JPH1090993A - Image forming device - Google Patents

Image forming device

Info

Publication number
JPH1090993A
JPH1090993A JP8262302A JP26230296A JPH1090993A JP H1090993 A JPH1090993 A JP H1090993A JP 8262302 A JP8262302 A JP 8262302A JP 26230296 A JP26230296 A JP 26230296A JP H1090993 A JPH1090993 A JP H1090993A
Authority
JP
Japan
Prior art keywords
developing
adhesion amount
toner adhesion
potential
relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8262302A
Other languages
Japanese (ja)
Inventor
Tatsuya Inagaki
達也 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP8262302A priority Critical patent/JPH1090993A/en
Publication of JPH1090993A publication Critical patent/JPH1090993A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To output good images by using two reference images so as to accurately control toner concentration. SOLUTION: A reference image forming part 25 forms a black solid patch on a photosensitive body 6 by a low light quantity and a texture patch by a high light quantity. A developing characteristic estimating part 22 approximates a developing potential from a middle concentration part to a high concentration part, which is a difference between a photosensitive surface potential measured by a surface potentiometer 14 and a developing bias added to a developing means, and a toner sticking amount measured by a toner sticking amount sensor 15 by a linear equation. A condition control part 23 controls an image forming condition based on the approximated relation between the developing potential and the toner sticking amount.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、複写機,プリン
タ,ファクシミリ等電子写真プロセスによって画像を形
成する画像形成装置、特に形成された画像のトナ−付着
量の安定化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image forming apparatus for forming an image by an electrophotographic process such as a copying machine, a printer, a facsimile, etc., and more particularly to a method for stabilizing a toner adhesion amount of a formed image.

【0002】[0002]

【従来の技術】多階調フルカラ−の複写機やプリンタ等
においては安定した濃度で精度よく画像を出力すること
が望まれている。しかし、これらの機器で用いられてい
る電子写真プロセスでは、感光体やトナ−及び現像剤の
劣化と環境による特性変動により画像の濃度が変動して
しまう。この変動を抑制して安定したトナ−濃度を得る
方法や画像形成装置が、例えば実公昭60−4188号公報や
特開平4−126462号公報,特開平6−266190号公報,特
開平7−253694号公報に示されている。
2. Description of the Related Art In a multi-tone full-color copying machine, printer, or the like, it is desired to output an image with stable density with high accuracy. However, in the electrophotographic process used in these apparatuses, the density of an image fluctuates due to deterioration of the photoconductor, toner, and developer and characteristic fluctuation due to the environment. A method and an image forming apparatus for obtaining a stable toner density by suppressing this fluctuation are disclosed in, for example, Japanese Utility Model Publication No. 60-4188, Japanese Patent Application Laid-Open Nos. 4-126462, 6-266190, and 7-253694. No. in the official gazette.

【0003】実公昭60−4188号公報にはトナ−濃度制御
用基準濃度小片として均一濃度のベタ黒の小片の代わり
にライン状又はドット状のパタ−ンの小片を使用して基
準画像を形成してトナ−濃度の変化を検出して画像濃度
を制御するようにしている。
In Japanese Utility Model Publication No. 60-4188, a reference image is formed by using a line-shaped or dot-shaped pattern piece instead of a solid black piece having a uniform density as a reference density piece for toner density control. Then, the change in the toner density is detected to control the image density.

【0004】特開平4−126462号公報には、あらかじめ
定めた複数個の異なる基準濃度デ−タに基づく出力画像
信号を露光手段に入力して基準パッチを感光体に形成
し、形成した基準パッチの感光体上のトナ−付着量をト
ナ−付着量センサで読み取り、読み取ったったトナ−付
着量と基準濃度デ−タの出力画像信号の関係を検知し、
検知した関係から入力画像信号とトナ−付着量の関係が
予め定めた目標値となるように入力画像信号を露光手段
に入力する出力画像信号に変換する画像信号変換係数を
補正している。
Japanese Patent Application Laid-Open No. Hei 4-126462 discloses that a reference patch is formed on a photoreceptor by inputting an output image signal based on a plurality of predetermined different reference density data to exposure means, and the formed reference patch is formed. The toner adhesion amount on the photosensitive member is read by a toner adhesion amount sensor, and the relationship between the read toner adhesion amount and the output image signal of the reference density data is detected.
An image signal conversion coefficient for converting the input image signal into an output image signal to be input to the exposure means is corrected based on the detected relationship so that the relationship between the input image signal and the toner adhesion amount becomes a predetermined target value.

【0005】また、特開平6−266190号公報に示された
濃度制御は、低濃度と中濃度及び高濃度の基準パッチを
感光体に形成し、形成した基準パッチの感光体上のトナ
−付着量をトナ−付着量センサで読み取り、3つの基準
パッチのトナ−付着量から出力画像信号とトナ−付着量
の関係を推定し、入力画像信号を露光手段に入力する出
力画像信号に変換する画像信号変換係数の補正量を算出
している。
In the density control disclosed in Japanese Patent Application Laid-Open No. Hei 6-266190, low-, medium-, and high-density reference patches are formed on a photoconductor, and the formed reference patches adhere to toner on the photoconductor. The amount is read by the toner adhesion amount sensor, the relationship between the output image signal and the toner adhesion amount is estimated from the toner adhesion amount of the three reference patches, and the input image signal is converted into an output image signal to be input to the exposure means. The correction amount of the signal conversion coefficient is calculated.

【0006】電子写真プロセスにおいて入力画像信号を
画像信号変換係数で露光手段に入力する信号に変換した
出力画像信号とトナ−付着量の関係を見てみると、図3
の第4象限に示すように、出力画像信号は露光手段の露
光量に変換される。この露光量は、図3の第3象限に示
すように、帯電手段と露光手段を用いて作成された潜像
における感光体表面電位と関係する。また、図3の第2
象限に示すように、感光体表面電位と現像手段の現像バ
イアス電位の差である現像ポテンシャルによりトナ−付
着量が関係する。結果として図3の第1象限に示すよう
に、出力画像信号によりトナ−付着量が定まる。このよ
うに出力画像信号とトナ−付着量の関係は図3に示すよ
うに高次の関係を示すが、現像ポテンシャルとトナ−付
着量の関係は図3の第2象限に示すように簡単な関係に
なる。そして図3の第4象限に示す出力画像信号と露光
量の関係及び図3の第3象限に示す露光量と感光体表面
電位の関係は短期変動は小さいため、ユ−ザ−が機器を
使用しない時間などにプロセスを実行し、特性を取得す
ることができる。一方、現像ポテンシャルとトナ−付着
量の関係はトナ−の帯電量等により変化する。トナ−は
プリントを行う毎に現像手段で消費されて新たにトナ−
補充される。このためトナ−の持つ帯電量は短期変動が
大きい。したがって出力画像信号とトナ−付着量の関係
を知るためには短期的には現像ポテンシャルとトナ−付
着量の関係を調べればよいことになる。特開平7−2536
94号公報に示された制御方法はこの点に着目したもので
あり、図3の第2象限に示した、出力画像信号により感
光体上に作成された潜像の電位と現像手段の現像バイア
ス電位の差である電位ポテンシャルとその潜像を現像し
た後のトナ−付着量の関係が、図15に示すように、低
濃度部および中高濃度部でそれぞれほぼ線形に近似でき
ることに着目し、感光体上に異なるトナ−付着量を有す
る複数のパッチパタ−ンを作成し、複数のパッチパタ−
ンの電位とトナ−付着量を測定し、測定した複数の電位
とトナ−付着量の関係から現像手段の現像特性を算出し
て画像形成時の各種電位を決定するようにしている。
FIG. 3 shows the relationship between an output image signal obtained by converting an input image signal into a signal to be input to an exposure unit by an image signal conversion coefficient in an electrophotographic process and a toner adhesion amount.
As shown in the fourth quadrant, the output image signal is converted into the exposure amount of the exposure means. This exposure amount is related to the photoconductor surface potential in a latent image created by using the charging unit and the exposure unit as shown in the third quadrant of FIG. In addition, FIG.
As shown in the quadrant, the toner adhesion amount is related to the developing potential which is the difference between the photosensitive member surface potential and the developing bias potential of the developing means. As a result, as shown in the first quadrant of FIG. 3, the toner adhesion amount is determined by the output image signal. As described above, the relationship between the output image signal and the toner adhesion amount shows a higher-order relationship as shown in FIG. 3, but the relationship between the development potential and the toner adhesion amount is simple as shown in the second quadrant of FIG. Become a relationship. Since the relationship between the output image signal and the exposure amount shown in the fourth quadrant of FIG. 3 and the relationship between the exposure amount and the photosensitive member surface potential shown in the third quadrant of FIG. 3 have small short-term fluctuations, the user uses the device. The process can be executed at times when it is not necessary to acquire characteristics. On the other hand, the relationship between the developing potential and the toner adhesion amount changes depending on the toner charging amount and the like. The toner is consumed by the developing means every time printing is performed, and a new toner is used.
Be replenished. Therefore, the charge amount of the toner has a large short-term fluctuation. Therefore, in order to know the relationship between the output image signal and the toner adhesion amount, the relationship between the development potential and the toner adhesion amount should be examined in a short term. JP-A-7-2536
The control method disclosed in Japanese Patent Publication No. 94 pays attention to this point, and the potential of the latent image formed on the photoconductor by the output image signal and the developing bias of the developing means shown in the second quadrant of FIG. Focusing on the fact that the relationship between the potential difference, which is the potential difference, and the toner adhesion amount after developing the latent image can be approximately linearly approximated in the low-density portion and the middle-high density portion as shown in FIG. A plurality of patch patterns having different toner adhesion amounts are created on the body, and a plurality of patch patterns are formed.
The potential of the toner and the amount of toner adhesion are measured, and the developing characteristics of the developing means are calculated from the relationship between the plurality of measured potentials and the amount of toner adhesion to determine various potentials during image formation.

