JPH1090500A - Method for irradiating object with active energy beam and object to be irradiated with it - Google Patents

Method for irradiating object with active energy beam and object to be irradiated with it

Info

Publication number
JPH1090500A
JPH1090500A JP25026296A JP25026296A JPH1090500A JP H1090500 A JPH1090500 A JP H1090500A JP 25026296 A JP25026296 A JP 25026296A JP 25026296 A JP25026296 A JP 25026296A JP H1090500 A JPH1090500 A JP H1090500A
Authority
JP
Japan
Prior art keywords
electron beam
irradiated
acceleration voltage
irradiating
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25026296A
Other languages
Japanese (ja)
Other versions
JP3141790B2 (en
Inventor
Masami Kuwabara
昌美 桑原
Michio Takayama
蹊男 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP08250262A priority Critical patent/JP3141790B2/en
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to US09/065,052 priority patent/US6188075B1/en
Priority to KR10-1998-0703262A priority patent/KR100488225B1/en
Priority to AU41347/97A priority patent/AU744614B2/en
Priority to EP97939173A priority patent/EP0877389A4/en
Priority to CA002236672A priority patent/CA2236672A1/en
Priority to PCT/JP1997/003106 priority patent/WO1998010430A1/en
Priority to TW086113674A priority patent/TW343339B/en
Publication of JPH1090500A publication Critical patent/JPH1090500A/en
Priority to US09/731,312 priority patent/US6504163B2/en
Application granted granted Critical
Publication of JP3141790B2 publication Critical patent/JP3141790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for irradiating an object with an active energy beam and an object to be irradiated with it which have little adverse effect on a working environment and can reduce the degree of an inactivation by an inactive gas. SOLUTION: If the acceleration voltage of an irradiating electron beam is 40kV or lower, the oxygen concentration of a part irradiated with the electron beam is adjusted to that in an approximate air atmosphere or lower and then an object is irradiated with the electron beam. If the acceleration voltage of an irradiating electron beam exceeds 40kV, the oxygen concentration is adjusted to the one shown by Y<=1.19×10<2> ×exp(-4.45×10<-2> ×X), letting the acceleration voltage (kV) = X and the oxygen concentration (%) in a part irradiated with the electron beam = Y, and then an object is irradiated with the electron beam.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば基材に設け
られる塗料、印刷インキ、接着剤等の被覆剤等に対し
て、真空中で電子を電圧にて加速し、この加速された電
子を常圧中に取り出して物体に電子線(EB)を照射
し、被覆剤等を硬化もしくは架橋する活性エネルギー照
射方法および活性エネルギー線照射物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for accelerating electrons in a vacuum with respect to a coating material such as a coating material, a printing ink, an adhesive or the like provided on a base material, and applying the accelerated electrons to the coating material. The present invention relates to an active energy irradiation method for irradiating an object with an electron beam (EB) at ordinary pressure to cure or crosslink a coating material and the like, and to an active energy ray irradiated material.

【0002】[0002]

【従来の技術】基材に施された塗料、印刷インキ、接着
剤等の被覆剤の硬化または架橋方法として電子線硬化が
提案されている。電子線硬化は、真空中で電子を電圧に
て加速し、この加速された電子を空気中等の常圧雰囲気
中に取り出し、物体に対して電子線(EB)を照射する
方法であり、加速電圧は通常300kV〜1MVであ
る。
2. Description of the Related Art Electron beam curing has been proposed as a method for curing or crosslinking coating materials such as paints, printing inks and adhesives applied to substrates. Electron beam curing is a method in which electrons are accelerated by a voltage in a vacuum, the accelerated electrons are taken out into a normal pressure atmosphere such as air, and an object is irradiated with an electron beam (EB). Is usually 300 kV to 1 MV.

【0003】電子線照射による硬化および架橋の利点と
しては、次のようなものが挙げられる。 (1) 希釈剤として有機溶剤を含有させる必要がないので
環境に優しい。
The advantages of curing and crosslinking by electron beam irradiation include the following. (1) It is environmentally friendly because it does not need to contain an organic solvent as a diluent.

【0004】(2) 硬化速度が速い(生産性大)。 (3) 熱乾燥よりも硬化作業面積が少なくてすむ。 (4) 基材に熱がかからない(熱に弱いものにも適用可
能)。
(2) High curing speed (high productivity). (3) Less curing work area than heat drying. (4) Heat is not applied to the base material (applicable to heat-sensitive materials).

【0005】(5) 後加工がすぐできる(冷却、エージン
グ等が不要である)。 (6) 電気的作業条件を管理すればよいから、熱乾燥の際
の温度管理よりも管理しやすい。
(5) Post-processing can be performed immediately (cooling, aging, etc. are unnecessary). (6) Since it is only necessary to control the electrical working conditions, it is easier to control than the temperature control during thermal drying.

【0006】(7) 開始剤、増感剤がなくてもよいので、
不純物の少ないものができる(品質の向上)。 ところで、一般に工業的に利用されている電子線硬化装
置においては、被処理物に電子線を照射することによっ
て発生したラジカルにより重合反応を生じさせ、これに
よってポリマーが形成され硬化が進行する。この場合、
照射室内に酸素が存在していると、処理物中の成長ラジ
カルと電子線によって発生した酸素ラジカルとの反応に
より、ラジカル重合が阻害される。このため、一般に2
00kV程度の比較的低加速電圧においても、窒素等を
用いて、酸素濃度500ppm以下で照射しているのが
現状である。
(7) Since there is no need for an initiator and a sensitizer,
A product with less impurities can be produced (improved quality). By the way, in an electron beam curing apparatus generally used industrially, a polymerization reaction is caused by radicals generated by irradiating an object to be treated with an electron beam, whereby a polymer is formed and curing proceeds. in this case,
If oxygen is present in the irradiation chamber, radical polymerization is inhibited by the reaction between the growing radicals in the processed material and oxygen radicals generated by the electron beam. For this reason, generally 2
At present, irradiation is performed at an oxygen concentration of 500 ppm or less using nitrogen or the like even at a relatively low acceleration voltage of about 00 kV.

