JPH1092628A - Coil for generating magnetic field - Google Patents

Coil for generating magnetic field

Info

Publication number
JPH1092628A
JPH1092628A JP8269181A JP26918196A JPH1092628A JP H1092628 A JPH1092628 A JP H1092628A JP 8269181 A JP8269181 A JP 8269181A JP 26918196 A JP26918196 A JP 26918196A JP H1092628 A JPH1092628 A JP H1092628A
Authority
JP
Japan
Prior art keywords
coil
magnetic field
coils
longitudinal direction
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8269181A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nishimori
康博 西森
Michio Taniguchi
道夫 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP8269181A priority Critical patent/JPH1092628A/en
Publication of JPH1092628A publication Critical patent/JPH1092628A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coil for generating magnetic fields which can be reduced in volume and weight as much as possible. SOLUTION: A coil for generating magnetic field is constituted by alternately laminating first coils 7A, 7B, and 7C which are formed by winding hollow pipes in multiple layers in the radial direction of the coil and second coils 8A and 8B formed by winding copper wires in multiple layers in the radial direction of the coil in the axial direction of the coil so that the first coils 7A and 7C can be positioned to both end sections of the coil in the axial direction and making cooling water to successively flow through the pipes of the first coils 7A, 7B, and 7C in the axial direction of the coil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体プロセスに
おけるプラズマ処理装置等に用いる磁界発生用コイルに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic field generating coil used for a plasma processing apparatus in a semiconductor process.

【0002】[0002]

【従来の技術】図4は、本発明の対象とするプラズマ処
理装置の構成図であって、1はマグネトロン、2は導波
管、3はプラズマ生成室、4は磁界発生用コイル、5は
反応室、6は被処理物である。
2. Description of the Related Art FIG. 4 is a block diagram of a plasma processing apparatus to which the present invention is applied, wherein 1 is a magnetron, 2 is a waveguide, 3 is a plasma generation chamber, 4 is a magnetic field generating coil, and 5 is a coil. A reaction chamber 6 is an object to be processed.

【0003】マイクロ波は、マグネトロン1により発生
させ、導波管2を通してプラズマ生成室3に進行させ
る。プラズマ生成室3の外周に配置された磁界発生用コ
イル4を励磁するとプラズマ生成室3の内部には、磁界
とマイクロ波とによりプラズマが発生する。このプラズ
マを反応室5内の被処理物6に照射することにより、い
わゆるエッチング、アッシング、スパッタリング等の加
工が行われる。
[0003] Microwaves are generated by a magnetron 1 and are advanced to a plasma generation chamber 3 through a waveguide 2. When the magnetic field generating coil 4 arranged on the outer periphery of the plasma generation chamber 3 is excited, plasma is generated inside the plasma generation chamber 3 by the magnetic field and the microwave. By irradiating the object 6 in the reaction chamber 5 with the plasma, processing such as etching, ashing, and sputtering is performed.

【0004】図5は、従来の磁界発生用コイルを示す図
であって、20は絶縁部材により覆われた銅線がコイル
の半径方向に多重に巻かれた銅線コイルで、このコイル
20がコイルの長軸方向に複数個積層されている。21
は銅製冷却板で、この冷却板21と複数個積層されたコ
イル20とが長軸方向に交互に配設されると共に、冷却
板21が長軸方向の両端部に配設されている。22は冷
却板21の半径方向の外周部に取り付けられた冷却水循
環パイプで、このパイプ22の中には冷却水が流されて
コイル20の発熱を抑制している。なお、冷却板21に
近傍のコイル20は有効に冷却されるが、コイル20を
複数個積層された中央部のように冷却板21から離れる
程、冷却効果は小さくなっている。
FIG. 5 is a view showing a conventional magnetic field generating coil, wherein reference numeral 20 denotes a copper wire coil in which a copper wire covered with an insulating member is wound multiple times in the radial direction of the coil. A plurality of coils are stacked in the longitudinal direction of the coil. 21
Is a copper cooling plate. The cooling plate 21 and a plurality of laminated coils 20 are alternately arranged in the longitudinal direction, and the cooling plates 21 are arranged at both ends in the longitudinal direction. Reference numeral 22 denotes a cooling water circulation pipe attached to a radially outer peripheral portion of the cooling plate 21. Cooling water flows through the pipe 22 to suppress heat generation of the coil 20. The coil 20 near the cooling plate 21 is effectively cooled, but the cooling effect becomes smaller as the coil 20 is separated from the cooling plate 21 as in a central portion where a plurality of coils 20 are stacked.