【0007】[0007]

【発明が解決しようとする課題】実公昭60−4188号公報
に示されているように、ライン状又はドット状のパタ−
ンの小片を使用して基準画像を形成してトナ−濃度の変
化を検出してトナ−濃度を補正する場合、濃度が異なる
画像のトナ−濃度を正確に補正することは困難であっ
た。
As disclosed in Japanese Utility Model Publication No. 60-4188, a line-shaped or dot-shaped pattern is used.
When a toner image is corrected by detecting a change in toner density by forming a reference image using small pieces of the toner, it has been difficult to accurately correct the toner density of images having different densities.

【0008】また、出力画像信号とトナ−付着量の関係
は、図3に示すように、非線形であるため、高階調の画
像を形成する場合、各階調における出力画像信号とトナ
−付着量の関係を精度よく求める必要がある。このため
例えば特開平4−126462号公報や特開平6−266190号公
報に示されたように、複数個の異なる基準濃度デ−タに
基づく出力画像信号で基準パッチを形成して出力画像信
号とトナ−付着量の関係を精度良く推定する場合には低
濃度、中濃度、高濃度の3つの基準パッチだけではなく
多くの基準パッチを作成する必要があり、濃度補正が容
易でなかった。
Since the relationship between the output image signal and the toner adhesion amount is non-linear as shown in FIG. 3, when forming a high gradation image, the output image signal and the toner adhesion amount at each gradation are formed. It is necessary to find the relationship accurately. For this reason, as shown in, for example, JP-A-4-126462 and JP-A-6-266190, a reference patch is formed from output image signals based on a plurality of different reference density data, and In order to accurately estimate the toner-adhered amount relationship, it is necessary to prepare not only three reference patches of low density, medium density, and high density but also many reference patches, and it is not easy to correct the density.

【0009】また、特開平7−253694号公報に示された
ように、感光体上に作成された潜像の電位と現像手段の
現像バイアス電位の差である電位ポテンシャルとその潜
像を現像した後のトナ−付着量の関係を低濃度部と中高
濃度部でそれぞれ線形に近似する場合に、少なくとも2
つの基準パッチを低濃度部と中高濃度部でそれぞれ作成
する必要がある。またトナ−付着量を検出するセンサの
測定感度は、図5に示すようにように高濃度部で低下し
線形にならないため、これを補償するための基準パッチ
も必要になり、中高濃度部の近似特性を得るためには少
なくとも4つの基準パッチを作成する必要があつた。
Further, as disclosed in JP-A-7-253694, a potential potential, which is a difference between the potential of a latent image formed on a photoreceptor and the developing bias potential of a developing means, and the latent image are developed. In the case where the relationship between the subsequent toner adhesion amounts is linearly approximated in the low-concentration part and the medium-high concentration part, at least 2
One reference patch needs to be created for each of the low-density part and the medium-high density part. Further, as shown in FIG. 5, the measurement sensitivity of the sensor for detecting the toner adhesion amount decreases in the high-density portion and does not become linear, so that a reference patch for compensating for this is also required. In order to obtain approximate characteristics, it was necessary to create at least four reference patches.

【0010】この発明はかかる短所を解消するためにな
されたものであり、トナ−濃度を2つの基準画像を使用
して精度良く制御して良質な画像を出力することができ
る画像形成装置を得ることを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned disadvantages, and provides an image forming apparatus capable of outputting a high-quality image by accurately controlling the toner density using two reference images. The purpose is to do so.

【0011】[0011]

【課題を解決するための手段】この発明に係る画像形成
装置は、入力画像信号に応じた静電潜像を感光体上に形
成し、形成した潜像を現像手段によって現像して転写材
上へ転写する画像形成装置において、基準画像形成手段
と表面電位センサとトナ−付着量センサと現像特性推定
手段及び条件制御手段とを有し、基準画像形成手段は入
力画像信号による画像を形成する感光体の領域とは別の
領域に、低光量で黒ベタのソリッドパッチの基準画像を
形成し、高光量でテクスチャパッチの基準画像を形成
し、表面電位センサは現像前における上記2つの基準画
像の感光体上での表面電位を測定し、トナ−付着量セン
サは上記各基準画像の現像後または転写材に転写後のト
ナ−付着量を測定し、現像特性推定手段は表面電位セン
サで測定した感光体表面電位と現像手段に付加される現
像バイアスとの差である現像ポテンシャルの中間濃度部
から高濃度部における現像ポテンシャルとトナ−付着量
センサで測定したトナ−付着量との関係を1次式で近似
し、条件制御手段は現像特性推定手段で近似した現像ポ
テンシャルとトナ−付着量の関係から画像形成条件を制
御することを特徴とする。
An image forming apparatus according to the present invention forms an electrostatic latent image on a photoreceptor in accordance with an input image signal, and develops the formed latent image on a transfer material by developing means. An image forming apparatus for transferring an image to an image forming apparatus includes a reference image forming unit, a surface potential sensor, a toner adhesion amount sensor, a developing characteristic estimating unit, and a condition controlling unit. In a region other than the body region, a reference image of a solid black solid patch is formed at a low light amount, a reference image of a texture patch is formed at a high light amount, and a surface potential sensor is used for the two reference images before development. The surface potential on the photoreceptor was measured, the toner adhesion amount sensor measured the toner adhesion amount after development of each of the above reference images or after transfer to a transfer material, and the developing characteristic estimating means was measured by a surface potential sensor. Photoconductor The relationship between the developing potential in the intermediate density portion and the high density portion of the developing potential, which is the difference between the surface potential and the developing bias added to the developing means, and the toner adhesion amount measured by the toner adhesion sensor is expressed by a linear expression. Approximately, the condition control means controls the image forming condition from the relationship between the developing potential and the toner adhesion amount approximated by the developing characteristic estimating means.

【0012】上記基準画像形成手段で形成するテクスチ
ャパッチはラインパッチであることが望ましい。
The texture patch formed by the reference image forming means is preferably a line patch.

【0013】また、上記現像特性推定手段は近似した中
間濃度部から高濃度部における現像ポテンシャルとトナ
−付着量センサとの関係から低濃度部における現像ポテ
ンシャルとトナ−付着量センサとの関係を推定すること
が望ましい。
The developing characteristic estimating means estimates the relationship between the developing potential and the toner adhesion amount sensor in the low density portion from the approximate relationship between the developing potential and the toner adhesion amount sensor in the intermediate density portion to the high density portion. It is desirable to do.

【0014】そして、上記現像特性推定手段は、低濃度
部の現像ポテンシャルとトナ−付着量の関係を1次式で
近似し、1次式の各係数を中間濃度部から高濃度部の関
係を近似した1次式の傾きと切片と低濃度部における飽
和トナ−付着量及びその飽和点での現像ポテンシャルで
表しても良い。
The developing characteristic estimating means approximates the relationship between the developing potential of the low-density portion and the toner adhesion amount by a linear expression, and calculates each coefficient of the linear expression from the relationship between the intermediate-density portion and the high-density portion. It may be represented by the approximated linear expression, the intercept, the amount of the adhered saturated toner in the low density part, and the developing potential at the saturation point.

【0015】また、現像特性推定手段は、低濃度部の現
像ポテンシャルとトナ−付着量の関係を3次式で近似
し、3次式の各係数は中間濃度部から高濃度部の関係を
近似した1次式の傾きと切片と低濃度部での飽和トナ−
付着量及び中高濃度部の関係を近似した1次式と3次式
の切り換え点の現像ポテンシャル及びトナ−付着量で表
しても良い。
The developing characteristic estimating means approximates the relationship between the developing potential of the low density portion and the toner adhesion amount by a cubic expression, and each coefficient of the cubic expression approximates the relationship from the intermediate density portion to the high density portion. Slope, intercept and saturation toner at low concentration
The relationship between the adhesion amount and the medium-to-high density portion may be expressed by the developing potential and toner adhesion amount at the switching point between the linear expression and the cubic expression.