【0007】また、電子線を空気雰囲気中で照射する
と、酸素分子はオゾンに変わる。オゾンは人体に非常に
有害な物質であり、日本産業衛生学会の許容濃度の勧告
(1992年)によればオゾンの許容濃度は0.1pp
mと定められており、また日本空気清浄協会の設計基準
でもオゾン濃度は最高0.1ppm、平均0.05pp
m以下と定められている。従って、電子線照射時の作業
環境においては換気等に十分留意する必要がある。オゾ
ンの処理方法については、活性炭によりオゾンを分解
し、酸素分子に還元する方法も用いられているが、活性
炭の寿命が短い等の問題があり、実用上は問題が大き
い。
When an electron beam is irradiated in an air atmosphere, oxygen molecules are changed to ozone. Ozone is a substance that is extremely harmful to the human body. According to the recommendation of the allowable concentration of the Japan Society for Occupational Health (1992), the allowable concentration of ozone is 0.1 pp.
The ozone concentration is 0.1 ppm at the maximum and 0.05 pp on average according to the design standards of the Japan Air Cleaning Association.
m or less. Therefore, it is necessary to pay sufficient attention to ventilation and the like in the working environment at the time of electron beam irradiation. As a method of treating ozone, a method of decomposing ozone with activated carbon and reducing it to oxygen molecules is also used, but there are problems such as a short life of activated carbon, which is a serious problem in practical use.

【0008】このため、電子線照射による硬化もしくは
架橋技術は地球的問題である環境問題の面から、省エネ
ルギーかつ溶剤を放出しない環境に優しいプロセスとし
て注目を集めているものの、上述したような品質上の問
題と装置が大型で初期投資が高く、イナートガス(窒
素)の使用によるランニングコストが高い等の問題か
ら、実用化に至らない例が多数ある。
[0008] For this reason, the curing or cross-linking technology by electron beam irradiation has been attracting attention as an environmentally friendly process that does not emit solvent and consumes energy from the viewpoint of the environmental problem that is a global problem. There are many examples that cannot be put to practical use due to the problems described above, the large size of the apparatus, the high initial investment, and the high running cost due to the use of inert gas (nitrogen).

【0009】[0009]

【発明が解決しようとする課題】本発明はかかる事情に
鑑みてなされたものであって、作業環境への悪影響が少
なく、不活性ガスによるイナーティングの程度を少なく
することができる活性エネルギー線照射方法および活性
エネルギー照射物を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been made in consideration of the above circumstances, and has an active energy ray irradiation capable of reducing adverse effects on a working environment and reducing a degree of inerting by inert gas. It is an object to provide a method and an active energy irradiation.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、第1に、電子線照射部の酸素濃度が、照
射する電子線の加速電圧が40kV以下の場合には、略
空気中の酸素濃度またはそれ以下の濃度、照射する電子
線の加速電圧が40kV超においては、加速電圧(k
V)をX、電子線照射部分の酸素濃度(%)をYとした
とき、(a)式で示される酸素濃度になるようにして被
照射物に電子線照射することを特徴とする活性エネルギ
ー線照射方法を提供する。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention firstly provides a method in which the oxygen concentration in the electron beam irradiation section is substantially reduced when the acceleration voltage of the electron beam to be irradiated is 40 kV or less. If the oxygen concentration in the air is lower than or equal to the oxygen concentration, and the acceleration voltage of the electron beam to be irradiated exceeds 40 kV, the acceleration voltage (k
When V) is X, and when the oxygen concentration (%) of the electron beam irradiated portion is Y, the irradiation target is irradiated with an electron beam so that the oxygen concentration is represented by the formula (a). A method of irradiating a line is provided.

【0011】 Y≦1.19×102 ×exp(−4.45×10-2×X)……(a) 第2に、電子線照射部の酸素濃度が、照射する電子線の
加速電圧が40kV以下の場合には、略空気中の酸素濃
度またはそれ以下の濃度、照射する電子線の加速電圧が
40kV超においては、加速電圧(kV)をX、電子線
照射部分の酸素濃度(%)をYとしたとき、(b)式で
示される酸素濃度になるようにして被照射物に電子線照
射することを特徴とする活性エネルギー線照射方法を提
供する。
Y ≦ 1.19 × 10 2 × exp (−4.45 × 10 −2 × X) (a) Secondly, the oxygen concentration of the electron beam irradiating part is determined by the acceleration voltage of the electron beam to be irradiated. Is less than or equal to 40 kV, the acceleration voltage (kV) is X if the acceleration voltage of the electron beam to be irradiated exceeds 40 kV, and the oxygen concentration (% The present invention provides an active energy ray irradiation method characterized in that an irradiation target is irradiated with an electron beam so that the oxygen concentration represented by the equation (b) is obtained when Y is Y.

