JPH1093219A - High-frequency integrated circuit and its manufacture - Google Patents

High-frequency integrated circuit and its manufacture

Info

Publication number
JPH1093219A
JPH1093219A JP24530596A JP24530596A JPH1093219A JP H1093219 A JPH1093219 A JP H1093219A JP 24530596 A JP24530596 A JP 24530596A JP 24530596 A JP24530596 A JP 24530596A JP H1093219 A JPH1093219 A JP H1093219A
Authority
JP
Japan
Prior art keywords
dielectric
frequency
integrated circuit
transmission line
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24530596A
Other languages
Japanese (ja)
Inventor
Hideyuki Kanai
秀之 金井
Yohachi Yamashita
洋八 山下
Kunio Yoshihara
邦夫 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24530596A priority Critical patent/JPH1093219A/en
Publication of JPH1093219A publication Critical patent/JPH1093219A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor

Landscapes

  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the rud for the adjustment of a resonance frequency and to improve alignment of a dielectric resonator with a high-frequency transmission line by forming a recess on part of a board and embedding the resonator in the recess. SOLUTION: Elements 12, such as active elements (e.g. FETS), a resistance element and a passive element (e.g. a capacitor) are formed on a surface of a GaAs substrate 11. Two or more layers of multilayer interconnections 14, 15 are formed on the board 11 via an insulating layer 13. Then, a predetermined region close to a microwave transmission line on a surface of a high-frequency integrated circuit (MMIC) 10 is selectively etched to form a recess (pit). Thereafter, a dielectric which functions as a resonator is embedded in the pit by using, for example, a sol-gel method. It is heat-treated, as needed, to crystallize the dielectric. Thus, a dielectric resonator 18 is formed, so as to magnetic field couple a microwave transmission line 17.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は誘電体共振器を内蔵
する高周波集積回路およびその製造方法に関する。
The present invention relates to a high-frequency integrated circuit having a built-in dielectric resonator and a method of manufacturing the same.

【0002】[0002]

【従来の技術】マイクロ波やミリ波などの高周波領域の
周波数処理回路を高集積化するために、大きな誘電率を
有するセラミックからなる誘電体共振器が用いられるよ
うになってきている。これは、誘電体共振器は比誘電率
が大きいほど寸法を小さくできるので高周波集積回路の
小型化に寄与するためである。
2. Description of the Related Art A dielectric resonator made of ceramic having a large dielectric constant has been used in order to highly integrate a frequency processing circuit in a high frequency region such as a microwave or a millimeter wave. This is because the size of the dielectric resonator can be reduced as the relative dielectric constant increases, which contributes to downsizing of the high-frequency integrated circuit.

【0003】従来、誘電体共振器を用いた高周波集積回
路では、所望の共振周波数を得るために、焼結した誘電
体を機械加工して例えば円柱状の誘電体共振器を作製
し、この誘電体共振器をMMIC(Microwave
Monolithic Integrated Ci
rcuit)表面の高周波伝送線路に磁界結合するよう
に接着して使用している。
Conventionally, in a high-frequency integrated circuit using a dielectric resonator, in order to obtain a desired resonance frequency, a sintered dielectric is machined to produce, for example, a columnar dielectric resonator. The body resonator is connected to MMIC (Microwave).
Monolithic Integrated Ci
rcuit) It is used by bonding to a high-frequency transmission line on the surface so as to be magnetically coupled.

【0004】しかし、所望の共振周波数を得るために必
要な加工精度は±0.1%である。このため、例えば高
さ1mm、直径1mmの円柱状の誘電体共振器を作製す
る場合、加工精度は1mm±1μmにする必要がある。
しかし、機械加工ではサイズにばらつきが生じるため、
素子ごとに共振周波数がばらつくという問題がある。し
たがって、機械加工した素子ごとに周波数を調整する必
要がある。また、誘電体共振器と高周波伝送線路との位
置合わせも難しいという問題がある。さらに、MMIC
表面に接着した誘電体共振器が突出するため、フリップ
チップ実装ができなかった。
However, the processing accuracy required to obtain a desired resonance frequency is ± 0.1%. Therefore, for example, when manufacturing a cylindrical dielectric resonator having a height of 1 mm and a diameter of 1 mm, the processing accuracy needs to be 1 mm ± 1 μm.
However, the size varies in machining,
There is a problem that the resonance frequency varies from element to element. Therefore, it is necessary to adjust the frequency for each machined element. There is also a problem that it is difficult to align the dielectric resonator and the high-frequency transmission line. In addition, MMIC
Flip chip mounting was not possible because the dielectric resonator adhered to the surface protruded.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、共振
周波数の調整が不要であり、誘電体共振器と高周波伝送
線路との位置合わせが良好であり、しかもフリップチッ
プ実装が可能な高周波集積回路、およびこのような高周
波集積回路を簡便に製造できる方法を提供することにあ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a high-frequency integrated circuit which does not require adjustment of a resonance frequency, has good alignment between a dielectric resonator and a high-frequency transmission line, and can be flip-chip mounted. It is an object of the present invention to provide a circuit and a method for easily manufacturing such a high-frequency integrated circuit.