【0016】[0016]

【発明の実施の形態】この発明においては、感光体に形
成された静電潜像にトナ−を付着させ可視化する電子写
真プロセスの制御部には、現像特性推定部と条件制御部
とを有する。条件制御部には露光操作値決定部と帯電操
作値決定部と基準画像形成部を有する。基準画像形成部
は入力画像信号による画像を形成する感光体の領域とは
別の領域に、黒ベタのソリッドパッチを低光量で作成
し、テクスチャパッチを高光量で作成する。この高光量
で作成したテクスチャパッチのトナ−付着量をトナ−付
着量センサで検出して黒ベタのソリッドパッチに対応し
たトナ−付着量に補正して、トナ−付着量センサの非線
形の出力特性により、高濃度領域のトナ−付着量が検出
できないことを解消し、高濃度領域のトナ−付着量を精
度良く検知する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a control section of an electrophotographic process for attaching toner to an electrostatic latent image formed on a photosensitive member and visualizing the electrostatic latent image has a developing characteristic estimating section and a condition controlling section. . The condition control unit includes an exposure operation value determination unit, a charging operation value determination unit, and a reference image forming unit. The reference image forming section creates a solid black solid patch with a low light amount and a texture patch with a high light amount in an area different from the area of the photoconductor where an image is formed by the input image signal. The toner adhesion amount of the texture patch created with this high light amount is detected by a toner adhesion amount sensor and corrected to the toner adhesion amount corresponding to a solid black solid patch, and the nonlinear output characteristics of the toner adhesion amount sensor are corrected. Thus, it is possible to solve the problem that the toner adhesion amount in the high concentration region cannot be detected, and to accurately detect the toner adhesion amount in the high concentration region.

【0017】この現像前のソリッドパッチとテクスチャ
パッチの感光体上における表面電位を表面電位計で測定
し、測定したソリッドパッチとテクスチャパッチの表面
電位と現像バイアス電圧との差を演算し、低光量すなわ
ち低濃度点における現像ポテンシャルと高光量すなわち
高濃度点における現像ポテンシャルを現像特性推定部に
送る。一方、トナ−付着量センサで現像後のソリッドパ
ッチとテクスチャパッチのトナ−付着量を検出し、低濃
度点におけるトナ−付着量と高濃度点におけるトナ−付
着量を現像特性推定部に送る。現像特性推定部は送られ
た低濃度点と高濃度点における現像ポテンシャルとトナ
−付着量から現像ポテンシャルとトナ−付着量の関係を
1次式で近似する。露光操作値決定部は現像特性推定部
で近似した現像ポテンシャルとトナ−付着量の関係から
画像信号変換処理を補正し、補正した画像信号変換処理
で入力画像信号を出力画像信号に変換する。また、帯電
操作値決定部も現像特性推定部で近似した現像ポテンシ
ャルとトナ−付着量の関係から帯電制御信号を生成して
感光体に付与する電荷を制御させる。このようにして現
像特性に応じた画像を形成し、常に安定した濃度の画像
を出力する。
The surface potential of the solid patch and the texture patch before development on the photoreceptor is measured with a surface voltmeter, and the difference between the measured surface potential of the solid patch and the texture patch and the development bias voltage is calculated. That is, the developing potential at the low density point and the high light quantity, that is, the developing potential at the high density point are sent to the developing characteristic estimating unit. On the other hand, the toner adhesion amount sensor detects the toner adhesion amount of the solid patch and the texture patch after development, and sends the toner adhesion amount at the low density point and the toner adhesion amount at the high density point to the developing characteristic estimating unit. The developing characteristic estimating unit approximates the relationship between the developing potential and the toner adhesion amount with the linear expression from the development potential and the toner adhesion amount at the sent low density point and high density point. The exposure operation value determination unit corrects the image signal conversion processing based on the relationship between the development potential and the toner adhesion amount approximated by the development characteristic estimation unit, and converts the input image signal into the output image signal by the corrected image signal conversion processing. The charging operation value determining unit also generates a charging control signal from the relationship between the developing potential and the toner adhesion amount approximated by the developing characteristic estimating unit, and controls the charge applied to the photoconductor. Thus, an image corresponding to the development characteristics is formed, and an image having a stable density is always output.

【0018】このテクスチャパッチをラインパッチで作
成することにより、ソリッドパッチとテクスチャパッチ
の濃度の安定性をより高め、現像特性を高精度に求め
る。
By creating this texture patch as a line patch, the stability of the density of the solid patch and the texture patch is further improved, and the development characteristics are obtained with high accuracy.

【0019】また、現像特性推定部で中高濃度域におけ
る現像ポテンシャルとトナ−付着量の関係である現像特
性を1次式で近似するとともに、近似した1次式を利用
して低濃度部における現像特性も近似する。この低濃度
部における現像特性を近似するときにあらかじめ定めら
れた関数で近似したり1次式や3次式で近似することが
できる。このように低濃度部における現像特性を1次式
で近似することにより、簡単な処理で低濃度部における
現像特性を近似することができる。また、低濃度部にお
ける現像特性を3次式で近似することにより、低濃度部
の現像特性の近似式を精度良く求めることができる。
The developing characteristic estimating unit approximates the developing characteristic, which is the relationship between the developing potential and the toner adhesion amount in the middle and high density regions, with a linear expression, and develops the image in the low density region using the approximated linear expression. The characteristics are similar. When approximating the development characteristic in the low density portion, it can be approximated by a predetermined function or by a linear expression or a cubic expression. By approximating the development characteristics in the low-density area by the linear expression, the development properties in the low-density area can be approximated by simple processing. In addition, by approximating the developing characteristics in the low-density portion by a cubic expression, an approximate expression of the developing characteristics in the low-density portion can be accurately obtained.

【0020】[0020]

【実施例】図1はこの発明の一実施例の構成図である。
図に示すように、画像形成装置は不図示の読取部の原稿
台に載置された原稿に光源から光を照射し、その反射光
をCCD1で読み取る。CCD1で読み取った画像信号
をA/D変換部2でデジタル信号に変換した後、原稿画
像処理部3で所定の画像処理を行い、入力画像信号とし
て露光操作値決定部4に送る。露光操作値決定部4は送
られた入力画像信号に画像信号変換処理を行い、入力画
像信号に対応して出力画像信号を決定し、決定した出力
画像信号を半導体レ−ザ素子などで構成される露光制御
部5に送る。露光制御部5は送られた出力画像信号によ
り半導体レ−ザ素子を駆動制御して、出力画像信号に対
応したレ−ザ光で感光体6を露光して感光体6表面に静
電潜像を形成する。
FIG. 1 is a block diagram of one embodiment of the present invention.
As shown in the figure, the image forming apparatus irradiates a document placed on a document table of a reading unit (not shown) with light from a light source, and reads the reflected light with a CCD 1. After the image signal read by the CCD 1 is converted into a digital signal by the A / D converter 2, predetermined image processing is performed by the document image processing unit 3 and sent to the exposure operation value determination unit 4 as an input image signal. The exposure operation value determination unit 4 performs an image signal conversion process on the sent input image signal, determines an output image signal corresponding to the input image signal, and comprises the determined output image signal with a semiconductor laser element or the like. To the exposure control unit 5. The exposure control unit 5 controls the driving of the semiconductor laser device based on the output image signal sent, exposes the photosensitive member 6 with laser light corresponding to the output image signal, and forms an electrostatic latent image on the surface of the photosensitive member 6. To form

【0021】感光体6の周りには、感光体6に電荷を付
与する帯電器7と、現像ロ−ラ8を有し感光体6に形成
された静電潜像にトナ−を付着させ可視画像化する現像
部9と、トナ−像を転写紙に転写する転写器10と、転
写紙を感光体6から分離する分離器11と、給紙部から
転写器10に転写紙を搬送する搬送ロ−ラ12及び感光
体6から分離された転写紙上のトナ−像を定着する定着
ロ−ラが13が設けられ、電子写真プロセスで画像を形
成する。また、感光体6や現像部9等の環境情報を検出
するセンサとして、感光体6の電位を検出する表面電位
計14と、現像部9で形成した感光体6表面のトナ−像
のトナ−付着量を測定するトナ−付着量センサ15と、
トナ−濃度センサ16や温度センサ17,湿度センサ1
8が設けられている。なお、トナ−付着量センサ15は
感光体6上に限らず転写紙の搬送路19に設けても良
い。
Around the photoreceptor 6, a charger 7 for applying a charge to the photoreceptor 6 and a developing roller 8 are provided with toner on the electrostatic latent image formed on the photoreceptor 6 so as to be visible. A developing unit 9 for forming an image, a transfer unit 10 for transferring a toner image to a transfer sheet, a separator 11 for separating the transfer sheet from the photoreceptor 6, and a transfer for transferring the transfer sheet from the paper supply unit to the transfer unit 10 A fixing roller 13 for fixing the toner image on the transfer paper separated from the roller 12 and the photosensitive member 6 is provided, and an image is formed by an electrophotographic process. Further, as a sensor for detecting environmental information of the photoconductor 6 and the developing unit 9, a surface voltmeter 14 for detecting a potential of the photoconductor 6 and a toner image of a toner image on the surface of the photoconductor 6 formed by the developing unit 9 are provided. A toner adhesion amount sensor 15 for measuring the adhesion amount,
Toner concentration sensor 16, temperature sensor 17, humidity sensor 1
8 are provided. The toner adhesion amount sensor 15 may be provided not only on the photosensitive member 6 but also on the transfer path 19 of the transfer paper.