【0012】 1.19×102 ×exp(−4.45×10-2×X)≧Y≧0.05…… (b) 第3に、上記いずれかの方法において、加速電圧が15
0kV以下であることを特徴とする活性エネルギー線照
射方法を提供する。
1.19 × 10 2 × exp (−4.45 × 10 −2 × X) ≧ Y ≧ 0.05 (b) Thirdly, in any of the above methods, when the acceleration voltage is 15
An active energy ray irradiation method characterized by being at 0 kV or less.

【0013】第4に、空気中で、被照射物に紫外線照射
し、次に電子線照射することを特徴とする活性エネルギ
ー線照射方法を提供する。第5に、空気中で、被照射物
に加速電圧が40kV以下の電子線照射し、次に紫外線
照射することを特徴とする活性エネルギー線照射方法を
提供する。
Fourth, there is provided an active energy ray irradiation method characterized by irradiating an object to be irradiated with ultraviolet rays in air and then irradiating an electron beam. Fifth, there is provided an active energy ray irradiation method characterized by irradiating an object to be irradiated with an electron beam having an acceleration voltage of 40 kV or less in air and then irradiating an ultraviolet ray.

【0014】第6に、空気中で、被照射物に加速電圧が
40kV以下の電子線照射を行った後、それより高い加
速電圧で電子線照射を行うことを特徴とする活性エネル
ギー線照射方法を提供する。
Sixth, an active energy beam irradiation method characterized in that an object to be irradiated is irradiated with an electron beam at an acceleration voltage of 40 kV or less in air, and then irradiated with an electron beam at a higher acceleration voltage. I will provide a.

【0015】第7に、空気中で、被照射物に加速電圧が
30kV以下の電子線照射を行った後、それより高い加
速電圧で電子線照射を行うことを特徴とする活性エネル
ギー線照射方法を提供する。
Seventh, an active energy beam irradiating method characterized in that an object to be irradiated is irradiated with an electron beam at an acceleration voltage of 30 kV or less in air, and then irradiated with an electron beam at a higher acceleration voltage. I will provide a.

【0016】第8に、上記いずれかの方法において、前
記被照射物は、基材に被覆剤が形成されて構成されてお
り、前記電子線の照射によりその被覆剤が硬化または架
橋することを特徴とする活性エネルギー照射方法を提供
する。第9に、上記いずれか記載の方法で電子線照射し
て得られた活性エネルギー線照射物を提供する。
Eighth, in any one of the above methods, the object to be irradiated is constituted by forming a coating material on a base material, and the coating material is cured or cross-linked by the irradiation of the electron beam. A method for irradiating active energy is provided. Ninth, there is provided an active energy ray-irradiated product obtained by irradiating with an electron beam by any one of the methods described above.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態につい
て具体的に説明する。図1は本発明を実施するための電
子線照射装置を示す模式図である。この装置は、円筒状
をなすガラスまたはセラミック製の真空容器1と、その
容器1内に設けられ、陰極から放出された電子を電子線
として取り出してこれを加速する電子線発生部2と、真
空容器1の端部に設けられ、電子線を射出する電子線射
出部3と、図示しない給電部より給電するためのピン部
4とを有する。電子線射出部3には薄膜状の照射窓5が
設けられている。電子線射出部3の照射窓5は、ガスは
透過せずに電子線を透過する機能を有しており、図2に
示すように、偏平状をなしている。そして、照射室内に
配置された被照射物に照射窓5から射出された電子線が
照射される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below. FIG. 1 is a schematic view showing an electron beam irradiation apparatus for carrying out the present invention. The apparatus comprises a cylindrical vacuum vessel 1 made of glass or ceramic, an electron beam generating section 2 provided in the vessel 1 for taking out electrons emitted from a cathode as electron beams and accelerating them, An electron beam emitting unit 3 that is provided at an end of the container 1 and emits an electron beam, and has a pin unit 4 for supplying power from a power supply unit (not shown). The electron beam emitting section 3 is provided with a thin-film irradiation window 5. The irradiation window 5 of the electron beam emitting unit 3 has a function of transmitting an electron beam without transmitting a gas, and has a flat shape as shown in FIG. Then, an electron beam emitted from the irradiation window 5 is irradiated on the irradiation object arranged in the irradiation room.

【0018】このような構成を有する装置は、米国特許
第5,414,267号に開示されており、American I
nternational Technologies (AIT)社によりMin
−EB装置として検討されている。この装置において
は、低加速電圧でも電子線の透過力の低下が小さく、有
効に電子線を取り出すことができる。これによって、基
材上の被覆材に対し低深度で電子線を作用させることが
可能となり、基材への悪影響および2次電子線の発生量
を低下させることができるようになり、大掛かりなシー
ルドは不必要となる。
An apparatus having such a configuration is disclosed in US Pat. No. 5,414,267, and is described in American I.
Min by nternational Technologies (AIT)
-Considered as an EB device. In this device, even at a low accelerating voltage, the reduction in the electron beam transmission power is small, and the electron beam can be extracted effectively. This makes it possible to cause the electron beam to act on the coating material on the base material at a low depth, thereby reducing the adverse effect on the base material and the amount of generation of secondary electron beams, resulting in a large shield. Becomes unnecessary.

【0019】低加速電圧による電子線照射は、酸素分子
への励起作用を大幅に低減し、酸素ラジカルに起因する
被覆剤表面での反応阻害を低減することができる。した
がって、窒素ガス等によるイナーティングの程度を従来
よりも少なくする可能性がある。
Electron beam irradiation at a low accelerating voltage can significantly reduce the effect of excitation on oxygen molecules and reduce reaction inhibition on the surface of the coating material due to oxygen radicals. Therefore, there is a possibility that the degree of inerting by nitrogen gas or the like may be reduced as compared with the conventional case.