【0005】以上の銅線コイル20、銅製冷却板21及
び冷却水循環パイプ22により従来の磁界発生用コイル
4が構成されている。
The conventional coil 4 for generating a magnetic field is constituted by the copper wire coil 20, the copper cooling plate 21 and the cooling water circulation pipe 22 described above.

【0006】[0006]

【発明が解決しようとする課題】一般にコイルの動的性
能は、コイルが発生する磁束密度で評価され、このコイ
ル中心における軸方向の磁束密度Bは、 B=k・N・I………(1) で表される。ただし、Nはコイルの巻数、Iはコイルに
流れる電流値、kは定数である。
Generally, the dynamic performance of a coil is evaluated by the magnetic flux density generated by the coil. The magnetic flux density B in the axial direction at the center of the coil is represented by the following equation: B = k · N · I (B) 1) It is represented by Here, N is the number of turns of the coil, I is the current value flowing through the coil, and k is a constant.

【0007】ところで、図5に示される従来の磁界発生
用コイルにおいて、高い磁束密度を得るには、上記
(1)式においてコイルの巻数Nまたは電流値Iを増加
させなければならない。しかし、コイルの巻数Nを増加
させると、磁界発生用コイルの半径方向の構造が大きく
なる。他方、コイルの電流値Iを大きくすると、コイル
内部が発熱で高温になりコイルの絶縁の劣化につなが
る。このため、冷却効果を増加させるために冷却板を厚
くしたり、冷却板の挿入枚数を増加する必要があり、磁
界発生用コイルの重量が増加するという欠点があった。
By the way, in the conventional magnetic field generating coil shown in FIG. 5, in order to obtain a high magnetic flux density, it is necessary to increase the number of turns N or the current value I of the coil in the above equation (1). However, when the number of turns N of the coil is increased, the radial structure of the magnetic field generating coil is increased. On the other hand, when the current value I of the coil is increased, the temperature inside the coil becomes high due to heat generation, leading to deterioration of insulation of the coil. For this reason, in order to increase the cooling effect, it is necessary to increase the thickness of the cooling plate or increase the number of inserted cooling plates, resulting in a disadvantage that the weight of the magnetic field generating coil increases.

【0008】本発明は上述の問題に鑑みてなされたもの
で、その目的は磁界発生用コイルの容積を可及的に小さ
く、かつ軽量の磁界発生用コイルを提供することであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a magnetic field generating coil which is as light as possible and has a small volume.

【0009】[0009]

【課題を解決するための手段】本第1の発明は、中空円
筒状に形成される磁界発生用コイルに適応される。その
特徴とするところは、中空パイプをコイルの半径方向に
多層に巻いた第1のコイルと、銅線をコイルの半径方向
に多層に巻いた第2のコイルとをコイルの長軸方向に交
互に積層すると共に、第1のコイルを長軸方向の両端部
に配設し、かつ、第1のコイルのパイプの内部に冷却水
を流通させることである。本第2の発明は、本第1の発
明において、コイルの長軸方向の一方の端部に配設され
る第1のコイルに冷却水を供給し、該第1のコイルから
長軸方向に離設される他の第1のコイルへと冷却路を順
に連通させ、長軸方向の他端部に配設される第1のコイ
ルから冷却水を流出させることを特徴としている。
Means for Solving the Problems The first invention is applied to a magnetic field generating coil formed in a hollow cylindrical shape. The feature is that a first coil in which a hollow pipe is wound in multiple layers in the radial direction of the coil and a second coil in which copper wire is wound in multiple layers in the radial direction of the coil are alternately arranged in the longitudinal direction of the coil. And disposing the first coil at both ends in the longitudinal direction, and circulating cooling water inside the pipe of the first coil. According to a second aspect of the present invention, in the first aspect, cooling water is supplied to a first coil disposed at one end of the coil in the long axis direction, and the cooling water is supplied from the first coil to the long axis direction. The cooling path is sequentially communicated with another separated first coil, and the cooling water flows out from the first coil disposed at the other end in the long axis direction.