【0022】感光体6に形成された静電潜像にトナ−を
付着させ可視化する電子写真プロセスの濃度制御部に
は、図2のブロック図に示すように、差演算部21と現
像特性推定部22及び条件制御部23とを有する。差演
算部21は表面電位計14で測定した感光体6の表面電
位と現像ロ−ラ8の現像バイアス電圧との差である現像
ポテンシャルPを演算する。現像特性推定部22は差演
算部21で演算した現像ポテンシャルPとトナ−付着量
センサで測定した基準画像のトナ−付着量TDを入力
し、現像ポテンシャルPとトナ−付着量TDの関係を近
似する。条件制御部23は露光操作値決定部4と帯電操
作値決定部24と基準画像形成部25を有する。露光操
作値決定部4は現像特性推定部22で近似した現像ポテ
ンシャルPとトナ−付着量TDの関係から画像信号変換
処理を補正し、補正した画像信号変換処理で入力画像信
号を出力画像信号に変換する。帯電操作値決定部24は
現像特性推定部22で近似した現像ポテンシャルPとト
ナ−付着量TDの関係から帯電制御信号を生成して帯電
制御部26に送る。帯電制御部26は送られた帯電制御
信号により帯電器7が感光体6に付与する電荷を制御す
る。基準画像形成部25は画像濃度制御を行うときにあ
らかじめ設定された2つの基準濃度画像デ−タにより感
光体6表面に基準パッチを形成させる。
As shown in the block diagram of FIG. 2, the density control unit of the electrophotographic process for attaching toner to the electrostatic latent image formed on the photoreceptor 6 and visualizing the electrostatic latent image includes a difference calculation unit 21 and a development characteristic estimation. And a condition control unit 23. The difference calculator 21 calculates a development potential P, which is a difference between the surface potential of the photosensitive member 6 measured by the surface voltmeter 14 and the development bias voltage of the development roller 8. The developing characteristic estimating unit 22 inputs the developing potential P calculated by the difference calculating unit 21 and the toner adhering amount TD of the reference image measured by the toner adhering amount sensor, and approximates the relationship between the developing potential P and the toner adhering amount TD. I do. The condition control unit 23 includes an exposure operation value determination unit 4, a charging operation value determination unit 24, and a reference image forming unit 25. The exposure operation value determination unit 4 corrects the image signal conversion process from the relationship between the development potential P and the toner adhesion amount TD approximated by the development characteristic estimation unit 22, and converts the input image signal into an output image signal by the corrected image signal conversion process. Convert. The charging operation value determining unit 24 generates a charging control signal from the relationship between the development potential P and the toner adhesion amount TD approximated by the developing characteristic estimating unit 22 and sends the signal to the charging control unit 26. The charging control unit 26 controls the charge applied by the charger 7 to the photoconductor 6 based on the transmitted charging control signal. The reference image forming unit 25 forms a reference patch on the surface of the photoconductor 6 using two preset reference density image data when performing image density control.

【0023】上記のように構成された画像形成装置の動
作を説明するにあたり、電子写真プロセスで画像を形成
するとき出力画像の画像濃度変動に関係する各種特性を
説明する。
In describing the operation of the image forming apparatus configured as described above, various characteristics related to image density fluctuation of an output image when an image is formed by an electrophotographic process will be described.

【0024】電子写真プロセスを利用した画像形成装置
においては、図3の第1象限に示すように、出力画像信
号と感光体6上のトナ−付着量には一定の関係があり、
この関係が変動すると出力画像の画像濃度が変動する大
きな要因になっている。逆に言えば、この関係が精度よ
く検知できれば、画像濃度が変動することを推定するこ
とができ、感光体6の帯電量や露光量等の画像形成条件
を出力画像信号とトナ−付着量の関係の変動を補償する
方向に制御することにより、出力画像の画像濃度変動を
小さくすることができる。
In an image forming apparatus utilizing an electrophotographic process, as shown in the first quadrant of FIG. 3, there is a fixed relationship between the output image signal and the toner adhesion amount on the photoconductor 6,
If this relationship fluctuates, it is a major factor that the image density of the output image fluctuates. Conversely, if this relationship can be accurately detected, it can be estimated that the image density will fluctuate, and the image forming conditions such as the charge amount and the exposure amount of the photoconductor 6 are changed to the output image signal and the toner adhesion amount. By controlling in such a direction as to compensate for the change in the relationship, the image density change of the output image can be reduced.

【0025】この出力画像信号は、図3の第4象限に示
すように露光量に直接関係する。すなわち、露光制御部
5は出力画像信号に対応して半導体レ−ザ素子の駆動電
圧を変調したり駆動パルス幅を変調したり、あるいは駆
動電圧と駆動パルス幅の両方を変調して感光体6表面を
露光するレ−ザ光を制御する。この出力画像信号と露光
量の関係は温度特性や感光体6表面の汚れ等により変動
するが、これらの変動は小さき、かつ短期で変動するも
のではない。
This output image signal is directly related to the amount of exposure as shown in the fourth quadrant of FIG. That is, the exposure control unit 5 modulates the driving voltage of the semiconductor laser element, modulates the driving pulse width, or modulates both the driving voltage and the driving pulse width in response to the output image signal, and The laser light for exposing the surface is controlled. The relationship between the output image signal and the exposure amount fluctuates due to temperature characteristics, dirt on the surface of the photoconductor 6, and the like, but these fluctuations are small and do not fluctuate in a short time.

【0026】また、露光量は、図3の第3象限に示すよ
うに感光体表面電位と一定の関係がある。すなわち、露
光量が増えるにしたがって感光体表面電位の絶対値は低
くなる。この関係は感光体6の表面が削れ膜厚が低くな
ることによる感度変動や温度による感光体6の感度変動
及び連続して画像形成することによる一時的な感度変動
等により変化する。しかし、膜厚削れや温度を原因とす
る変動は短期に生じるものではない。また、連続して画
像形成することによる一時的な感度変動は、図4の点線
で示すように、主に高露光部において生じる。ネガポジ
現像においては高露光部は高濃度部にあたる。感光体6
に形成されたトナ−像のトナ−付着量とトナ−像を転写
紙に転写して定着させたときの明度を測定した結果を図
5に示す。図5に示すように高濃度部において人間の視
覚は感度が低く、トナ−付着量が多少変動したとしても
検知することができない。したがって連続して画像形成
することによる一時的に高濃度部に生じる短期感度変動
は画像濃度の安定化という点からはそれほど重要ではな
くなる。また、出力画像信号と露光量の関係や露光量と
感光体表面電位における長期的な変動はユ−ザ−が機器
を用いていない間など時間的に余裕があるタイミングで
特性変動を容易に検知することができる。
The exposure amount has a fixed relationship with the photoconductor surface potential as shown in the third quadrant of FIG. That is, as the exposure amount increases, the absolute value of the photoconductor surface potential decreases. This relationship changes due to sensitivity fluctuations caused by the surface of the photoreceptor 6 being scraped and the film thickness being reduced, sensitivity fluctuations of the photoreceptor 6 due to the temperature, temporary fluctuations in the sensitivity due to continuous image formation, and the like. However, fluctuations due to thickness reduction and temperature do not occur in a short period of time. Further, temporary sensitivity fluctuation due to continuous image formation mainly occurs in a high-exposure portion as shown by a dotted line in FIG. In the negative-positive development, the high exposure area corresponds to the high density area. Photoconductor 6
FIG. 5 shows the results of measurement of the toner adhesion amount of the toner image formed on the recording medium and the brightness when the toner image was transferred to a transfer sheet and fixed. As shown in FIG. 5, human vision has low sensitivity in the high-density portion, and cannot be detected even if the toner adhesion amount slightly fluctuates. Therefore, the short-term sensitivity fluctuation that temporarily occurs in the high-density portion due to continuous image formation is not so important in terms of stabilizing the image density. In addition, the relationship between the output image signal and the exposure amount and the long-term variation in the exposure amount and the photoconductor surface potential can be easily detected at a time when there is sufficient time such as when the user is not using the device. can do.