【0006】[0006]

【課題を解決するための手段】本発明の高周波集積回路
は、高周波伝送線路を有する基板と、前記高周波伝送線
路に磁界結合するように前記基板表面に設けられた誘電
体共振器を有する高周波集積回路において、前記基板の
一部に凹部が形成されており、この凹部に誘電体共振器
を埋設したことを特徴とするものである。
According to the present invention, there is provided a high frequency integrated circuit comprising: a substrate having a high frequency transmission line; and a dielectric resonator provided on the surface of the substrate so as to be magnetically coupled to the high frequency transmission line. In the circuit, a concave portion is formed in a part of the substrate, and a dielectric resonator is embedded in the concave portion.

【0007】本発明の高周波集積回路の製造方法は、基
板に高周波集積回路を形成する工程と、基板表面を選択
的にエッチングして凹部を形成する工程と、基板表面に
形成された凹部に共振器として機能する誘電体を埋設す
る工程とを具備したことを特徴とするものである。
According to the method of manufacturing a high-frequency integrated circuit of the present invention, a step of forming a high-frequency integrated circuit on a substrate, a step of selectively etching a substrate surface to form a concave portion, and a step of forming a concave portion on the substrate surface by resonance. And embedding a dielectric functioning as a container.

【0008】[0008]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明の対象となる高周波集積回路は10GHz
以上の高周波で好適に使用されるものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The high-frequency integrated circuit to which the present invention is applied is 10 GHz
It is preferably used at the above high frequency.

【0009】本発明の高周波集積回路(MMIC)を製
造するには、以下のような方法が用いられる。まず、通
常の方法によりGaAs、Siなどの半導体基板表面
に、能動素子(例えばトランジスタ)、抵抗素子および
受動素子(例えばキャパシタ)などの素子を形成する。
この基板上に絶縁層を介して2層以上の多層配線を形成
し、絶縁層の表面にマイクロ波伝送線路などを設ける。
次に、MMIC表面のマイクロ波伝送線路の近傍の所定
領域を選択的にエッチングして凹部(ピット)を形成す
る。ピットの形状は特に限定されない。ピットは例えば
反応性イオンエッチング(RIE)などの方法で形成で
きる。次いで、例えばゾルゲル法を用い、ピットの内部
に共振器として機能する誘電体を埋設する。必要に応じ
て熱処理を行い、誘電体を単結晶化する。このようにし
てマイクロ波伝送線路に磁界結合するように誘電体共振
器を形成する。なお、ピットの内部に誘電体共振器を形
成した後に、マイクロ波伝送線路を形成してもよい。
In order to manufacture the high frequency integrated circuit (MMIC) of the present invention, the following method is used. First, elements such as an active element (for example, a transistor), a resistance element, and a passive element (for example, a capacitor) are formed on the surface of a semiconductor substrate such as GaAs or Si by a normal method.
On the substrate, a multilayer wiring of two or more layers is formed via an insulating layer, and a microwave transmission line or the like is provided on the surface of the insulating layer.
Next, a predetermined area near the microwave transmission line on the surface of the MMIC is selectively etched to form a concave portion (pit). The shape of the pit is not particularly limited. The pits can be formed by, for example, a method such as reactive ion etching (RIE). Next, a dielectric functioning as a resonator is buried inside the pit by using, for example, a sol-gel method. Heat treatment is performed as needed to monocrystallize the dielectric. Thus, the dielectric resonator is formed so as to be magnetically coupled to the microwave transmission line. Note that the microwave transmission line may be formed after forming the dielectric resonator inside the pit.

