JPH1090295A - Flow velocity calculating device - Google Patents

Flow velocity calculating device

Info

Publication number
JPH1090295A
JPH1090295A JP24018996A JP24018996A JPH1090295A JP H1090295 A JPH1090295 A JP H1090295A JP 24018996 A JP24018996 A JP 24018996A JP 24018996 A JP24018996 A JP 24018996A JP H1090295 A JPH1090295 A JP H1090295A
Authority
JP
Japan
Prior art keywords
flow velocity
volume data
flow rate
calculating
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24018996A
Other languages
Japanese (ja)
Inventor
Satoshi Sasazaki
聡 笹崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP24018996A priority Critical patent/JPH1090295A/en
Publication of JPH1090295A publication Critical patent/JPH1090295A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a device hardly influenced by the level fluctuation within a petroleum tank by storing sampled volume data successively in a volume data memory circuit, and calculating the flow velocity of petroleum by a flow velocity calculating circuit on the basis of a plurality of output data. SOLUTION: A volume data 102 is inputted to a volume data memory circuit 5, and a read-out data 104 outputted from the memory circuit 5 is inputted to a flow velocity calculating circuit 6. The flow velocity calculating circuit 6 outputs a flow velocity value data 104. When each volume data is V1 , V2 ... Vs , the flow velocity value is α, the difference between the straight line represented by the expression V=αt+β (β is constant) and each volume data V1 , V2 ...Vs is a1 , a2 ...as , α and β such that the straight line of the expression V=αt+βpasses the center of each volume data V1 , V2 ...Vs and the difference a1 , a2 ...as is minimized are determined by the flow velocity calculating circuit 6, whereby the flow velocity value α never influenced by the level fluctuation within a petroleum tank can be calculated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、石油タンクにおけ
る体積変化率(流速)を求める流速計算装置に関し、特
に石油タンク内の液面変動の影響を受けにくい流速計算
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow velocity calculating apparatus for determining a volume change rate (flow velocity) in an oil tank, and more particularly to a flow velocity calculating apparatus which is hardly affected by a liquid level fluctuation in the oil tank.

【0002】[0002]

【従来の技術】従来の石油タンクの体積変化率(以下、
流速と呼ぶ。)を求める方法としては石油タンクに設け
られたレベル計で石油タンク内の液面、言い換えれば体
積を順次測定してこれらの体積変化から流速を求めてい
た。
2. Description of the Related Art The volume change rate of a conventional oil tank (hereinafter referred to as "the rate of change").
Called flow velocity. As a method for determining ()), the liquid level in the oil tank, in other words, the volume, is sequentially measured by a level meter provided in the oil tank, and the flow velocity is obtained from these volume changes.

【0003】図5はこのような従来の石油タンク内部の
一例を示す構成図である。図5において1は石油タン
ク、2はレベル計、3は浮き、4は石油、100は流入
口、101は流出口である。
FIG. 5 is a configuration diagram showing an example of the inside of such a conventional oil tank. In FIG. 5, 1 is an oil tank, 2 is a level gauge, 3 is a float, 4 is oil, 100 is an inlet, and 101 is an outlet.

【0004】石油注入時には石油タンク1には流入口1
00から石油4が流れ込み、一方、石油取出時には流出
口101からは石油4が流れ出す。
At the time of oil injection, the oil tank 1 has an inlet 1
Petroleum 4 flows in from 00, while oil 4 flows out from the outlet 101 when oil is taken out.

【0005】また、石油タンク1内に蓄えられた石油4
の液面には浮き3が設置され、レベル計4はこの浮き3
の位置に基づき石油タンク1内の石油4の体積を得る。
The oil 4 stored in the oil tank 1
Float 3 is installed on the surface of the liquid.
The volume of the oil 4 in the oil tank 1 is obtained based on the position.

【0006】ここで、図5に示す従来例の動作を図6を
用いて説明する。図6はサンプリングした体積データと
これらの体積データにより計算された流速を示す特性曲
線図である。
The operation of the conventional example shown in FIG. 5 will be described with reference to FIG. FIG. 6 is a characteristic curve diagram showing the sampled volume data and the flow velocity calculated based on these volume data.