【0027】また、感光体表面電位と現像バイアス電位
との差である現像ポテンシャルとトナ−付着量も、図3
の第2象限に示すように一定の関係がある。現像ポテン
シャルとトナ−付着量の関係はトナ−付着量の多い中濃
度部から高濃度部へかけて線形性を持っていることが特
徴となっている。そして、この特性はトナ−の帯電特性
の変化が大きな原因となって図6の点線で示すように傾
きが変化する。このトナ−の帯電量の変化は湿度の影響
や現像部9内のトナ−が消費され新しく補給されたトナ
−が帯電される際に帯電ムラが起きるなど特性の短期的
な変動が激しい。出力画像濃度の短期的な変動は主に現
像ポテンシャルとトナ−付着量の関係を示す現像特性の
変動によるものである。したがって現像ポテンシャルと
トナ−付着量の関係を示す現像特性を検知することが出
力画像信号とトナ−付着量の関係を知る上で重要にな
る。
The development potential, which is the difference between the photoconductor surface potential and the development bias potential, and the toner adhesion amount are also shown in FIG.
There is a certain relationship as shown in the second quadrant. The relationship between the development potential and the toner adhesion amount is characterized in that it has linearity from a medium density portion to a high density portion where the toner adhesion amount is large. The inclination of this characteristic changes as shown by the dotted line in FIG. 6 largely due to the change in the charging characteristic of the toner. The change in the charge amount of the toner is greatly affected by humidity and a short-term variation in characteristics such as uneven charging occurs when the toner in the developing unit 9 is consumed and the newly replenished toner is charged. The short-term fluctuation of the output image density is mainly due to the fluctuation of the developing characteristic indicating the relationship between the developing potential and the toner adhesion amount. Therefore, it is important to detect the development characteristic indicating the relationship between the development potential and the toner adhesion amount in order to know the relationship between the output image signal and the toner adhesion amount.

【0028】そこで、上記のように構成された画像形成
装置で現像ポテンシャルとトナ−付着量の関係を示す現
像特性を検知して画像形成条件を制御するときの動作を
説明する。
The operation of controlling the image forming conditions by detecting the developing characteristics indicating the relationship between the developing potential and the toner adhesion amount in the image forming apparatus configured as described above will be described.

【0029】現像ポテンシャルとトナ−付着量の関係を
示す現像特性の中濃度から高濃度部における特性を知る
ためには、図7の現像ポテンシャルとトナ−付着量の関
係を示す現像特性図に示すように、低濃度Aと高濃度B
の2つのパッチを作成し、その現像ポテンシャルとトナ
−付着量から線形1次近似をすればよい。しかしなが
ら、トナ−付着量に対するトナ−付着量センサ15の出
力は、図8のトナ−付着量とセンサ出力の特性図に示す
ように、トナ−付着量センサ15の出力特性は非線形で
あり、高濃度部においてトナ−付着量センサ15の出力
が減衰するため、高濃度部のトナ−付着量を測定するこ
とができなくなる。すなわち、図7の現像ポテンシャル
とトナ−付着量の関係を示す現像特性図をトナ−付着量
センサ15の出力特性を考慮して書き直すと図9の実線
のようになる。図9に示したようにトナ−付着量センサ
15の出力特性により、高濃度Bの基準パッチのトナ−
付着量を測定することはできない。そこで、B点の代わ
りにトナ−付着量センサ15が線形の感度を持つC点を
用いて現像特性を求めようとするとA点とC点の間隔が
狭く、精度よく現像特性を求めることができなくなって
しまう。
In order to know the characteristics in the high-density portion from the middle density to the development characteristics showing the relationship between the development potential and the toner adhesion amount, a development characteristic diagram showing the relationship between the development potential and the toner adhesion amount is shown in FIG. Thus, low concentration A and high concentration B
The following two patches may be created, and a linear first-order approximation may be made from the development potential and the toner adhesion amount. However, as shown in the characteristic diagram of the toner adhesion amount and the sensor output in FIG. 8, the output characteristic of the toner adhesion amount sensor 15 with respect to the toner adhesion amount is non-linear and the output characteristic of the toner adhesion amount sensor 15 is high. Since the output of the toner adhesion amount sensor 15 is attenuated in the density portion, the toner adhesion amount in the high concentration portion cannot be measured. That is, when the development characteristic diagram showing the relationship between the development potential and the toner adhesion amount in FIG. 7 is rewritten in consideration of the output characteristic of the toner adhesion amount sensor 15, a solid line in FIG. 9 is obtained. As shown in FIG. 9, the toner characteristic of the high density B reference patch
The amount of adhesion cannot be measured. Therefore, if the toner adhesion amount sensor 15 attempts to obtain the developing characteristics using the point C having linear sensitivity instead of the point B, the interval between the points A and C is narrow, and the developing characteristics can be obtained with high accuracy. Will be gone.

【0030】そこで、図10に示すように黒ベタのソリ
ッドパッチ31aと、黒ベタのソリッドパッチ31aと
同じ光量で作成したときに黒度がソリッドパッチ31a
の例えば50%の網点パッチからなるテクスチャパッチ3
1bの2つの基準濃度画像デ−タの露光量を変化させた
ときのソリッドパッチ31aに対するトナ−付着量セン
サ15の出力とテクスチャパッチ31bに対するトナ−
付着量センサ15の出力をソリッドパッチ31aによる
トナ−付着量を基準にして図11に示す。図11に示す
ようにテクスチャパッチ31bはソリッドパッチ31a
とテクスチャが異なるため同じ光量で作成したときのト
ナ−付着量が少なくなり、結果としてソリッドパッチ3
1aのトナ−付着量がBであったとしてもテクスチャパ
ッチ31bはトナ−付着量センサ15の線形感度がある
領域になっている。そこで、ソリッドパッチ31aを使
用して低濃度Aすなわち露光量が少ないときのトナ−付
着量を検出し、テクスチャパッチ31bで高濃度Bすな
わち露光量が多いときのトナ−付着量を検出して、トナ
−付着量センサ15で検出したトナ−付着量をテクスチ
ャパッチ31bの黒度に応じて補正することにより、図
7に示すB点のトナ−付着量を得ることができる。
Therefore, as shown in FIG. 10, when the black solid patch 31a is formed with the same light quantity as the solid black patch 31a, the blackness of the solid patch 31a is reduced.
Texture patch 3 consisting of 50% halftone patches
The output of the toner adhesion amount sensor 15 for the solid patch 31a and the toner for the texture patch 31b when the exposure amounts of the two reference density image data 1b are changed.
The output of the adhesion amount sensor 15 is shown in FIG. 11 on the basis of the toner adhesion amount by the solid patch 31a. As shown in FIG. 11, the texture patch 31b is a solid patch 31a.
And the texture is different, the amount of toner attached when created with the same amount of light is reduced.
Even if the toner adhesion amount 1a is B, the texture patch 31b is in an area where the toner adhesion amount sensor 15 has linear sensitivity. Therefore, using the solid patch 31a, the toner adhesion amount when the low density A, that is, the exposure amount is small, is detected, and the high density B, that is, the toner adhesion amount when the exposure amount is large, is detected by the texture patch 31b. By correcting the toner adhesion amount detected by the toner adhesion amount sensor 15 in accordance with the blackness of the texture patch 31b, the toner adhesion amount at point B shown in FIG. 7 can be obtained.

【0031】このA点におけるソリッドパッチ31aの
現像ポテンシャルPaとトナ−付着量Oaと、B点にお
けるテクスチャパッチ31bの現像ポテンシャルPbと
トナ−付着量Obを使用すると、図7に示す、中高濃度
域における現像ポテンシャルPとトナ−付着量TDの関
係を示す現像特性の線形1次式の傾きαと切片βは下記
式で示されることが実験の結果確認された。下記式にお
いて、定数d、e、f、g、hはあらかじめ実験により
求める。
By using the development potential Pa and toner adhesion Oa of the solid patch 31a at the point A and the development potential Pb and toner adhesion Ob of the texture patch 31b at the point B, as shown in FIG. The experimental results confirmed that the slope α and the intercept β of the linear linear expression of the development characteristic showing the relationship between the development potential P and the toner adhesion amount TD at In the following equation, the constants d, e, f, g, and h are obtained in advance by experiments.