【0020】そこで、本発明者らは、低加速電圧領域に
おいて、照射する電子線の加速電圧と許容される酸素濃
度について鋭意検討を重ねた。その結果、加速電圧が4
0kV超においては、加速電圧(kV)をX、電子線照
射部分の酸素濃度(%)をYとしたとき、以下の(a)
式で示される酸素濃度になるようにして被照射物に電子
線照射すれば、酸素ラジカルに起因する被覆剤表面での
反応阻害が生じず、所定の硬化性能を得ることができる
ことが判明した。
Therefore, the present inventors have conducted intensive studies on the acceleration voltage of the electron beam to be irradiated and the allowable oxygen concentration in the low acceleration voltage region. As a result, the acceleration voltage becomes 4
Above 0 kV, when the acceleration voltage (kV) is X and the oxygen concentration (%) of the electron beam irradiated portion is Y, the following (a)
It has been found that when the irradiation target is irradiated with an electron beam so as to have the oxygen concentration represented by the formula, reaction inhibition on the surface of the coating agent due to oxygen radicals does not occur, and a predetermined curing performance can be obtained.

【0021】 Y≦1.19×102 ×exp(−4.45×10-2×X)……(a) また、40KV以下の照射においては、酸素濃度20%
前後、即ちイナーティングをしなくても電子線照射が可
能であることが判明した。
Y ≦ 1.19 × 10 2 × exp (−4.45 × 10 −2 × X) (a) In the case of irradiation of 40 KV or less, the oxygen concentration is 20%
It was found that electron beam irradiation was possible before and after, that is, without inerting.

【0022】したがって、本発明では、加速電圧が40
kV以下の場合には、略空気中の酸素濃度またはそれ以
下の濃度で電子線照射を行い、40kV超においては、
加速電圧をX、電子線照射部分の酸素濃度をYとしたと
き、上記(a)式で示される酸素濃度になるように被照
射物に電子線照射することとしている。
Therefore, in the present invention, the acceleration voltage is 40
In the case of kV or less, electron beam irradiation is performed at an oxygen concentration substantially in the air or a concentration lower than that.
Assuming that the acceleration voltage is X and the oxygen concentration of the electron beam irradiated portion is Y, the irradiation target is irradiated with the electron beam so as to have the oxygen concentration represented by the above equation (a).

【0023】酸素ラジカルに起因する被覆剤表面での反
応阻害を考慮した場合には、酸素濃度の下限はないが、
窒素置換によるランニングコスト等の観点から、以下の
(b)式の範囲内であることが好ましい。
In consideration of the inhibition of the reaction on the surface of the coating agent caused by oxygen radicals, there is no lower limit of the oxygen concentration.
From the viewpoint of the running cost due to nitrogen substitution, it is preferable that the value be within the range of the following expression (b).

【0024】 1.19×102 ×exp(−4.45×10-2×X)≧Y≧0.05…… (b) なお、このように加速電圧が低い場合、同時にオゾンの
発生量も大幅に低減することが判っている。
1.19 × 10 2 × exp (−4.45 × 10 −2 × X) ≧ Y ≧ 0.05 (b) When the acceleration voltage is low as described above, the amount of ozone generated at the same time Has also been found to be significantly reduced.

【0025】イナーティングなしで空気中において電子
線照射することは、ランニングコストを低下させる等の
メリットがある。本発明では、このことを考慮して、空
気中の電子線照射で問題となる酸素ラジカルによる重合
阻害を防ぐために、まず被照射物に対して表層部分のみ
を硬化させる程度の紫外線照射を行い、その後電子線照
射を行う。これにより、酸素による重合阻害が生じず、
より完全な硬化物を得ることができる。
Irradiating an electron beam in the air without inerting has advantages such as lowering running costs. In the present invention, in consideration of this, in order to prevent polymerization inhibition due to oxygen radicals that are problematic in the electron beam irradiation in the air, first, the object to be irradiated is irradiated with ultraviolet light to cure only the surface layer portion, Thereafter, electron beam irradiation is performed. Thereby, polymerization inhibition by oxygen does not occur,
A more complete cured product can be obtained.

【0026】また、空気中で、被照射物に加速電圧が4
0kV以下の電子線照射し、次に紫外線照射することに
よっても、同様に、酸素による重合阻害が生じず、より
完全な硬化物を得ることができる。
In the air, the object to be irradiated has an acceleration voltage of 4
By irradiating an electron beam of 0 kV or less and then irradiating an ultraviolet ray, similarly, polymerization inhibition by oxygen does not occur, and a more complete cured product can be obtained.

【0027】さらに、空気中で、被照射物に加速電圧が
40kV以下の電子線照射した後に、それよりも高い加
速電圧で電子線照射を行うことによっても同様の効果を
得ることができる。この場合に、最初に加速電圧が30
kV以下の電子線照射した後に、それより高い加速電圧
で電子線照射を行うことがより好ましい。
Further, the same effect can be obtained by irradiating an object to be irradiated with an electron beam having an acceleration voltage of 40 kV or less in the air and then irradiating the object with an electron beam at a higher acceleration voltage. In this case, the acceleration voltage is initially 30
It is more preferable to perform the electron beam irradiation at a higher acceleration voltage after the electron beam irradiation of kV or less.

