインダクタンス値であ
る。具体的には図4にその平面模式図を示した。
According to the equivalent circuit of the triple LC filter as shown in FIG. 1, an integrated thin film LC filter is manufactured using a thin film process, and the filter characteristics, attenuation and attenuation band are evaluated to evaluate the effect of the present invention. confirmed. Each value shown in the figure is a representative example, C1 to C3 are capacitance values of a thin film capacitor, and L1 to L3 are inductance values of a thin film inductor. Specifically, FIG. 4 shows a schematic plan view thereof.

【0026】本発明によれば、図4に示す様にL1,
2,3薄膜ラセンコイルが3ケ直列に並び、薄膜インダ
クタの間に薄膜キャパシタンスが配置された構成を採用
したことにより、薄膜キャパシタにおいて高効率が得ら
れ、その結果薄膜デバイス全体の効率改善が図られる。
According to the present invention, as shown in FIG.
By adopting a configuration in which two or three thin film spiral coils are arranged in series and thin film capacitors are arranged between thin film inductors, high efficiency is obtained in the thin film capacitor, and as a result, the efficiency of the whole thin film device is improved. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】代表的な薄膜インダクタ素子を示した斜視図で
ある。
FIG. 1 is a perspective view showing a typical thin-film inductor element.

【図2】代表的な薄膜キャパシタンスを示した斜視図で
ある。
FIG. 2 is a perspective view showing a typical thin film capacitance.

【図3】薄膜L、Cを用いた薄膜3連LCフィルタの模
式図である。
FIG. 3 is a schematic diagram of a thin film triple LC filter using thin films L and C.

【図4】櫛状電極薄膜キャパシタの外観斜視図である。FIG. 4 is an external perspective view of a comb-shaped electrode thin film capacitor.

【図5】櫛状及び階段状電極からなる薄膜キャパシタの
構成図である。
FIG. 5 is a configuration diagram of a thin-film capacitor including comb-like and step-like electrodes.

【図6】図4の櫛状電極薄膜キャパシタの断面図であ
る。
6 is a cross-sectional view of the comb-shaped electrode thin film capacitor of FIG.

【図7】図5の櫛状及び階段状電極薄膜キャパシタの断
面図である。
FIG. 7 is a cross-sectional view of the comb-like and step-like electrode thin film capacitors of FIG.

【図8】3連LCフィルタ等価回路図である。FIG. 8 is an equivalent circuit diagram of a triple LC filter.

【図9】3連LCフィルタ等価回路配線のL素子、C素
子配置の模式図である。
FIG. 9 is a schematic diagram of an arrangement of L elements and C elements of a triple LC filter equivalent circuit wiring.

【図10】従来の平板電極及び本発明の櫛状電極からな
る薄膜キャパシタを用いた3連LCフィルタ特性の比較
を示した特性図である。
FIG. 10 is a characteristic diagram showing a comparison of characteristics of a triple LC filter using a thin film capacitor including a conventional flat plate electrode and a comb-shaped electrode of the present invention.

【図11】従来の平板電極及び本発明の櫛状電極+階段
状電極からなる薄膜キャパシタを用いた3連LCフィル
タ特性の比較を示した特性図である。
FIG. 11 is a characteristic diagram showing a comparison of characteristics of a triple LC filter using a conventional flat plate electrode and a thin film capacitor including a comb-like electrode and a step-like electrode of the present invention.