【0010】本発明において、誘電体共振器を構成する
誘電体材料としては、Ba(Mg1/3 Ta2/3 )O3
Ba(Zn1/3 Ta2/3 )O3 、(Ba,Sr)(Ga
1/3Ta2/3 )O3 、Ba(Mg1/3 Nb2/3 )O3
Ba(Zn1/3 Nb2/3 )O3 、(Ba,Sr)(Ga
1/3 Nb2/3 )O3 、およびこれらの固溶体からなる群
より選択される少なくとも1種を用いることが好まし
い。また、誘電体材料とMMICの構成材料との熱膨張
係数が大きくなるとMMICから誘電体が脱離したり、
MMICに外力がかかり特性が低下するおそれがある
が、これらの誘電体材料は、熱膨張係数がGaAsなど
MMICの構成材料とほぼ同等であるので、MMICか
ら脱離、誘電体の特性低下を防ぐことが可能となる。特
に誘電体を単結晶化すれば、この効果が顕著に現れる。
また、誘電体を単結晶化することにより、150℃以上
の温度または−50℃以下の温度での誘電損失を小さく
できる。
In the present invention, as a dielectric material constituting the dielectric resonator, Ba (Mg 1/3 Ta 2/3 ) O 3 ,
Ba (Zn 1/3 Ta 2/3 ) O 3 , (Ba, Sr) (Ga
1/3 Ta 2/3 ) O 3 , Ba (Mg 1/3 Nb 2/3 ) O 3 ,
Ba (Zn 1/3 Nb 2/3 ) O 3 , (Ba, Sr) (Ga
It is preferable to use at least one selected from the group consisting of 1/3 Nb 2/3 ) O 3 and solid solutions thereof. Also, if the coefficient of thermal expansion between the dielectric material and the constituent material of the MMIC increases, the dielectric may be detached from the MMIC,
Although there is a possibility that an external force is applied to the MMIC to deteriorate its characteristics, these dielectric materials have a thermal expansion coefficient substantially equal to that of the constituent materials of the MMIC such as GaAs. It becomes possible. In particular, when the dielectric is made single crystal, this effect is remarkably exhibited.
Further, by making the dielectric single crystal, the dielectric loss at a temperature of 150 ° C. or higher or −50 ° C. or lower can be reduced.

【0011】本発明では、ピットの内部に埋設される誘
電体、すなわち形成するピットのサイズにより共振周波
数が決まる。そして、ピットの大きさはRIEなどの方
法を用いれば精度よく形成できる。したがって、製造さ
れる共振器の共振周波数のばらつきが少なく、周波数補
正が不要なため製造効率が向上する。また、RIEなど
の方法を用いれば誘電体共振器の高周波伝送線路に対す
る位置決め精度が良好である。さらに、ピットの内部に
誘電体共振器を埋設したことによりMMIC表面が平坦
になるため、フリップチップ実装が可能となる。
In the present invention, the resonance frequency is determined by the size of the dielectric buried in the pit, that is, the size of the pit to be formed. The size of the pit can be accurately formed by using a method such as RIE. Therefore, the variation in the resonance frequency of the manufactured resonator is small, and the frequency correction is unnecessary, so that the manufacturing efficiency is improved. If a method such as RIE is used, the positioning accuracy of the dielectric resonator with respect to the high-frequency transmission line is good. Furthermore, since the surface of the MMIC is flattened by embedding the dielectric resonator inside the pit, flip-chip mounting becomes possible.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明の高周波集積回路を含む高周波帯無
線通信装置の分解斜視図である。この高周波帯無線通信
装置は送受信モジュールである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an exploded perspective view of a high-frequency band wireless communication device including a high-frequency integrated circuit of the present invention. This high-frequency band wireless communication device is a transmission / reception module.