【0028】本発明の典型的な実施形態としては、図3
に示すように、上述した構成を有する電子線照射装置1
0を複数本合わせてアレイ11を構成し、アレイ11の
下方にある照射室12において、所定の速度で搬送され
る被照射体13に対し、アレイ11を構成する各電子線
照射装置10から電子線を照射する方法が挙げられる。
なお、図中参照符号14はX線シールド、15はコンベ
アシールドである。
A typical embodiment of the present invention is shown in FIG.
As shown in FIG. 1, the electron beam irradiation apparatus 1 having the above-described configuration
A plurality of zeros are combined to form an array 11. In an irradiation chamber 12 below the array 11, an irradiation target 13 transported at a predetermined speed is applied to each of the electron beam irradiation devices 10 constituting the array 11 from an electron beam irradiation device 10. There is a method of irradiating a line.
In the drawings, reference numeral 14 denotes an X-ray shield, and 15 denotes a conveyor shield.

【0029】本発明における被照射物としては、基材に
被覆剤を塗布などにより形成したものが挙げられる。被
覆剤を塗布する基材としては、処理、未処理を問わず印
刷用紙、またポリエチレン、ポリプロピレン、ポリエチ
レンテレフタレート、ポリエチレンナフタレート、ナイ
ロン、塩化ビニル、塩化ビニリデン等のプラスチックフ
ィルム、さらにアルミニウムやスチールの金属缶および
ポリエステルフィルム被覆絞り金属缶等が挙げられる。
The object to be irradiated in the present invention includes those formed by coating a base material with a coating agent or the like. The base material to which the coating agent is applied may be printing paper, treated or untreated, plastic films such as polyethylene, polypropylene, polyethylene terephthalate, polyethylene naphthalate, nylon, vinyl chloride, vinylidene chloride, and metals such as aluminum and steel. Cans and drawn metal cans coated with a polyester film.

【0030】適用可能な被覆剤としては、印刷インキ、
塗料、接着剤が挙げられる。これらのうち印刷インキと
しては、凸版インキ、オフセットインキ、グラビアイン
キ、フレキソインキ、スクリーンインキ等の紫外線や電
子線硬化型インキが挙げられる。
Examples of applicable coating agents include printing inks,
Paints and adhesives. Among them, examples of the printing ink include ultraviolet and electron beam curable inks such as letterpress ink, offset ink, gravure ink, flexo ink, and screen ink.

【0031】また、塗料としては、アクリル樹脂系、エ
ポキシ樹脂系、ウレタン樹脂系、ポリエステル樹脂系等
の樹脂、および各種光感応性モノマーを用いた紫外線ま
たは電子線硬化型塗料が挙げられる。
Examples of the paint include resins such as acrylic resin, epoxy resin, urethane resin and polyester resin, and ultraviolet or electron beam curable paints using various photosensitive monomers.

【0032】さらに、接着剤としては、ビニル重合型
(シアノアクリレート系、ジアクリレート系、不飽和ポ
リエステル樹脂系)、縮合型(フェノール樹脂系、ユリ
ヤ樹脂系、メラミン樹脂系)、重付加型(エポキシ樹脂
系、ウレタン樹脂系)などの反応硬化型(モノマー型、
オリゴマー型)接着剤が挙げられる。接着剤の適用例と
しては、従来のものに加え、レンズの接着、ガラスシー
トの接着など、熱に弱い基材にも適応することができ
る。
Further, as the adhesive, a vinyl polymerization type (cyanoacrylate type, diacrylate type, unsaturated polyester resin type), a condensation type (phenol resin type, urea resin type, melamine resin type), a polyaddition type (epoxy type) Reaction-curing type (monomer type, resin type, urethane resin type)
Oligomer-type) adhesives. As an application example of the adhesive, in addition to a conventional one, it can be applied to a substrate which is weak to heat, such as adhesion of a lens and adhesion of a glass sheet.

【0033】本発明に係わる被覆剤においては、従来か
ら使用されている各種添加剤を使用することができる。
各種添加剤の例としては、顔料、染料、安定剤、溶剤、
防腐剤、潤滑剤、活性剤等が挙げられる。
In the coating agent according to the present invention, various additives conventionally used can be used.
Examples of various additives include pigments, dyes, stabilizers, solvents,
Preservatives, lubricants, activators and the like.

【0034】[0034]

【実施例】以下、本発明の実施例について説明する。以
下の説明において、「部」、「%」は、それぞれ重量
部、重量%である。ここでは、硬化性被覆組成物として
オフセットインキを用いた例を示す。このオフセットイ
ンキの調整は以下の手順で行った。
Embodiments of the present invention will be described below. In the following description, "parts" and "%" are parts by weight and% by weight, respectively. Here, an example in which an offset ink is used as the curable coating composition will be described. The adjustment of the offset ink was performed in the following procedure.

【0035】〔ワニスの作成〕ジペンタエリスリトール
ヘキサアクリレート69.9%、ハイドロキノン0.1
%を仕込み、100℃に昇温し、その後DT150(東
都化成製ジアリルフタレート樹脂)30部を徐々に仕込
み、溶解した時点でくみ出した。このとき粘度は210
0ポイズ(25℃)であった。
[Preparation of varnish] Dipentaerythritol hexaacrylate 69.9%, hydroquinone 0.1
%, And the temperature was raised to 100 ° C. Thereafter, 30 parts of DT150 (a diallyl phthalate resin manufactured by Toto Kasei) was gradually charged and extracted at the time of dissolution. At this time, the viscosity is 210
It was 0 poise (25 ° C.).