【0032】TD=α・P+β α=(j−i)/(d・Pb−Pa) β=i−α・Pa i=−(Oa−e) j=−(Ob−g)/hTD = α · P + β α = (ji −) / (d · Pb−Pa) β = i−α · Pai = − (Oa−e) j = − (Ob−g) / h

【0033】そこで、基準画像形成部25は、入力画像
信号による画像を形成する感光体6の領域とは別の領域
に、図10に示す黒ベタのソリッドパッチ31aを低光
量で作成し、テクスチャパッチ31bを高光量で作成す
る。そして、現像前のソリッドパッチ31aとテクスチ
ャパッチ31bの感光体6上における表面電位を表面電
位計14で測定して差演算部21に送る。差演算部21
は送られたソリッドパッチ31aとテクスチャパッチ3
1bの表面電位と現像ロ−ラ8の現像バイアス電圧との
差を演算し、A点における現像ポテンシャルPaとB点
における現像ポテンシャルPbを現像特性推定部22に
送る。一方、トナ−付着量センサ15で現像後のソリッ
ドパッチ31aとテクスチャパッチ31bのトナ−付着
量を検出し、付着量補正部27を介してA点におけるト
ナ−付着量OaとB点におけるトナ−付着量Obを現像
特性推定部22に送る。現像特性推定部22は送られた
現像ポテンシャルPa,Pbとトナ−付着量Oa,Ob
から上記TD=α・P+βで現像ポテンシャルPとトナ
−付着量TDの関係を近似する。露光操作値決定部4は
現像特性推定部22で近似した現像ポテンシャルPとト
ナ−付着量TDの関係から画像信号変換処理を補正し、
補正した画像信号変換処理で入力画像信号を出力画像信
号に変換する。また、帯電操作値決定部24も現像特性
推定部22で近似した現像ポテンシャルPとトナ−付着
量TDの関係から帯電制御信号を生成して帯電制御部2
6に送り、帯電器7が感光体6に付与する電荷を帯電制
御部26で制御させる。このようにして現像特性に応じ
た画像を出力するから、常に安定した濃度の画像を出力
することができる。また、中高濃度域における現像特性
を異なる光量で、しかも異なるテクスチャを用いた2つ
だけのパッチ31a,31bで現像ポテンシャルとトナ
−付着量の関係を求めることができる。
Therefore, the reference image forming unit 25 creates a solid black patch 31a of low solid quantity shown in FIG. 10 in an area different from the area of the photoreceptor 6 where an image is formed by an input image signal, and The patch 31b is created with a high light quantity. Then, the surface potential of the solid patch 31a and the texture patch 31b before development on the photoconductor 6 is measured by the surface voltmeter 14 and sent to the difference calculation unit 21. Difference calculator 21
Is sent solid patch 31a and texture patch 3
The difference between the surface potential 1b and the developing bias voltage of the developing roller 8 is calculated, and the developing potential Pa at the point A and the developing potential Pb at the point B are sent to the developing characteristic estimating unit 22. On the other hand, the toner adhesion amount sensor 15 detects the toner adhesion amount of the developed solid patch 31a and the texture patch 31b, and the toner adhesion amount Oa at the point A and the toner adhesion amount at the point B via the adhesion amount correction unit 27. The attached amount Ob is sent to the developing characteristic estimating unit 22. The developing characteristic estimating unit 22 sends the developing potentials Pa and Pb and the toner adhesion amounts Oa and Ob.
Accordingly, the relationship between the development potential P and the toner adhesion amount TD is approximated by the above TD = α · P + β. The exposure operation value determination unit 4 corrects the image signal conversion processing from the relationship between the development potential P and the toner adhesion amount TD approximated by the development characteristic estimation unit 22,
The input image signal is converted into the output image signal by the corrected image signal conversion processing. The charging operation value determining unit 24 also generates a charging control signal from the relationship between the developing potential P and the toner adhesion amount TD approximated by the developing characteristic estimating unit 22, and generates a charging control signal.
The charging control section 26 controls the charge provided by the charger 7 to the photoconductor 6. Since an image corresponding to the development characteristics is output in this manner, an image having a stable density can be always output. In addition, the relationship between the development potential and the toner adhesion amount can be obtained with only two patches 31a and 31b using different light amounts for the development characteristics in the middle and high density regions and using different textures.

【0034】なお、上記実施例はテクスチャパッチ31
bを網点パッチで形成した場合について説明したが、テ
クスチャパッチ31bをラインパッチで作成することに
より、ソリッドパッチ31aとテクスチャパッチ31b
の濃度の安定性をより高めることができ、現像特性を高
精度に求めることができる。
In the above embodiment, the texture patch 31 is used.
Although the case where b is formed by halftone patches has been described, by creating the texture patch 31b with line patches, the solid patch 31a and the texture patch 31b can be formed.
, And the developing characteristics can be obtained with high accuracy.

【0035】また、上記実施例は現像特性推定部22で
中高濃度域における現像ポテンシャルPとトナ−付着量
TDの関係である現像特性TD=α・P+βを近似した
場合について説明したが、中高濃度域における現像特性
とともに低濃度部における現像特性を近似するようにし
ても良い。
In the above-described embodiment, the case where the developing characteristic estimating unit 22 approximates the developing characteristic TD = α · P + β, which is the relationship between the developing potential P and the toner adhesion amount TD in the medium / high density region, has been described. The developing characteristics in the low density portion may be approximated together with the developing characteristics in the region.

【0036】すなわち、低濃度部における現像ポテンシ
ャルPとトナ−付着量TDの関係は図12に実線と点線
で示すように、中高濃度部の現像特性と相関を持って変
動する。そこで、中高濃度部の現像ポテンシャルPとト
ナ−付着量TDの関係を上記TD=α・P+βと近似し
たときに、低濃度部の現像特性はTD=F(P,α,
β)というようにトナ−付着量TDを現像ポテンシャル
Pと高濃度部の現像特性の傾きαと切片βから一意に求
めることができる。そして関数Fはあらかじめ実験によ
り求めておくことができ、この関数Fにより現像特性推
定部22で低濃度部の現像特性を求めることができる。
That is, the relationship between the development potential P and the toner adhesion amount TD in the low-density portion fluctuates in correlation with the development characteristics of the middle and high-density portions as shown by the solid line and the dotted line in FIG. Therefore, when the relationship between the developing potential P and the toner adhesion amount TD in the middle and high density portions is approximated to the above TD = α · P + β, the development characteristics in the low density portion are TD = F (P, α,
β), the toner adhesion amount TD can be uniquely obtained from the development potential P, the gradient α of the development characteristic of the high density portion, and the intercept β. Then, the function F can be obtained in advance by an experiment, and the developing characteristic estimating unit 22 can obtain the developing characteristic of the low density portion by using the function F.

【0037】なお、上記実施例は低濃度部の現像特性を
実験で定めた関数Fにより求めた場合について説明した
が、低濃度部の現像特性を一次式で近似することもでき
る。例えば図13の点線で示した現像特性の高濃度部の
現像特性をTD=α・P+βと近似したときに、低濃度
部の現像特性を近似した1次式の傾きaは高濃度部の現
像特性の傾きαにより変わり、a=k・αで表せる。ま
た、低濃度部においてトナ−付着量が飽和する点でのト
ナ−付着量をTDd、現像ポテンシャルをPdとする
と、低濃度部の現像ポテンシャルPとトナ−付着量TD
の関係を近似した1次式は、TD=a・(P−Pd)+
TDdで表せる。そしてkとTDdとPdをあらかじめ
実験により決定しておくと、低濃度部の特性を求めるた
めに特別なパッチを作成することなく、現像特性推定部
22で高濃度部の現像特性の近似式とともに低濃度部の
現像特性の近似式を求めることができる。このように低
濃度部の現像特性を1次式で近似することにより、簡単
な処理で低濃度部の現像特性を得ることができる。
Although the above embodiment has been described with reference to the case where the developing characteristic of the low density portion is obtained by the function F determined by experiment, the developing characteristic of the low density portion can be approximated by a linear expression. For example, when the development characteristic of the high-density part of the development characteristic shown by the dotted line in FIG. 13 is approximated to TD = α · P + β, the gradient a of the linear expression approximating the development characteristic of the low-density part is It changes according to the characteristic gradient α, and can be expressed by a = k · α. Further, assuming that the toner adhesion amount at the point where the toner adhesion amount is saturated in the low density portion is TDd and the development potential is Pd, the development potential P in the low density portion and the toner adhesion amount TD
The linear equation approximating the relationship is: TD = a · (P−Pd) +
It can be expressed as TDd. If k, TDd, and Pd are determined in advance by an experiment, the developing characteristic estimating unit 22 can calculate the characteristic of the high-density part together with the approximate expression of the developing characteristic of the high-density part without creating a special patch to obtain the characteristic of the low-density part. An approximate expression of the development characteristics of the low density portion can be obtained. By approximating the development characteristics of the low-density portion by a linear expression in this way, the development characteristics of the low-density portion can be obtained by simple processing.

【0038】また、上記実施例は低濃度部の現像特性を
1次式で近似した場合について説明したが低濃度部の現
像特性を2次式又は3次式で近似すると、低濃度部の現
像特性をより高精度に得ることができる。例えば低濃度
部の現像特性を3次式で近似するときは、図14に示す
ように、高濃度部の現像特性をTD=α・P+βと近似
したときに、低濃度部におけるトナ−付着量の飽和値T
Ddにおいて1次微分が重解を持ち、すなわち3次式の
極大,極小が一致し、現像ポテンシャルPe,トナ−付
着量TDeの点で高濃度部を近似した1次式と接する3
次式で低濃度部の現像ポテンシャルPとトナ−付着量T
Dの関係を近似すると、近似した3次式は下記式で表せ
る。
In the above embodiment, the case where the developing characteristics of the low-density portion are approximated by a linear expression is described. Characteristics can be obtained with higher accuracy. For example, when the developing characteristic of the low density part is approximated by a cubic equation, as shown in FIG. 14, when the developing characteristic of the high density part is approximated by TD = α · P + β, the toner adhesion amount in the low density part Saturation value T
In Dd, the first derivative has multiple solutions, that is, the maximum and minimum of the cubic equation coincide, and the cubic equation comes into contact with the linear equation approximating the high-density portion in terms of the development potential Pe and the toner adhesion amount TDe3.
The developing potential P and toner adhesion amount T in the low density portion are expressed by the following equation.
When the relationship of D is approximated, the approximated cubic expression can be expressed by the following expression.