【0013】図1において、アルミナ基板1上には送信
アンテナ2および受信アンテナ3が形成されている。ま
た、アルミナ基板1上にはGaAs基板にデバイスを形
成した半導体チップ4がマウントされ、送信アンテナ2
および受信アンテナ3とボンディングワイヤ5により接
続されている。このアルミナ基板1は入出力端子7が設
けられたパッケージ6内に収容される。パッケージ6の
材料としては、コバール、42アロイ、Cu、Alなど
が用いられる。なお、図示していないが、パッケージ6
の上部に送受信のための開口部を設けて、送信アンテナ
2および受信アンテナ3が電波を送受信できるようにな
っている。
In FIG. 1, a transmitting antenna 2 and a receiving antenna 3 are formed on an alumina substrate 1. A semiconductor chip 4 having a device formed on a GaAs substrate is mounted on an alumina substrate 1, and a transmitting antenna 2
And the receiving antenna 3 and the bonding wire 5. The alumina substrate 1 is housed in a package 6 provided with input / output terminals 7. As a material of the package 6, Kovar, 42 alloy, Cu, Al, or the like is used. Although not shown, the package 6
An opening for transmission and reception is provided at the upper part of the transmission antenna 2 so that the transmission antenna 2 and the reception antenna 3 can transmit and receive radio waves.

【0014】図2に図1の高周波帯無線通信装置の回路
ブロック図を示す。図2に示すように、半導体チップ4
には、受信手段としてLNA(ローノイズアンプ)およ
びLNAに接続された直接復調回路が、送信手段として
直接変調回路、直接変調回路を制御するOSC(発振
器)および直接変調回路に接続されたPA(パワーアン
プ)がそれぞれ組み込まれている。受信アンテナ3で受
信された信号は、LNAおよび直接復調回路を経由して
ベースバンド信号として出力される。一方、ベースバン
ド信号が直接変調回路へ入力され、さらにPAを経由し
て送信アンテナ2から送信される。直接復調回路、直接
変調回路およびOSCを制御する制御信号は半導体チッ
プ4の外部から入力される。上述したベースバンド信号
および制御信号は、図1に示した入出力端子7を介して
入出力される。そして、上記のOSCの構成要素として
誘電体共振器が用いられる。
FIG. 2 is a circuit block diagram of the high-frequency band wireless communication apparatus shown in FIG. As shown in FIG.
Includes a LNA (low noise amplifier) as a receiving means and a direct demodulation circuit connected to the LNA, a transmitting means as a direct modulation circuit, an OSC (oscillator) for controlling the direct modulation circuit, and a PA (power) connected to the direct modulation circuit. Amplifiers) are incorporated. The signal received by the receiving antenna 3 is output as a baseband signal via the LNA and the direct demodulation circuit. On the other hand, the baseband signal is directly input to the modulation circuit, and further transmitted from the transmission antenna 2 via the PA. Control signals for controlling the direct demodulation circuit, the direct modulation circuit, and the OSC are input from outside the semiconductor chip 4. The above-described baseband signal and control signal are input / output via the input / output terminal 7 shown in FIG. A dielectric resonator is used as a component of the OSC.

【0015】図3に直接変調回路の一例を示す。この直
接変調回路はAM変調を行うものであり、変調用FET
を用いたスイッチング方式を採用している。入力された
ベースバンド信号は、変調用FETによって変調され、
整合回路を通してPAに出力され、さらに送信アンテナ
2から送信される。この際、OSCから変調信号が抵抗
へ入力されている。
FIG. 3 shows an example of a direct modulation circuit. This direct modulation circuit performs AM modulation, and uses a modulation FET.
The switching method using is adopted. The input baseband signal is modulated by the modulation FET,
The signal is output to the PA through the matching circuit, and further transmitted from the transmitting antenna 2. At this time, the modulation signal is being input from the OSC to the resistor.

【0016】図4に直接復調回路の一例を示す。LNA
から入力された信号は、復同調回路を通して取り出さ
れ、ダイオードにおいて復調検波され、さらにベースバ
ンド信号として出力される。図4のように復同調回路を
用いるのは信号の選択性を上げるためであるが、通常の
同調回路を用いてもよい。また、ダイオードの代わりに
非線形増幅器を用いてもよい。
FIG. 4 shows an example of a direct demodulation circuit. LNA
Is taken out through a detuning circuit, demodulated and detected by a diode, and output as a baseband signal. Although the use of the detuning circuit as shown in FIG. 4 is to increase the selectivity of the signal, a normal tuning circuit may be used. Further, a nonlinear amplifier may be used instead of the diode.