【0036】〔印刷インキの調整〕以下の処方に従って
混合し、3本ロールにて分散させ、オフセット印刷用イ
ンキとした。
[Adjustment of Printing Ink] An ink for offset printing was mixed according to the following formulation and dispersed with three rolls.

【0037】 藍顔料(LIONOL BLUE FG7330) 15部 上記ワニス 50部 ジペンタエリスリトールヘキサアクリレート 25部 ペンタエリスリトールテトラアクリレート 10部 上記手順で得られたインキをRIテスター(印刷インキ
業界で一般的に使用されている簡便印刷機)にて厚さ約
2μmに印刷した。
Indigo pigment (LIONOL BLUE FG7330) 15 parts The above varnish 50 parts Dipentaerythritol hexaacrylate 25 parts Pentaerythritol tetraacrylate 10 parts (A simple printer).

【0038】印刷後、1kV単位で加速電圧を可変調整
することが可能なAIT社製Min−EB装置を用いて
EB照射を行った。照射条件は加速電圧40〜150K
V、電流値600μA、コンベアスピート10m/mi
nとした。イナーティングは窒素を使用して行った。ま
た、酸素濃度は窒素流量を調整し変化させた。またこの
際、酸素濃度は酸素濃度計(東レエンジニアリング製ジ
ルコニア式 LC−750H)を使用して測定した。
After printing, EB irradiation was performed using an AIT Min-EB apparatus capable of variably adjusting the acceleration voltage in units of 1 kV. Irradiation condition is acceleration voltage 40 ~ 150K
V, current value 600μA, conveyor speed 10m / mi
n. Inerting was performed using nitrogen. The oxygen concentration was changed by adjusting the nitrogen flow rate. At this time, the oxygen concentration was measured using an oxygen concentration meter (zirconia type LC-750H manufactured by Toray Engineering).

【0039】硬化性の評価は照射後、触指による乾燥性
およびセロテープ剥離による密着性によって行った。評
価基準は以下のとおりとした。 乾燥性:(完全硬化)5〜1(未硬化) 密着性: (良好) 5〜1(不良) 得られた結果を、表1に示した。
After the irradiation, the curability was evaluated on the basis of the dryness with a touch finger and the adhesion by peeling off a cellophane tape. The evaluation criteria were as follows. Drying property: (completely cured) 5 to 1 (uncured) Adhesion: (good) 5 to 1 (poor) The results obtained are shown in Table 1.

【0040】[0040]

【表1】 [Table 1]

【0041】この結果をもとに、良好な硬化性が得られ
る酸素濃度の範囲を加速電圧毎に把握した。その結果を
図4に示す。この図に示すように、加速電圧が40KV
以上においては、加速電圧(kV)をX、電子線照射部
分の酸素濃度(%)をYとしたとき、酸素濃度Yが図の
(1)式で示される直線の下の領域、すなわち(a)式
の領域において被照射物(基材に設けられた被覆物)に
電子線照射することが有効であることが確認された。
Based on the results, the range of oxygen concentration at which good curability was obtained was determined for each acceleration voltage. FIG. 4 shows the results. As shown in this figure, the acceleration voltage is 40 KV.
In the above description, assuming that the acceleration voltage (kV) is X and the oxygen concentration (%) of the electron beam irradiated portion is Y, the oxygen concentration Y is a region below the straight line shown by the equation (1) in the drawing, that is, (a) It has been confirmed that it is effective to irradiate an irradiation target (a coating provided on a base material) with an electron beam in the region of the formula (1).

【0042】 Y≦1.19×102 ×exp(−4.45×10-2×X)……(a) なお、経済性等を考慮すると図1の(1)式と(2)式
の間の領域、すなわち(b)式の領域がより好ましいこ
とが確認された。 1.19×102 ×exp(−4.45×10-2×X)≧Y≧0.05…… (b)
Y ≦ 1.19 × 10 2 × exp (−4.45 × 10 −2 × X) (a) In consideration of economy and the like, equations (1) and (2) in FIG. , That is, the region of the formula (b) was confirmed to be more preferable. 1.19 × 10 2 × exp (−4.45 × 10 −2 × X) ≧ Y ≧ 0.05 (b)

【0043】[0043]

【発明の効果】以上説明したように、本発明によれば、
作業環境への悪影響が少なく、不活性ガスによるイナー
ティングの程度を少なくすることができる活性エネルギ
ー線照射方法および活性エネルギー照射物が提供され
る。
As described above, according to the present invention,
Provided are an active energy ray irradiation method and an active energy irradiated object, which have a small adverse effect on a working environment and can reduce the degree of inertization by an inert gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための電子線照射装置を示す
模式図。
FIG. 1 is a schematic view showing an electron beam irradiation apparatus for carrying out the present invention.

【図2】図1の装置の電子線射出部を示す面。FIG. 2 is a view showing an electron beam emitting unit of the apparatus shown in FIG.

【図3】本発明を実施する際の一つの実施形態を説明す
るための図。
FIG. 3 is a diagram for explaining one embodiment when implementing the present invention.

【図4】加速電圧と許容酸素濃度との関係を示す図。FIG. 4 is a diagram showing a relationship between an acceleration voltage and an allowable oxygen concentration.