【0010】[0010]

【発明の実施の形態】以下本発明を図示の実施例により
詳細に説明する。図1において、7Aは、絶縁部材によ
り覆われた中空のパイプがコイルの半径方向に多重に巻
かれた中空パイプコイルで、この中空パイプコイルの7
Aは、例えば図3に示されるがごとく、中空パイプ7A
の長さ方向の中心部を巻芯10に当接させ、中空パイプ
の7A1側を実線と破線とで示すように、左巻きに巻回
し、他方の7A2側を一点破線で示すように右巻きに巻
回して、夫々左巻きと右巻きとの相隣接する2列の状態
で半径方向に多重に巻かれている。同様に中空パイプコ
イル7B、7Cが形成され、これらの中空パイプコイル
7A、7B、7Cがコイルの長軸方向に離間して複数個
配置されて第1のコイル7が形成されている。8Aは、
絶縁部材により覆われた銅線がコイルの半径方向に多重
に巻かれた銅線コイルであって、コイルの長軸方向に複
数個積層されている。銅線コイル8A、8Bがコイルの
長軸方向に離設されて第2のコイル8が形成されてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the illustrated embodiments. In FIG. 1, reference numeral 7A denotes a hollow pipe coil in which a hollow pipe covered with an insulating member is wound multiple times in the radial direction of the coil.
A is, for example, as shown in FIG.
Of abut a central portion in the longitudinal direction in the core 10, as shown in the 7A 1 side of the hollow pipe in the solid and dashed lines, right as wound left-handed, shows the other 7A 2 side dashed line It is wound in multiple turns in the radial direction in two adjacent rows of left and right turns. Similarly, hollow pipe coils 7B and 7C are formed, and a plurality of these hollow pipe coils 7A, 7B and 7C are arranged apart from each other in the longitudinal direction of the coil to form a first coil 7. 8A is
This is a copper wire coil in which a copper wire covered with an insulating member is wound multiple times in the radial direction of the coil, and a plurality of the copper wires are laminated in the major axis direction of the coil. Copper wire coils 8A and 8B are spaced apart in the longitudinal direction of the coil to form a second coil 8.

【0011】例えば、上記第1のコイル7と第2のコイ
ル8とが巻枠9に対して、コイルの長軸方向に(7Aー
8Aー7Bー8Bー7C)と交互に積層され、かつ第1
のコイル7A、7Cが夫々長軸方向の両端部に配設され
ている。上記第1のコイル7と第2のコイル8とにより
構成される本発明に係る磁界発生用コイルにおいて、冷
却水は7A1側から供給し、他方の7A2側から排水され
る。また、7A2からの排水は7B1に供給され、さらに
7B2からの排水は7C1に供給される。7C1からの排
水が外部に取出される。すなわち、第1のコイル7の冷
却水はコイルの長軸方向に順に供給されて排出される。
For example, the first coil 7 and the second coil 8 are alternately laminated with (7A-8A-7B-8B-7C) on the winding frame 9 in the longitudinal direction of the coil, and First
Are disposed at both ends in the long axis direction. In the magnetic field generating coil according to the present invention constituted by the first coil 7 and the second coil 8, the cooling water is supplied from 7A 1 side is drained from the other 7A 2 side. Further, effluent from 7A 2 is supplied to 7B 1, further drainage from 7B 2 are supplied to 7C 1. Drainage from the 7C 1 is taken out to the outside. That is, the cooling water of the first coil 7 is sequentially supplied and discharged in the longitudinal direction of the coil.