【0017】図5に本発明に係る別の高周波帯無線通信
装置の分解斜視図、図6にその回路ブロック図を示す。
図5の装置において、図1の装置と異なる点は、2つの
半導体チップ41 、42 が用いられていることである。
図5および図6に示すように、半導体チップ42 にはL
NAが、半導体チップ41 にはLNA以外の送受信手段
が組み込まれている。LNAは受信アンテナ3からの信
号を直接受ける部分であるため、干渉など他の回路に与
える影響が大きい。これに対して、図5および図6のよ
うにLNAのみを単独の半導体チップに組み込むと、L
NAから他の回路に与える影響を抑制することができ
る。
FIG. 5 is an exploded perspective view of another high-frequency band wireless communication apparatus according to the present invention, and FIG. 6 is a circuit block diagram thereof.
The device of FIG. 5 differs from the device of FIG. 1 in that two semiconductor chips 4 1 and 4 2 are used.
As shown in FIGS. 5 and 6, the semiconductor chip 4 2 L
NA is, transmission and reception means other than LNA is incorporated in the semiconductor chip 4 1. Since the LNA is a part that directly receives a signal from the receiving antenna 3, it has a large effect on other circuits such as interference. On the other hand, when only the LNA is incorporated into a single semiconductor chip as shown in FIGS.
The influence of the NA on other circuits can be suppressed.

【0018】図7に誘電体共振器を内蔵したMMICの
等価回路図を示す。この発振器は発振用素子としてFE
Tを有するものである。FETのソースSには接地を兼
ねた先端短絡の負性抵抗発生用のスタブ21が接続され
ている。ゲートGには共振回路22が接続されている。
ドレインDには、整合回路23が接続され、出力が取り
出される。FETのゲート−ドレインバイアス回路に
は、1/4波長線路およびバイパスキャパシタで構成さ
れるショートスタブが用いられている。そして、マイク
ロ波伝送線路に磁界結合するように誘電体共振器が設け
られている。
FIG. 7 shows an equivalent circuit diagram of an MMIC having a built-in dielectric resonator. This oscillator uses FE as an oscillation element.
It has T. To the source S of the FET, a stub 21 for generating a negative resistance having a short-circuit at the tip and also serving as a ground is connected. The resonance circuit 22 is connected to the gate G.
The matching circuit 23 is connected to the drain D, and an output is taken out. In the gate-drain bias circuit of the FET, a short stub composed of a quarter wavelength line and a bypass capacitor is used. Further, a dielectric resonator is provided so as to be magnetically coupled to the microwave transmission line.

【0019】このような構成にすると、FETのソース
Sが接地されているため、ソースS−ゲートG間に共振
器を含む帰還回路が挿入されていることになる。共振器
は帯域阻止特性を示すので共振器とFETの距離を適当
に設定することにより共振周波数でのみ帰還がかかり安
定な発振が得られる。
With this configuration, since the source S of the FET is grounded, a feedback circuit including a resonator is inserted between the source S and the gate G. Since the resonator exhibits band rejection characteristics, feedback is provided only at the resonance frequency and stable oscillation can be obtained by appropriately setting the distance between the resonator and the FET.

【0020】図8(a)および(b)に、図7に示した
MMIC10の素子構造を示す。図8(a)は一部を破
断して示す斜視図、図8(b)は平面図である。図8に
おいて、5mm角のGaAs基板11の表面に、能動素
子(例えばFET)、抵抗素子および受動素子(例えば
キャパシタ)などの素子12が形成されている。この基
板11上に絶縁層13を介して2層以上の多層配線1
4、15が形成されている。この多層配線の最上層は接
地導体層15となっている。この絶縁層13の表面に、
スパイラルインダクタ16、マイクロ波伝送線路17お
よびアンテナなどが形成されている。そして、マイクロ
波伝送線路17に磁界結合するように誘電体共振器18
が形成されている。絶縁層の材料としては、ポリイミ
ド、BCB(ベンゾシクロブテン)などの有機樹脂、ま
たはSiO2 などを用いることができる。有機樹脂を用
いた場合、低誘電率で低損失の厚い絶縁層を形成でき
る。多層配線を構成する材料としては、Al、Au、C
uなどを用いることができる。
FIGS. 8A and 8B show the device structure of the MMIC 10 shown in FIG. FIG. 8A is a perspective view with a part cut away, and FIG. 8B is a plan view. In FIG. 8, elements 12 such as an active element (for example, FET), a resistance element, and a passive element (for example, capacitor) are formed on a surface of a GaAs substrate 11 of 5 mm square. On the substrate 11, a multilayer wiring 1 of two or more layers via an insulating layer 13.
4 and 15 are formed. The uppermost layer of this multilayer wiring is the ground conductor layer 15. On the surface of the insulating layer 13,
A spiral inductor 16, a microwave transmission line 17, an antenna, and the like are formed. Then, the dielectric resonator 18 is coupled to the microwave transmission line 17 so as to be magnetically coupled.
Are formed. As a material of the insulating layer, polyimide, an organic resin such as BCB (benzocyclobutene), or SiO 2 can be used. When an organic resin is used, a thick insulating layer having low dielectric constant and low loss can be formed. The materials constituting the multilayer wiring include Al, Au, C
u or the like can be used.