【符号の説明】[Explanation of symbols]

1……真空容器 2……電子線発生部 3……電子線射出部 4……ピン部 5……照射窓 10……電子線照射装置 11……アレイ 12……照射室 13……被照射体 14……X線シールド 15……コンベアシールド DESCRIPTION OF SYMBOLS 1 ... Vacuum container 2 ... Electron beam generation part 3 ... Electron beam emission part 4 ... Pin part 5 ... Irradiation window 10 ... Electron beam irradiation device 11 ... Array 12 ... Irradiation room 13 ... Irradiation Body 14 X-ray shield 15 Conveyor shield

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 電子線照射部の酸素濃度が、 照射する電子線の加速電圧が40kV以下の場合には、
略空気中の酸素濃度またはそれ以下の濃度、 照射する電子線の加速電圧が40kV超においては、加
速電圧(kV)をX、電子線照射部分の酸素濃度(%)
をYとしたとき、(a)式で示される酸素濃度になるよ
うにして被照射物に電子線照射することを特徴とする活
性エネルギー線照射方法。 Y≦1.19×102 ×exp(−4.45×10-2×X)……(a)
When the acceleration voltage of an electron beam to be irradiated is 40 kV or less,
When the oxygen concentration in the air is substantially equal to or less than the air concentration, and the acceleration voltage of the electron beam to be irradiated exceeds 40 kV, the acceleration voltage (kV) is X, and the oxygen concentration (%) of the electron beam irradiated portion is
, And irradiating the irradiated object with an electron beam so that the oxygen concentration is represented by the formula (a). Y ≦ 1.19 × 10 2 × exp (−4.45 × 10 −2 × X) (a)
【請求項2】 電子線照射部の酸素濃度が、 照射する電子線の加速電圧が40kV以下の場合には、
略空気中の酸素濃度またはそれ以下の濃度、 照射する電子線の加速電圧が40kV超においては、加
速電圧(kV)をX、電子線照射部分の酸素濃度(%)
をYとしたとき、(b)式で示される酸素濃度になるよ
うにして被照射物に電子線照射することを特徴とする活
性エネルギー線照射方法。 1.19×102 ×exp(−4.45×10-2×X)≧Y≧0.05…… (b)
2. When the oxygen concentration of the electron beam irradiator is less than 40 kV,
When the oxygen concentration in the air is substantially equal to or less than the air concentration, and the acceleration voltage of the electron beam to be irradiated exceeds 40 kV, the acceleration voltage (kV) is X, and the oxygen concentration (%) of the electron beam irradiated portion is
, And irradiating the irradiation target with an electron beam so that the oxygen concentration is represented by the formula (b). 1.19 × 10 2 × exp (−4.45 × 10 −2 × X) ≧ Y ≧ 0.05 (b)
【請求項3】 加速電圧が150kV以下であることを
特徴とする請求項1または請求項2に記載の活性エネル
ギー線照射方法。
3. The active energy ray irradiation method according to claim 1, wherein the acceleration voltage is 150 kV or less.
【請求項4】 空気中で、被照射物に紫外線照射し、次
に電子線照射することを特徴とする活性エネルギー線照
射方法。
4. An active energy ray irradiation method comprising irradiating an object to be irradiated with ultraviolet rays in air and then irradiating an electron beam.
【請求項5】 空気中で、被照射物に加速電圧が40k
V以下の電子線照射し、次に紫外線照射することを特徴
とする活性エネルギー線照射方法。
5. An acceleration voltage of 40 k is applied to an object to be irradiated in air.
An active energy ray irradiation method, comprising irradiating an electron beam of not more than V and then irradiating ultraviolet rays.
【請求項6】 空気中で、被照射物に加速電圧が40k
V以下の電子線照射を行った後、それより高い加速電圧
で電子線照射を行うことを特徴とする活性エネルギー線
照射方法。
6. An acceleration voltage of 40 k is applied to an object to be irradiated in air.
A method for irradiating an active energy ray, comprising irradiating an electron beam of V or less, and then irradiating the electron beam with a higher acceleration voltage.
【請求項7】 空気中で、被照射物に加速電圧が30k
V以下の電子線照射を行った後、それより高い加速電圧
で電子線照射を行うことを特徴とする請求項6に記載の
活性エネルギー線照射方法。
7. An object to be irradiated has an acceleration voltage of 30 k in air.
7. The active energy beam irradiation method according to claim 6, wherein after the electron beam irradiation of V or less is performed, the electron beam irradiation is performed at a higher acceleration voltage.
【請求項8】 前記被照射物は、基材に被覆剤が形成さ
れて構成されており、前記電子線の照射によりその被覆
剤が硬化または架橋することを特徴とする請求項1ない
し請求項7に記載の活性エネルギー照射方法。
8. The object to be irradiated, wherein a coating material is formed on a base material, and the coating material is cured or cross-linked by the irradiation of the electron beam. 8. The active energy irradiation method according to 7.
【請求項9】請求項1ないし請求項8いずれか記載の方
法で電子線照射して得られた活性エネルギー線照射物。
9. An active energy ray-irradiated substance obtained by irradiating an electron beam by the method according to any one of claims 1 to 8.
JP08250262A 1996-09-04 1996-09-20 Active energy ray irradiation method and active energy ray irradiated object Expired - Fee Related JP3141790B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP08250262A JP3141790B2 (en) 1996-09-20 1996-09-20 Active energy ray irradiation method and active energy ray irradiated object
KR10-1998-0703262A KR100488225B1 (en) 1996-09-04 1997-09-04 Electron beam irradiating method and object to be irradiated with electron beam
AU41347/97A AU744614B2 (en) 1996-09-04 1997-09-04 Electron beam irradiating method and object to be irradiated with electron beam
EP97939173A EP0877389A4 (en) 1996-09-04 1997-09-04 Electron beam irradiating method and object to be irradiated with electron beam
US09/065,052 US6188075B1 (en) 1996-09-04 1997-09-04 Electron beam irradiating method and object to be irradiated with electron beam
CA002236672A CA2236672A1 (en) 1996-09-04 1997-09-04 Electron beam irradiation process and an object irradiated with an electron beam
PCT/JP1997/003106 WO1998010430A1 (en) 1996-09-04 1997-09-04 Electron beam irradiating method and object to be irradiated with electron beam
TW086113674A TW343339B (en) 1996-09-04 1997-09-20 Electron-beam irradiation method and object irradiated with electron beam
US09/731,312 US6504163B2 (en) 1996-09-04 2000-12-06 Electron beam irradiation process and an object irradiated with an electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08250262A JP3141790B2 (en) 1996-09-20 1996-09-20 Active energy ray irradiation method and active energy ray irradiated object