【0007】従来例においては一般的にレベル計2から
得られた体積データを流速計算装置(図示せず。)にお
いて移動平均することにより流速を求めている。
In the conventional example, generally, the flow velocity is obtained by moving average the volume data obtained from the level meter 2 in a flow velocity calculator (not shown).

【0008】例えば、図6中”イ”,”ロ”,”
ハ”,”ニ”及び”ホ”は体積データであり、これらの
値をそれぞれ”v1 ”,”v2”,”v3 ”,”
n-1 ”及び”vn ”とすると各体積データ間における
流速”f1 ”〜”fn-1 ”はサンプリング時間を”T”
とすれば、 f1=(v2−v1)/T (1) f2=(v3−v2)/T (2) : fn-1=(vn−vn-1)/T (3) となる。
For example, "A", "B", and "B" in FIG.
"C", "d" and "e" are volume data.
Each value is "v1"," VTwo"," VThree”,”
vn-1"And" vn "Means that the volume data
Flow velocity "f"1"~" Fn-1"" Means sampling time "T"
Then f1= (VTwo-V1) / T (1) fTwo= (VThree-VTwo) / T (2): fn-1= (Vn-Vn-1) / T (3).

【0009】式(1)から式(3)の平均を取ると図6
中”ヘ”に示すような流速”f”を得ることができる。
すなわち、 f=(f1+f2+…+fn-1)/(n−1) (4) という計算式で求めることが可能になる。
When the average of equations (1) to (3) is taken, FIG.
A flow velocity "f" as shown in the middle "f" can be obtained.
That is, f = (f 1 + f 2 +... + F n-1 ) / (n-1) (4)

【0010】[0010]

【発明が解決しようとする課題】しかし、式(4)をさ
らに整理すると、 f=((v2−v1)/T+(v3−v2)/T+… +(vn−vn-1)/T)/(n−1) =(v2−v1+v3−v2+…+vn−vn-1)/T(n−1) =(vn−v1)/T(n−1) (5) となり、結果的に途中の体積データ”v2 ”〜”
n-1 ”は一切考慮されなくなり、流速計算の結果が不
安定になりやすいと言った問題があった。
However, when Equation (4) is further arranged, f = ((v 2 −v 1 ) / T + (v 3 −v 2 ) / T +... + (V n −v n−) 1) / T) / (n -1) = (v 2 -v 1 + v 3 -v 2 + ... + v n -v n-1) / T (n-1) = (v n -v 1) / T (n-1) (5), and the result in the middle of the volume data "v 2" ~ "
v n -1 "is not considered at all, and there is a problem that the result of the flow velocity calculation tends to be unstable.

【0011】例えば、石油注入時及び石油取出時や図5
中”イ”に示すように強風が石油タンク1に吹き付けた
場合には石油4の液面がゆれてしまい、この時サンプリ
ングされる体積データも変動してしまうので正確な流速
を計算することが困難になると言った問題点があった。
従って本発明が解決しようとする課題は、石油タンク内
の液面変動の影響を受けにくい流速計算装置を実現する
ことにある。
For example, at the time of oil injection and oil extraction, and FIG.
If a strong wind blows against the oil tank 1 as shown in the middle "A", the liquid level of the oil 4 will fluctuate, and the volume data sampled at this time will also fluctuate. There was a problem that said it would be difficult.
Accordingly, an object of the present invention is to realize a flow velocity calculation device that is less susceptible to liquid level fluctuations in an oil tank.

【0012】[0012]

【課題を解決するための手段】このような課題を達成す
るために、本発明の第1では、石油タンク内の液面変化
に基づき石油の流速を求める流速計算装置において、サ
ンプリングされた体積データが順次記憶される体積デー
タ記憶回路と、この体積データ記憶回路の複数の出力デ
ータに基づき石油の流速を計算して出力する流速計算回
路とを備えたことを特徴とするものである。
According to a first aspect of the present invention, there is provided a flow rate calculating apparatus for determining a flow rate of oil based on a change in a liquid level in an oil tank. Are sequentially stored, and a flow velocity calculation circuit that calculates and outputs the flow velocity of oil based on a plurality of output data of the volume data storage circuit.