【0012】次に、本発明に係る磁界発生用コイルの電
気的接続について説明する。すなわち、図2に示される
がごとく、コイルの長軸方向の一方の端部に配設される
第1のコイル7A2と、該第1のコイル7A2から長軸方
向に離設される他の第1のコイル7B1とがコイルの半
径方向の(外ー外)側で電気的に接続されている。さら
に7B2と7C1とはコイルの半径方向の(外ー外)側で
電気的に接続されている。長軸方向の他端部に配設され
る第1のコイル7C2と、該第1のコイル7Cに隣接す
る第2のコイル8Bの端部のコイル8B6とはコイルの
半径方向の(外ー外)側で電気的に接続されている。
Next, the electrical connection of the magnetic field generating coil according to the present invention will be described. That is, as is shown in FIG. 2, other that are Hanare設first coil 7A 2 disposed at one end of the long axis direction of the coil, the coil 7A 2 of the first longitudinally the first coil 7B 1 are electrically connected in the radial direction of the coil (outer chromatography outside) side of the. The further 7B 2 and 7C 1 are electrically connected by radial (outer over outer) side of the coil. The first coil 7C 2 disposed at the other end of the long axis direction, the coil 8B 6 end of the second coil 8B adjacent to the first coil 7C radial coil (outer -Outside) is electrically connected.

【0013】以下、第2のコイル8Bの夫々隣接するコ
イル8B6、8B5、8B4、…が長軸方向順にコイルの
中心側の(内ー内)側とコイルの半径方向の(外ー外)
側とで交互に電気的に接続されている。すなわち第1の
コイル7A→7B→7C及び第2のコイル8B→8Aと
なるように、コイルの半径方向の(外ー外)側及びコイ
ルの中心側の(内ー内)側で交互に電気的に直列接続さ
れている。このように電気的に直列接続されているた
め、複数個の第1のコイル間に発生する電位差を小さく
することができる。
The coils 8B 6 , 8B 5 , 8B 4 ,... Adjacent to the second coil 8B are arranged in the longitudinal direction in the order of the major axis direction (inside-inside) of the coil and in the radial direction of the coil. Outside)
And are electrically connected alternately. That is, the first coil 7A → 7B → 7C and the second coil 8B → 8A are alternately turned on the (outer-outer) side in the radial direction of the coil and the (inner-inside) side on the center side of the coil. Are serially connected. Since the electrical connection is made in series, the potential difference between the plurality of first coils can be reduced.

【0014】上記説明から明らかなように、本発明に係
る磁界発生用コイルは、中空パイプを巻回してなる第1
のコイル7と、銅線をコイルの半径方向に多層に巻いた
第2のコイル8とをコイルの長軸方向に交互に積層する
と共に、第1のコイル7を長軸方向の両端部に配設し、
かつ、第1のコイル7のパイプ内部に冷却水をコイルの
長軸方向に順に流通させてなるため、第1のコイル7内
を流通する冷却水により、コイル全体が効率よく冷却さ
れる。勿論、第1のコイル7は中空パイプであるため、
従来使用していた銅製冷却板に比べて軽量であり、従っ
て軽量の磁界発生用コイルを得ることができる。
As is apparent from the above description, the coil for generating a magnetic field according to the present invention comprises a first coil formed by winding a hollow pipe.
And a second coil 8 in which a copper wire is wound in multiple layers in the radial direction of the coil are alternately laminated in the long axis direction of the coil, and the first coil 7 is disposed at both ends in the long axis direction. Set up
In addition, since the cooling water is circulated in the longitudinal direction of the coil inside the pipe of the first coil 7, the entire coil is efficiently cooled by the cooling water flowing in the first coil 7. Of course, since the first coil 7 is a hollow pipe,
Lighter than a conventionally used copper cooling plate, it is possible to obtain a light-weight magnetic field generating coil.

【0015】さらにコイルの磁束密度に着目した場合、
銅製冷却板を使用していた従来のコイルにおいては、複
数枚使用する銅製冷却板の厚みの合計寸法、すなわち、
コイルの長軸方向における銅製冷却板の寸法が磁界発生
に寄与しない、いわゆるデッドスペ−スであったが、中
空パイプよりなる第1のコイル7は、コイルとしての巻
数が第2のコイル8よりも幾分少ないが、第1のコイル
7への給電により磁界を発生するため、この磁界を有効
に利用することができる。
Further focusing on the magnetic flux density of the coil,
In the conventional coil using the copper cooling plate, the total dimension of the thickness of the copper cooling plate used in a plurality of sheets, that is,
Although the dimension of the copper cooling plate in the longitudinal direction of the coil does not contribute to the generation of a magnetic field, which is a so-called dead space, the first coil 7 made of a hollow pipe has a larger number of turns as a coil than the second coil 8. Although somewhat small, a magnetic field is generated by supplying power to the first coil 7, so that this magnetic field can be used effectively.