【0021】上記の誘電体共振器18は以下のようにし
て形成した。まず、所定パターンのレジストを形成した
後、RIEによりMMIC10の表面に直径1.3m
m、深さ0.6mmの円柱状のピットを形成した。次
に、ゾルゲル法を用い、ピット中にBa(Mg1/3 Ta
2/3 )O3 誘電体を形成し、レーザーアニールにより結
晶化させた。
The above-described dielectric resonator 18 was formed as follows. First, after a resist having a predetermined pattern is formed, a 1.3 m diameter is formed on the surface of the MMIC 10 by RIE.
A columnar pit having a depth of 0.6 mm and a depth of 0.6 mm was formed. Next, using a sol-gel method, Ba (Mg 1/3 Ta
2/3 ) An O 3 dielectric was formed and crystallized by laser annealing.

【0022】得られたMMICでは、設計発振周波数6
0GHzに対して、60.5GHzの発振周波数が得ら
れ、誤差は1%以下の高い精度であった。なお、図9に
示すように、ピットの平面形状を四角形にして角柱状の
誘電体共振器18を埋設してもよい。
The obtained MMIC has a design oscillation frequency of 6
An oscillation frequency of 60.5 GHz was obtained with respect to 0 GHz, and the error was as high as 1% or less. As shown in FIG. 9, the planar shape of the pit may be quadrangular and the prismatic dielectric resonator 18 may be embedded.

【0023】また、図10に示すように、まずMMIC
10表面に誘電体共振器18を埋設した後、誘電体共振
器18上にマイクロ波伝送線路17を形成してもよい。
このような方法では、誘電体共振器18とマイクロ波伝
送線路17との位置合わせ精度をより良好にすることが
できる。
Further, as shown in FIG.
After embedding the dielectric resonator 18 on the surface of the substrate 10, the microwave transmission line 17 may be formed on the dielectric resonator 18.
According to such a method, the positioning accuracy between the dielectric resonator 18 and the microwave transmission line 17 can be further improved.

【0024】[0024]

【発明の効果】以上詳述したように本発明によれば、共
振周波数の調整が不要であり、誘電体共振器と高周波伝
送線路との位置合わせが良好であり、しかもフリップチ
ップ実装が可能な高周波集積回路、およびこのような高
周波集積回路を簡便に製造できる方法を提供することが
できる。
As described above in detail, according to the present invention, the adjustment of the resonance frequency is unnecessary, the alignment between the dielectric resonator and the high-frequency transmission line is excellent, and the flip-chip mounting is possible. A high-frequency integrated circuit and a method for easily manufacturing such a high-frequency integrated circuit can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高周波集積回路を含む高周波帯無線通
信装置の一例を示す分解斜視図。
FIG. 1 is an exploded perspective view showing an example of a high-frequency band wireless communication device including a high-frequency integrated circuit of the present invention.

【図2】図1の高周波帯無線通信装置の回路ブロック
図。
FIG. 2 is a circuit block diagram of the high-frequency band wireless communication device of FIG. 1;

【図3】直接変調回路の一例を示す回路ブロック図。FIG. 3 is a circuit block diagram illustrating an example of a direct modulation circuit.

【図4】直接復調回路の一例を示す回路ブロック図。FIG. 4 is a circuit block diagram illustrating an example of a direct demodulation circuit.

【図5】本発明の高周波集積回路を含む高周波帯無線通
信装置の他の例を示す分解斜視図。
FIG. 5 is an exploded perspective view showing another example of the high-frequency band wireless communication device including the high-frequency integrated circuit of the present invention.