【0039】TD=a・P3+b・P2+c・P+d a=A b=−3A・Pe2−2B・Pe+C c=3A・Pe3+B・Pe2−C・Pe+D Pe=(TDe−β)/α A=α3/{27・(TDd−TDe)2} B=−α2/3・(TDd−TDe) C=α D=TDe[0039] TD = a · P 3 + b · P 2 + c · P + d a = A b = -3A · Pe 2 -2B · Pe + C c = 3A · Pe 3 + B · Pe 2 -C · Pe + D Pe = (TDe-β ) / α A = α 3 / {27 · (TDd-TDe) 2} B = -α 2/3 · (TDd-TDe) C = α D = TDe

【0040】このTDeとTDe及びPeをあらかじめ
実験により決定しておくと、現像特性推定部22で高濃
度部の現像特性の近似式とともに低濃度部の現像特性の
近似式を精度良く求めることができる。したがって常に
安定した濃度の画像を形成することができる。
If TDe, TDe, and Pe are determined in advance by experiments, the developing characteristic estimating section 22 can accurately obtain the approximate expression for the developing characteristic of the high density portion and the approximate expression of the developing characteristic for the low density portion. it can. Therefore, an image having a stable density can be always formed.

【0041】[0041]

【発明の効果】この発明は以上説明したように、黒ベタ
のソリッドパッチを低光量で作成し、テクスチャパッチ
を高光量で作成し、高光量で作成したテクスチャパッチ
のトナ−付着量をトナ−付着量センサで検出して黒ベタ
のソリッドパッチに対応したトナ−付着量に補正するよ
うにしたから、トナ−付着量センサの非線形の出力特性
により、高濃度領域のトナ−付着量が検出できないこと
を解消し、高濃度領域のトナ−付着量を精度良く検知す
ることができる。
As described above, according to the present invention, a solid black solid patch is created with a low light intensity, a texture patch is created with a high light intensity, and the toner adhesion amount of the texture patch created with a high light intensity is measured. Since the toner adhesion amount is detected by the adhesion amount sensor and corrected to the toner adhesion amount corresponding to the solid black solid patch, the toner adhesion amount in the high density region cannot be detected due to the nonlinear output characteristic of the toner adhesion amount sensor. Thus, the toner adhesion amount in the high concentration region can be accurately detected.

【0042】また、現像前のソリッドパッチとテクスチ
ャパッチの感光体上における表面電位を測定し、測定し
たソリッドパッチとテクスチャパッチの表面電位と現像
バイアス電圧との差を演算し、低光量すなわち低濃度点
における現像ポテンシャルと高光量すなわち高濃度点に
おける現像ポテンシャル及び低濃度点と高濃度点におけ
るトナ−付着量から中高濃度領域における現像ポテンシ
ャルとトナ−付着量の関係を1次式で近似し、近似した
現像ポテンシャルとトナ−付着量の関係から現像特性の
短期変動を検知し、画像形成条件を制御するようにした
から、現像特性に応じた画像を形成することができ、常
に安定した濃度の画像を出力することができる。
Further, the surface potential of the solid patch and the texture patch before development on the photoreceptor is measured, and the difference between the measured surface potential of the solid patch and the texture patch and the development bias voltage is calculated to obtain a low light quantity, that is, a low density. The relationship between the developing potential at the point and the high light quantity, that is, the developing potential at the high density point and the toner adhesion amount at the low density point and the high density point, is approximated by a linear expression to approximate the relationship between the developing potential and the toner adhesion amount at the medium and high density regions. A short-term change in the developing characteristics is detected from the relationship between the developed potential and the toner adhesion amount, and the image forming conditions are controlled, so that an image corresponding to the developing characteristics can be formed, and an image with a stable density is always obtained. Can be output.

【0043】また、テクスチャパッチをラインパッチで
作成することにより、ソリッドパッチとテクスチャパッ
チの濃度の安定性をより高め、現像特性を高精度に求め
ることができる。
Further, by forming the texture patches using line patches, the stability of the density of the solid patches and the texture patches can be further improved, and the development characteristics can be obtained with high accuracy.

【0044】また、中高濃度域における現像ポテンシャ
ルとトナ−付着量の関係である現像特性を1次式で近似
するとともに、近似した1次式を利用して低濃度部にお
ける現像特性もあらかじめ定められた関数で近似したり
1次式や3次式で近似することにより、低濃度部におけ
る現像特性の短期変動検知することができ、安定した画
像を形成することができる。
In addition, the developing characteristic, which is the relationship between the developing potential and the toner adhesion amount in the middle and high density regions, is approximated by a linear expression, and the developing characteristic in the low density portion is determined in advance by using the approximated linear expression. By approximating by a function or by a linear expression or a cubic expression, it is possible to detect short-term fluctuations in the development characteristics in a low density portion, and to form a stable image.

【0045】さらに、低濃度部における現像特性を1次
式で近似することにより、簡単な処理で低濃度部におけ
る現像特性を近似することができる。
Further, by approximating the developing characteristics in the low density portion by a linear expression, the developing characteristics in the low density portion can be approximated by simple processing.

【0046】また、低濃度部における現像特性を3次式
で近似することにより、低濃度部の現像特性の近似式を
精度良く求めることができ、良質な画像を形成すること
ができる。
Further, by approximating the developing characteristic in the low density portion by a cubic expression, an approximate expression of the developing characteristic in the low density portion can be obtained with high accuracy, and a high quality image can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例の画像形成装置の概要を示す
構成図である。
FIG. 1 is a configuration diagram illustrating an outline of an image forming apparatus according to an embodiment of the present invention.

【図2】上記実施例の濃度制御部の構成を示すブロック
図である。
FIG. 2 is a block diagram illustrating a configuration of a density control unit according to the embodiment.

【図3】出力画像信号,露光量,感光体表面電位,現像
ポテンシャル,トナ−付着量の関係を示す特性図であ
る。
FIG. 3 is a characteristic diagram showing a relationship among an output image signal, an exposure amount, a photoconductor surface potential, a developing potential, and a toner adhesion amount.

【図4】露光量と感光体表面電位の感度変動を示す特性
図である。
FIG. 4 is a characteristic diagram showing a variation in sensitivity between an exposure amount and a photoconductor surface potential.

【図5】トナ−付着量と明度の関係を示す特性図であ
る。
FIG. 5 is a characteristic diagram showing a relationship between a toner adhesion amount and brightness.

【図6】現像ポテンシャルとトナ−付着量の変化特性図
である。
FIG. 6 is a graph showing a change characteristic of a development potential and a toner adhesion amount.

【図7】中高濃度部の現像ポテンシャルとトナ−付着量
の関係を線形近似するときの原理を示す説明図である。
FIG. 7 is an explanatory diagram showing the principle when the relationship between the developing potential of the middle and high density portions and the toner adhesion amount is linearly approximated.

【図8】トナ−付着量センサの出力特性図である。FIG. 8 is an output characteristic diagram of a toner adhesion amount sensor.

【図9】現像ポテンシャルとトナ−付着量センサで検出
したトナ−付着量の関係を示す変化特性図である。
FIG. 9 is a change characteristic diagram showing a relationship between a developing potential and a toner adhesion amount detected by a toner adhesion amount sensor.

【図10】ソリツドパッチとテクスチャパッチの構成図
である。
FIG. 10 is a configuration diagram of a solid patch and a texture patch.

【図11】露光量を変化させたときのソリッドパッチと
テクスチャパッチに対するトナ−付着量センサの出力特
性図である。
FIG. 11 is an output characteristic diagram of a toner adhesion amount sensor for a solid patch and a texture patch when an exposure amount is changed.

【図12】低濃度領域のトナ−付着量と現像ポテンシャ
ルの関係を関数近似するときの説明図である。
FIG. 12 is an explanatory diagram when a relationship between a toner adhesion amount and a developing potential in a low density region is approximated by a function.

【図13】低濃度領域のトナ−付着量と現像ポテンシャ
ルの関係を1次近似するときの説明図である。
FIG. 13 is an explanatory diagram of a first-order approximation of the relationship between the toner adhesion amount and the development potential in a low-density region.

【図14】低濃度領域のトナ−付着量と現像ポテンシャ
ルの関係を3次近似するときの説明図である。
FIG. 14 is an explanatory diagram when the relationship between the toner adhesion amount and the developing potential in the low density region is approximated by third order.