【0016】勿論、第1のコイル内を流通する冷却水に
より、コイル全体が効率よく冷却されるため、コイルへ
の供給電流値を大きくしても、コイル自体の高温化が抑
制されることと相俟って、第1のコイルの活用によりコ
イル全体としての巻数が多くなるため、例えば従来と同
様の磁束密度を得るための磁界発生用コイルの容積を可
及的に小さくすることができる。換言すれば、本発明に
係る磁界発生用コイルは、コイルへの供給電流値を大き
く、かつ、コイル全体の巻数を多くすることができるた
め、高い磁束密度を得ることができる。
Of course, the entire coil is efficiently cooled by the cooling water flowing through the first coil, so that even if the current supplied to the coil is increased, the temperature of the coil itself is suppressed from becoming high. Together with this, the use of the first coil increases the number of turns of the entire coil, so that, for example, the volume of the magnetic field generating coil for obtaining the same magnetic flux density as in the related art can be reduced as much as possible. In other words, the coil for generating a magnetic field according to the present invention can increase the supply current value to the coil and increase the number of turns of the entire coil, so that a high magnetic flux density can be obtained.

【0017】[0017]

【発明の効果】以上の説明で明らかなように、本発明に
係る磁界発生用コイルは、第1のコイル内をコイルの長
軸方向に順に流通する冷却水によりコイル全体が効率よ
く冷却され、かつ第1のコイルは中空パイプであるた
め、軽量の磁界発生用コイルを得ることができる。さら
に、コイルへの供給電流値を大きくしても、コイル自体
の高温化が抑制されることと相俟って、第1のコイルの
活用によりコイル全体の巻数が多くなるため、磁界発生
用コイルの容積を可及的に小さくすることができる。
As is apparent from the above description, the coil for generating a magnetic field according to the present invention can be efficiently cooled by the cooling water flowing in the first coil in the longitudinal direction of the coil. Further, since the first coil is a hollow pipe, a light-weight magnetic field generating coil can be obtained. Further, even if the supply current value to the coil is increased, the use of the first coil increases the number of turns of the entire coil in combination with the suppression of the temperature rise of the coil itself. Can be made as small as possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す縦断面図FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention.

【図2】図1の電気的接続図FIG. 2 is an electrical connection diagram of FIG.

【図3】第1のコイル7の巻き方を示す図FIG. 3 is a diagram showing how to wind a first coil 7;

【図4】本発明の対象とするプラズマ処理装置を示す概
略正面図
FIG. 4 is a schematic front view showing a plasma processing apparatus to which the present invention is applied;