【図6】図5の高周波帯無線通信装置の回路ブロック
図。
FIG. 6 is a circuit block diagram of the high-frequency band wireless communication device of FIG. 5;

【図7】本発明に係る誘電体共振器を内蔵したMMIC
の等価回路図。
FIG. 7 shows an MMIC incorporating a dielectric resonator according to the present invention.
FIG.

【図8】本発明に係る誘電体共振器を内蔵したMMIC
の一部を破断して示す斜視図および平面図。
FIG. 8 shows an MMIC incorporating a dielectric resonator according to the present invention.
The perspective view and top view which show and fracture | rupture a part of it.

【図9】本発明に係る誘電体共振器の他の構成例を示す
斜視図。
FIG. 9 is a perspective view showing another configuration example of the dielectric resonator according to the present invention.

【図10】本発明に係る誘電体共振器のさらに他の構成
例を示す斜視図。
FIG. 10 is a perspective view showing still another configuration example of the dielectric resonator according to the present invention.

【符号の説明】[Explanation of symbols]

1…アルミナ基板 2…送信アンテナ 3…受信アンテナ 4、41 、42 …半導体チップ 5…ボンディングワイヤ 6…パッケージ 7…入出力端子 10…MMIC 11…GaAs基板 12…素子 13…絶縁層 14…多層配線 15…接地導体層 16…スパイラルインダクタ 17…マイクロ波伝送線路 18…誘電体共振器 21…スタブ 22…共振回路 23…整合回路1 ... alumina substrate 2 ... transmission antenna 3 ... receiving antenna 4,4 1, 4 2 ... semiconductor chip 5 ... bonding wire 6 ... package 7 ... output terminals 10 ... MMIC 11 ... GaAs substrate 12 ... device 13 ... insulating layer 14 ... Multilayer wiring 15 Ground conductor layer 16 Spiral inductor 17 Microwave transmission line 18 Dielectric resonator 21 Stub 22 Resonant circuit 23 Matching circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高周波伝送線路を有する基板と、前記高
周波伝送線路に磁界結合するように前記基板表面に設け
られた誘電体共振器を有する高周波集積回路において、
前記基板の一部に凹部が形成されており、この凹部に誘
電体共振器を埋設したことを特徴とする高周波集積回
路。
1. A high-frequency integrated circuit comprising: a substrate having a high-frequency transmission line; and a dielectric resonator provided on a surface of the substrate so as to be magnetically coupled to the high-frequency transmission line.
A high frequency integrated circuit, wherein a concave portion is formed in a part of the substrate, and a dielectric resonator is embedded in the concave portion.
【請求項2】 誘電体がBa(Mg1/3 Ta2/3 )O
3 、Ba(Zn1/3 Ta2/3 )O3 、(Ba,Sr)
(Ga1/3 Ta2/3 )O3 、Ba(Mg1/3 Nb2/3
3 、Ba(Zn1/3 Nb2/3 )O3 、(Ba,Sr)
(Ga1/3 Nb2/3 )O3 、およびこれらの固溶体から
なる群より選択される少なくとも1種であることを特徴
とする請求項1記載の高周波集積回路。
2. The dielectric material is Ba (Mg 1/3 Ta 2/3 ) O.
3 , Ba (Zn 1/3 Ta 2/3 ) O 3 , (Ba, Sr)
(Ga 1/3 Ta 2/3 ) O 3 , Ba (Mg 1/3 Nb 2/3 )
O 3 , Ba (Zn 1/3 Nb 2/3 ) O 3 , (Ba, Sr)
2. The high-frequency integrated circuit according to claim 1, wherein the high-frequency integrated circuit is at least one selected from the group consisting of (Ga 1/3 Nb 2/3 ) O 3 and a solid solution thereof.
【請求項3】 基板に高周波集積回路を形成する工程
と、基板表面を選択的にエッチングして凹部を形成する
工程と、基板表面に形成された凹部に共振器として機能
する誘電体を埋設する工程とを具備したことを特徴とす
る高周波集積回路の製造方法。
3. A step of forming a high-frequency integrated circuit on a substrate, a step of selectively etching a surface of the substrate to form a recess, and embedding a dielectric functioning as a resonator in the recess formed on the substrate surface. And a method for manufacturing a high-frequency integrated circuit.
JP24530596A 1996-09-17 1996-09-17 High-frequency integrated circuit and its manufacture Pending JPH1093219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24530596A JPH1093219A (en) 1996-09-17 1996-09-17 High-frequency integrated circuit and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24530596A JPH1093219A (en) 1996-09-17 1996-09-17 High-frequency integrated circuit and its manufacture