Publications (2)

Publication Number Publication Date
JPH1090500A true JPH1090500A (en) 1998-04-10
JP3141790B2 JP3141790B2 (en) 2001-03-05

Family

ID=17205281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08250262A Expired - Fee Related JP3141790B2 (en) 1996-09-04 1996-09-20 Active energy ray irradiation method and active energy ray irradiated object

Country Status (1)

Country Link
JP (1) JP3141790B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087656A1 (en) * 2013-12-10 2015-06-18 住友ゴム工業株式会社 Surface modification method and surface-modified elastic object
US9738744B2 (en) 2013-06-11 2017-08-22 Sumitomo Rubber Industries, Ltd. Surface modification method for three-dimensional object and syringe gasket
US9752003B2 (en) 2012-11-30 2017-09-05 Sumitomo Rubber Industries, Ltd. Surface-modified elastic body
US9758605B2 (en) 2012-11-20 2017-09-12 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US9963565B2 (en) 2014-10-02 2018-05-08 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US10189944B2 (en) 2013-04-25 2019-01-29 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US10214608B2 (en) 2015-08-03 2019-02-26 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified body
US10280274B2 (en) 2014-01-06 2019-05-07 Sumitomo Rubber Industries, Ltd. Method for modifying surface and surface modified elastic body
US10344109B2 (en) 2012-09-10 2019-07-09 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US10647829B2 (en) 2013-06-20 2020-05-12 Sumitomo Rubber Industries, Ltd. Surface modification method and surface modification body
US10759918B2 (en) 2015-08-03 2020-09-01 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10344109B2 (en) 2012-09-10 2019-07-09 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US9758605B2 (en) 2012-11-20 2017-09-12 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US9752003B2 (en) 2012-11-30 2017-09-05 Sumitomo Rubber Industries, Ltd. Surface-modified elastic body
US10189944B2 (en) 2013-04-25 2019-01-29 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US9738744B2 (en) 2013-06-11 2017-08-22 Sumitomo Rubber Industries, Ltd. Surface modification method for three-dimensional object and syringe gasket
US10647829B2 (en) 2013-06-20 2020-05-12 Sumitomo Rubber Industries, Ltd. Surface modification method and surface modification body
WO2015087656A1 (en) * 2013-12-10 2015-06-18 住友ゴム工業株式会社 Surface modification method and surface-modified elastic object
US10280274B2 (en) 2014-01-06 2019-05-07 Sumitomo Rubber Industries, Ltd. Method for modifying surface and surface modified elastic body
US9963565B2 (en) 2014-10-02 2018-05-08 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US10214608B2 (en) 2015-08-03 2019-02-26 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified body
US10759918B2 (en) 2015-08-03 2020-09-01 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body

Also Published As

Publication number Publication date
JP3141790B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
US6504163B2 (en) Electron beam irradiation process and an object irradiated with an electron beam
EP1473341B1 (en) Inkjet ink relatively free of photoinitiator and method and apparatus of curing the ink.
JP3141790B2 (en) Active energy ray irradiation method and active energy ray irradiated object
JP2010048823A (en) Particle beam processing device
US20030001108A1 (en) Particle beam processing apparatus and materials treatable using the apparatus
Senich et al. Radiation curing of coatings
JP4991310B2 (en) Radiation curable coating manufacturing method and coated article
JP3635978B2 (en)   Active energy ray irradiation method
JP2001287472A (en) Electron beam irradiation method, device and irradiated matter thereof
JPH1078500A (en) Method for hardening or crosslinking coating and coated object
JP3237546B2 (en) Method for curing or cross-linking coating and coating
JP3221338B2 (en) Electron beam irradiation method and crosslinking or curing method, and electron beam irradiation object
JP2004098309A (en) Printing method and printed matter
JP2000343022A (en) Coating film forming device, coating film forming method and coating film formed material
JP2000302997A (en) Activating-energy radiation curing composition and formation of cured film
JPH0773898B2 (en) Method for producing copper foil with radiation-curable paint
Lapin Comparison of UV and EB Technology for Printing
JPH10197700A (en) Electron-beam irradiation method and object irradiated with electron beam
JP7042371B1 (en) Manufacturing method of electron beam curable inkjet printed matter
JP2004099642A (en) Coating material having metallic luster and coating method
JP2003334936A (en) Inkjet recorder, method of recording, and material irradiated with electron beam
JP2004009393A (en) Shrink film, its manufacturing process and working method
EP3785926A1 (en) Printing apparatus and printed matter manufacturing method
JP4419042B2 (en) Active energy ray irradiation device
Laurell et al. Electron beam technology and coatings'

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111222

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20121222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20131222

LAPS Cancellation because of no payment of annual fees