【図15】従来例のトナ−付着量と現像ポテンシャルの
関係を示す説明図である。
FIG. 15 is an explanatory diagram showing a relationship between a toner adhesion amount and a developing potential in a conventional example.

【符号の説明】[Explanation of symbols]

4 露光操作値決定部 5 露光制御部 6 感光体 7 帯電器 9 現像部 14 表面電位計 15 トナ−付着量センサ 22 現像特性推定部 23 条件制御部 24 帯電操作値決定部 25 基準画像形成部 31a ソリッドパッチ 31b テクスチャパッチ Reference Signs List 4 Exposure operation value determination unit 5 Exposure control unit 6 Photoconductor 7 Charger 9 Developing unit 14 Surface voltmeter 15 Toner adhesion amount sensor 22 Development characteristic estimating unit 23 Condition control unit 24 Charging operation value determination unit 25 Reference image forming unit 31a Solid patch 31b Texture patch

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 入力画像信号に応じた静電潜像を感光体
上に形成し、形成した潜像を現像手段によって現像して
転写材上へ転写する画像形成装置において、 基準画像形成手段と表面電位センサとトナ−付着量セン
サと現像特性推定手段及び条件制御手段とを有し、 基準画像形成手段は入力画像信号による画像を形成する
感光体の領域とは別の領域に、低光量で黒ベタのソリッ
ドパッチの基準画像を形成し、高光量でテクスチャパッ
チの基準画像を形成し、 表面電位センサは現像前における上記2つの基準画像の
感光体上での表面電位を測定し、 トナ−付着量センサは上記各基準画像の現像後または転
写材に転写後のトナ−付着量を測定し、 現像特性推定手段は表面電位センサで測定した感光体表
面電位と現像手段に付加される現像バイアスとの差であ
る現像ポテンシャルの中間濃度部から高濃度部における
現像ポテンシャルとトナ−付着量センサで測定したトナ
−付着量との関係を1次式で近似し、 条件制御手段は現像特性推定手段で近似した現像ポテン
シャルとトナ−付着量の関係から画像形成条件を制御す
ることを特徴とする画像形成装置。
An image forming apparatus that forms an electrostatic latent image on a photosensitive member in accordance with an input image signal, develops the formed latent image by a developing unit, and transfers the latent image to a transfer material; A surface potential sensor, a toner adhesion amount sensor, a developing characteristic estimating unit, and a condition controlling unit, and the reference image forming unit is provided with a low light amount in an area different from an area of the photoreceptor for forming an image based on an input image signal. A reference image of a solid black solid patch is formed, a reference image of a texture patch is formed with high light intensity, and a surface potential sensor measures the surface potential of the two reference images on the photoreceptor before development. The adhesion amount sensor measures the toner adhesion amount after the development of each of the reference images or after transfer to the transfer material. The developing characteristic estimating means includes a photoconductor surface potential measured by a surface potential sensor and a developing bias applied to the developing means. The relationship between the developing potential in the intermediate density portion and the high density portion of the developing potential, which is the difference between the developing potential, and the toner adhesion amount measured by the toner adhesion amount sensor is approximated by a linear expression, and the condition control means is a development characteristic estimating means. An image forming apparatus, wherein an image forming condition is controlled from an approximate relationship between a developing potential and a toner adhesion amount.
【請求項2】 上記基準画像形成手段で形成するテクス
チャパッチがラインパッチである請求項1記載の画像形
成装置。
2. The image forming apparatus according to claim 1, wherein the texture patch formed by the reference image forming means is a line patch.
【請求項3】 上記現像特性推定手段は近似した中間濃
度部から高濃度部における現像ポテンシャルとトナ−付
着量センサとの関係から低濃度部における現像ポテンシ
ャルとトナ−付着量センサとの関係を推定する請求項2
記載の画像形成装置。
3. The developing characteristic estimating means estimates the relationship between the developing potential and the toner adhesion amount sensor in the low density portion from the approximate relationship between the developing potential and the toner adhesion amount sensor in the intermediate density portion to the high density portion. Claim 2
The image forming apparatus as described in the above.
【請求項4】 上記現像特性推定手段は、低濃度部の現
像ポテンシャルとトナ−付着量の関係を1次式で近似
し、1次式の各係数を中間濃度部から高濃度部の関係を
近似した1次式の傾きと切片と低濃度部における飽和ト
ナ−付着量及びその飽和点での現像ポテンシャルで表す
請求項3記載の画像形成装置。
4. The developing characteristic estimating means approximates the relationship between the developing potential of the low-density portion and the toner adhesion amount with a linear expression, and calculates each coefficient of the linear expression from the relationship between the intermediate-density portion and the high-density portion. 4. The image forming apparatus according to claim 3, wherein the slope is expressed by an approximated linear expression, an intercept, an attached amount of a saturated toner in a low density portion, and a developing potential at the saturation point.
【請求項5】 上記現像特性推定手段は、低濃度部の現
像ポテンシャルとトナ−付着量の関係を3次式で近似
し、3次式の各係数は中間濃度部から高濃度部の関係を
近似した1次式の傾きと切片と低濃度部での飽和トナ−
付着量及び中高濃度部の関係を近似した1次式と3次式
の切り換え点の現像ポテンシャルとトナ−付着量で表す
請求項3記載の画像形成装置。
5. The developing characteristic estimating means approximates the relationship between the developing potential of the low density portion and the toner adhesion amount by a cubic expression, and each coefficient of the cubic expression represents the relationship between the intermediate density portion and the high density portion. The slope of the approximated linear equation, the intercept, and the saturated toner in the low concentration area.
4. The image forming apparatus according to claim 3, wherein the relationship between the adhesion amount and the medium-high density portion is expressed by a developing potential and a toner adhesion amount at a switching point between a linear expression and a cubic expression.
JP8262302A 1996-09-12 1996-09-12 Image forming device Pending JPH1090993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8262302A JPH1090993A (en) 1996-09-12 1996-09-12 Image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8262302A JPH1090993A (en) 1996-09-12 1996-09-12 Image forming device

Publications (1)

Publication Number Publication Date
JPH1090993A true JPH1090993A (en) 1998-04-10

Family

ID=17373905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8262302A Pending JPH1090993A (en) 1996-09-12 1996-09-12 Image forming device

Country Status (1)

Country Link
JP (1) JPH1090993A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003076129A (en) * 2001-08-31 2003-03-14 Canon Inc Image forming apparatus
US8200106B2 (en) 2009-06-11 2012-06-12 Canon Kabushiki Kaisha Image forming apparatus with image forming condition control feature based on difference in patch densities
US8554094B2 (en) 2010-07-02 2013-10-08 Kabushiki Kaisha Toshiba Image forming apparatus and image quality control method
JP2014013269A (en) * 2012-07-03 2014-01-23 Konica Minolta Inc Image formation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003076129A (en) * 2001-08-31 2003-03-14 Canon Inc Image forming apparatus
US8200106B2 (en) 2009-06-11 2012-06-12 Canon Kabushiki Kaisha Image forming apparatus with image forming condition control feature based on difference in patch densities
US8582995B2 (en) 2009-06-11 2013-11-12 Canon Kabushiki Kaisha Image forming apparatus with image forming condition control feature based on difference in patch densities
US8554094B2 (en) 2010-07-02 2013-10-08 Kabushiki Kaisha Toshiba Image forming apparatus and image quality control method
JP2014013269A (en) * 2012-07-03 2014-01-23 Konica Minolta Inc Image formation device

Similar Documents

Publication Publication Date Title
JP5418914B2 (en) Image forming apparatus
CN102279535A (en) image forming apparatus capable of performing accurate gradation correction
EP0837372A3 (en) Image forming method and image forming apparatus
US7995240B2 (en) Image-forming device capable of forming and correcting color image
US5666588A (en) Image forming apparatus for performing image density control
US20030086717A1 (en) Tone reproduction curve control method
US6647219B2 (en) Electrophotographic recording process control method and apparatus
JP5064833B2 (en) Image forming apparatus
JP2010176011A (en) Image forming apparatus
JPH1090993A (en) Image forming device
JP2004272205A (en) Image forming apparatus and image forming method
JP2955237B2 (en) Latent image potential estimating apparatus and latent image potential estimating method
JPH06230642A (en) Potential controller for photosensitive body
JP7340161B2 (en) Image forming apparatus, image forming method, and image forming program
JP2698089B2 (en) Control method of image forming apparatus
JP3180497B2 (en) Image density control device
JPH05107835A (en) Image forming device
JP3227345B2 (en) Image forming device
JP3401947B2 (en) Image forming device
JPH08286441A (en) Electrophotographic process controller
JP3452797B2 (en) Laser output adjustment device
JP2005106875A (en) Image density control method
JP2983332B2 (en) Electrophotographic equipment
JPH05107885A (en) Image forming device
JP2020046626A (en) Image forming apparatus, image forming method, and image forming program

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040608