【図5】従来例を示す一部断面正面図FIG. 5 is a partial cross-sectional front view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 マグネトロン 2 導波管 3 プラズマ生成室 4 磁界発生用コイル 5 反応室 6 被処理物 7 第1のコイル(=中空パイプコイル) 8 第2のコイル(=銅線コイル) REFERENCE SIGNS LIST 1 magnetron 2 waveguide 3 plasma generation chamber 4 magnetic field generating coil 5 reaction chamber 6 workpiece 7 first coil (= hollow pipe coil) 8 second coil (= copper wire coil)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 中空円筒状に形成される磁界発生用コイ
ルにおいて、中空パイプを前記コイルの半径方向に多層
に巻いた第1のコイルと、銅線を前記コイルの半径方向
に多層に巻いた第2のコイルとを前記コイルの長軸方向
に交互に積層すると共に、前記第1のコイルを長軸方向
の両端部に配設し、かつ、前記第1のコイルのパイプの
内部に冷却水を流通させてなる磁界発生用コイル。
1. A coil for generating a magnetic field formed in a hollow cylindrical shape, wherein a first coil in which a hollow pipe is wound in multiple layers in the radial direction of the coil and a copper wire are wound in multiple layers in the radial direction of the coil. A second coil and a second coil are alternately stacked in the longitudinal direction of the coil, the first coil is disposed at both ends in the longitudinal direction, and cooling water is provided inside a pipe of the first coil. For generating a magnetic field.
【請求項2】 前記コイルの長軸方向の一方の端部に配
設される第1のコイルに冷却水を供給し、該第1のコイ
ルから長軸方向に離設される他の第1のコイルへと冷却
路を順に連通させ、長軸方向の他端部に配設される第1
のコイルから冷却水を流出させてなる請求項1に記載の
磁界発生用コイル。
2. A cooling water is supplied to a first coil disposed at one end of the coil in the longitudinal direction, and another first coil disposed in a longitudinal direction away from the first coil. The cooling passages are sequentially communicated to the coils of the first direction, and the first is disposed at the other end in the long axis direction.
2. The magnetic field generating coil according to claim 1, wherein cooling water flows out of the coil.
JP8269181A 1996-09-18 1996-09-18 Coil for generating magnetic field Pending JPH1092628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8269181A JPH1092628A (en) 1996-09-18 1996-09-18 Coil for generating magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8269181A JPH1092628A (en) 1996-09-18 1996-09-18 Coil for generating magnetic field

Publications (1)

Publication Number Publication Date
JPH1092628A true JPH1092628A (en) 1998-04-10

Family

ID=17468817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8269181A Pending JPH1092628A (en) 1996-09-18 1996-09-18 Coil for generating magnetic field

Country Status (1)

Country Link
JP (1) JPH1092628A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120134047A (en) * 2011-05-30 2012-12-11 스미토모 덴키 고교 가부시키가이샤 Superconducting coil and superconducting magnet
JP2012248726A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
JP2012248731A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
CN109585117A (en) * 2018-11-20 2019-04-05 新奥科技发展有限公司 A kind of superconducting coil device with support construction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120134047A (en) * 2011-05-30 2012-12-11 스미토모 덴키 고교 가부시키가이샤 Superconducting coil and superconducting magnet
JP2012248730A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
JP2012248726A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
JP2012248731A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
CN109585117A (en) * 2018-11-20 2019-04-05 新奥科技发展有限公司 A kind of superconducting coil device with support construction

Similar Documents

Publication Publication Date Title
ES2319392T3 (en) REFRIGERATION OF A WINDING ENTREHIERRO OF ELECTRICAL MACHINES.
RU2435242C2 (en) High-voltage transformer
JP2000051180A (en) Coil system of mr device
EP0686339A1 (en) Cyclotron, magnet coil and associated manufacturing process
JP2013179205A (en) Welding transformer, welding transformer assembly, and welding device
US3535597A (en) Large ac magnetic induction technique
JPH1092628A (en) Coil for generating magnetic field
US4270112A (en) Normal conductive or superconductive magnet coil
JP2003123951A (en) Hole inner surface heating inductor
US6730893B1 (en) Induction heating apparatus
JPH10243608A (en) Gas-cooled electric machine
JP4188597B2 (en) Electric motor water-cooled stator winding
US20230369922A1 (en) Electric motor with integrated stator cooling passages and method of manufacture thereof
JP2009520348A (en) Interleaved planar transformer primary and secondary windings
US5506472A (en) Variable-frequency type radio-frequency quadrupole accelerator including quadrupole cooling means
EP1727263A2 (en) Water cooled stator winding of an electric motor
JP2015192090A (en) reactor
JPH07335447A (en) Transformer
US3538366A (en) Fluid cooled electromagnetic structure for traveling wave tubes
JP3417468B2 (en) Indirectly cooled multipole electromagnet
US5177762A (en) Saturable reactor
JP2023181995A (en) Displacement body for rotor and rotor formed of the same
JP7240263B2 (en) Electromagnet for magnetron
JP2839692B2 (en) Magnetic field type lenses in electron microscopes, etc.
JP2000012340A (en) Water-cooled transformer and high-frequency induction heating device using it