Publications (1)

Publication Number Publication Date
JPH1093219A true JPH1093219A (en) 1998-04-10

Family

ID=17131705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24530596A Pending JPH1093219A (en) 1996-09-17 1996-09-17 High-frequency integrated circuit and its manufacture

Country Status (1)

Country Link
JP (1) JPH1093219A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100348443B1 (en) * 2000-07-13 2002-08-10 엘지전자 주식회사 Resonator using cavity filled with high dielectric pastes and fabricating method thereof
EP1326300A2 (en) * 2002-01-08 2003-07-09 Hitachi, Ltd. Mounting structure of high-frequency semiconductor apparatus and its production method
KR100513709B1 (en) * 1999-03-31 2005-09-07 삼성전자주식회사 Cavity resonator for reducing the phase noise of a MMIC VCO
KR100552658B1 (en) * 1999-03-31 2006-02-17 삼성전자주식회사 Cavity resonator for reducing a phase noise of a voltage controlled oscillator
EP1376694A3 (en) * 2002-04-17 2006-08-23 Sanyo Electric Co., Ltd. Semiconductor switching circuit device
US8958929B2 (en) 2011-01-31 2015-02-17 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100513709B1 (en) * 1999-03-31 2005-09-07 삼성전자주식회사 Cavity resonator for reducing the phase noise of a MMIC VCO
KR100552658B1 (en) * 1999-03-31 2006-02-17 삼성전자주식회사 Cavity resonator for reducing a phase noise of a voltage controlled oscillator
KR100348443B1 (en) * 2000-07-13 2002-08-10 엘지전자 주식회사 Resonator using cavity filled with high dielectric pastes and fabricating method thereof
EP1326300A2 (en) * 2002-01-08 2003-07-09 Hitachi, Ltd. Mounting structure of high-frequency semiconductor apparatus and its production method
EP1326300A3 (en) * 2002-01-08 2003-09-03 Hitachi, Ltd. Mounting structure of high-frequency semiconductor apparatus and its production method
US6771150B2 (en) 2002-01-08 2004-08-03 Hitachi, Ltd. Mounting structure of high frequency semiconductor apparatus and its production method
US7307581B2 (en) 2002-01-08 2007-12-11 Hitachi, Ltd. Mounting structure of high-frequency semiconductor apparatus and its production method
EP1376694A3 (en) * 2002-04-17 2006-08-23 Sanyo Electric Co., Ltd. Semiconductor switching circuit device
US8958929B2 (en) 2011-01-31 2015-02-17 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus

Similar Documents

Publication Publication Date Title
US20200219861A1 (en) Front end system having an acoustic wave resonator (awr) on an interposer substrate
US6998710B2 (en) High-frequency device
US7187250B2 (en) Coupler, integrated electronic component and electronic device
EP1487019A1 (en) Electronic device and method of manufacturing thereof
US5805023A (en) High frequency amplifier, receiver, and transmitter system
US6917259B2 (en) High-frequency module substrate device
US6239752B1 (en) Semiconductor chip package that is also an antenna
JPH09153839A (en) Very high frequency band radio communication equipment
JPH0774285A (en) Semiconductor device
JP2000124358A (en) High-frequency integrated circuit
JP2004282752A (en) Active smart antenna system and its manufacturing method
JP2650649B2 (en) Microwave equipment
EP0996188A2 (en) Microwave-millimeter wave circuit apparatus and fabrication method thereof having a circulator or isolator
JPH1093219A (en) High-frequency integrated circuit and its manufacture
US20030076174A1 (en) Radio frequency amplifier
US6144264A (en) High Q-factor oscillator circuit
US6710426B2 (en) Semiconductor device and transceiver apparatus
US5309119A (en) Oscillating circuit with a ring shaped resonator of superconducting material coupled thereto
US6642617B2 (en) Semiconductor device
JP2011176061A (en) Semiconductor device
JP2002009193A (en) Semiconductor device
US20220093581A1 (en) Ic package providing isolated filter on lead-frame
JP3183459B2 (en) Microwave / millimeter wave circuit device
JPH01251906A (en) Microstrip oscillator supplying radio frequency power to load
US7898347B2 (en) Dielectric resonator oscillator and radar system using the same