【符号の説明】[Explanation of symbols]

5 磁性体 6 導体コイル 7 基板 8 上部電極 9 誘電層 10 下部電極 11 基板 12 薄膜インダクタ 13 薄膜キャパシタ 14 信号線電極 15 グランド線電極 DESCRIPTION OF SYMBOLS 5 Magnetic body 6 Conductor coil 7 Substrate 8 Upper electrode 9 Dielectric layer 10 Lower electrode 11 Substrate 12 Thin film inductor 13 Thin film capacitor 14 Signal line electrode 15 Ground line electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多連薄膜LCフィルタにおいて、薄膜キ
ャパシタのグランド側及び信号側電極が櫛状又は階段状
に微細化された構造をもつことを特徴とする多連薄膜L
Cフィルタ。
1. A multi-layered thin film LC filter, wherein a ground side and a signal side electrode of the thin film capacitor have a structure miniaturized in a comb or step shape.
C filter.
【請求項2】 前記薄膜キャパシタにおいて、櫛状又は
階段状に微細化された電極構造の上又は周りに信号線を
成膜する際、櫛状及び階段状に微細化されたキャパシタ
電極を信号線が包むように成膜配置することを特徴とす
る多連薄膜LCフィルタ。
2. The method according to claim 1, wherein when forming the signal line on or around the electrode structure miniaturized in the shape of a comb or step, the capacitor electrode miniaturized in the shape of a comb or step is connected to the signal line. A multi-layer thin film LC filter, wherein a film is arranged so as to enclose the same.
JP24053496A 1996-09-11 1996-09-11 Multiple thin film lc filter Pending JPH1093371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24053496A JPH1093371A (en) 1996-09-11 1996-09-11 Multiple thin film lc filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24053496A JPH1093371A (en) 1996-09-11 1996-09-11 Multiple thin film lc filter

Publications (1)

Publication Number Publication Date
JPH1093371A true JPH1093371A (en) 1998-04-10

Family

ID=17060971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24053496A Pending JPH1093371A (en) 1996-09-11 1996-09-11 Multiple thin film lc filter

Country Status (1)

Country Link
JP (1) JPH1093371A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010023990A1 (en) * 2008-08-29 2010-03-04 三洋電機株式会社 Decoupling device and mounting body
CN110429919A (en) * 2019-07-24 2019-11-08 臻驱科技(上海)有限公司 A kind of multistage filter structure and multistage filter circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010023990A1 (en) * 2008-08-29 2010-03-04 三洋電機株式会社 Decoupling device and mounting body
JPWO2010023990A1 (en) * 2008-08-29 2012-01-26 三洋電機株式会社 Decoupling device and mounting body
CN110429919A (en) * 2019-07-24 2019-11-08 臻驱科技(上海)有限公司 A kind of multistage filter structure and multistage filter circuit
CN110429919B (en) * 2019-07-24 2024-01-12 臻驱科技(上海)有限公司 Multi-order filter structure and multi-order filter circuit

Similar Documents

Publication Publication Date Title
US7511594B2 (en) Noise filter and noise filter array
US5323128A (en) Dielectric filter having inter-resonator coupling including both magnetic and electric coupling
US6853268B2 (en) Noise filter
EP1772926B1 (en) 2 port type isolator and communication unit
US6532377B1 (en) Planar filter and filter system using a magnetic tuning member to provide permittivity adjustment
JPH08191201A (en) Chip filter
US5612656A (en) Resonator with spiral-shaped pattern electrodes
US8519815B1 (en) Multi-layered circuit structure
JPH05308201A (en) Strip line filter
JPH041521B2 (en)
JPH1093371A (en) Multiple thin film lc filter
US20220158624A1 (en) Acoustic-wave ladder filter having impedance element and diplexer based thereon
US10958232B2 (en) LC filter
JPH05234811A (en) Surface mount lc noise filter and manufacture thereof
JPH088499A (en) Printed circuit board structure of distributed constant circuit
JPH0473641B2 (en)
US7348866B2 (en) Compact printed filters with self-connected LC resonators
US11328861B2 (en) LC resonance element and resonance element array
JP2769346B2 (en) Cylindrical LC noise filter and method of manufacturing the same
JPH09294040A (en) Thin film lc filter
JP3166284B2 (en) Stripline resonator
JPS6114168Y2 (en)
JP2000252127A (en) Wire-wound magnetic thin-film inductor
JP3835631B2 (en) Lumped constant circulator
JPH0476906A (en) Noise filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040624

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050105