【0013】また、本発明の第2では、本発明の第1に
おいて、前記体積データ記憶回路に記憶されている前記
体積データ(Vn )を用いて {12ΣnVn−6(N+1)ΣVn}/N(N+1)(N−1)
T (但し、”Σ”はn=1〜Nの範囲で累算することを示
す。)なる計算式を用いて流速値を計算する流速計算回
路を備えたことを特徴とするものである。
According to a second aspect of the present invention, in the first aspect of the present invention, {12ΣnV n -6 (N + 1) ΣV n } is used by using the volume data (V n ) stored in the volume data storage circuit. / N (N + 1) (N-1)
T (however, “Σ” indicates that accumulation is performed in the range of n = 1 to N). A flow velocity calculation circuit that calculates a flow velocity value using a calculation formula is provided.

【0014】[0014]

【発明の実施の形態】以下本発明を図面を用いて詳細に
説明する。図1は本発明に係る流速計算装置の一実施例
を示す構成ブロック図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a configuration block diagram showing one embodiment of a flow velocity calculating device according to the present invention.

【0015】図1において5は体積データ記憶回路、6
は流速計算回路、102は体積データ、103は読出デ
ータ、104は流速値データである。
In FIG. 1, reference numeral 5 denotes a volume data storage circuit;
Is a flow velocity calculation circuit, 102 is volume data, 103 is read data, and 104 is flow velocity value data.

【0016】体積データ102は体積データ記憶回路5
に入力され、体積データ記憶回路5の出力である読出デ
ータ103は流速計算回路6に入力される。そして、流
速計算回路6は流速値データ104を出力する。
The volume data 102 is stored in the volume data storage circuit 5
The read data 103 output from the volume data storage circuit 5 is input to the flow velocity calculation circuit 6. Then, the flow velocity calculation circuit 6 outputs the flow velocity value data 104.

【0017】ここで、図1に示す実施例の動作を図2,
図3及び図4を用いて説明する。図2は流速計算式を説
明する為の特性曲線図、図3は本発明による効果を示す
特性曲線図、図4は実施例及び従来例における流速値を
示す表である。
Here, the operation of the embodiment shown in FIG.
This will be described with reference to FIGS. FIG. 2 is a characteristic curve diagram for explaining the flow velocity calculation formula, FIG. 3 is a characteristic curve diagram showing the effect of the present invention, and FIG. 4 is a table showing flow velocity values in the embodiment and the conventional example.

【0018】図2中”イ”,”ロ”,”ハ”,”ニ”及
び”ホ”は体積データであり、これらの値をそれぞれ”
1 ”,”V2 ”,”V3 ”,”Vn-1 ”及び”Vn
とする。
In FIG. 2, "a", "b", "c", "d", and "e" are volume data, and these values are represented by "
V 1 "," V 2 " ," V 3 "," V n-1 "and" V n "
And

【0019】また、流速を”α”とし、図2中”ヘ”に
示す直線を V=αt+β (6) (但し、βは定数。)とし、式(6)で表わされる直線
と前記各体積データとの差分である図2中”ト”,”
チ”,”リ”,”ヌ”及び”ル”をそれぞれ、”
1 ”,”a2 ”,”a 3 ”,”an-1 ”及び”an
とする。
Further, the flow velocity is set to “α”, and “f” in FIG.
A straight line represented by V = αt + β (6) (where β is a constant), and a straight line represented by Expression (6)
And "g" in FIG. 2 which is the difference between
J, “ri,” “nu,” and “ru,” respectively,
a1"," ATwo"," A Three"," An-1"And" an"
And

【0020】そして、式(6)で表わされる直線が各体
積データの中央を通過し、尚且つ、各体積データとの差
分が最小になるように前記”α”及び”β”を求めるこ
とにより、石油タンク内の液面変動に影響されない流速
値”α”を計算できる。
Then, the above-mentioned “α” and “β” are determined so that the straight line represented by the equation (6) passes through the center of each volume data and the difference between each straight line and the volume data is minimized. The flow velocity value “α” which is not affected by the liquid level fluctuation in the oil tank can be calculated.

【0021】さらに、式の導入について説明する。第1
の条件である「式(6)で表わされる直線が各体積デー
タの中央を通過」と言うことから、 Σan=0 (7) (但し、”Σ”はn=1〜Nの範囲で累算することを示
す。)となる。
Further, the introduction of the equation will be described. First
From the "straight line passing through the center of each volume data represented by the formula (6)" be said to be a condition, Σa n = 0 (7) ( where, "sigma" is accumulated in the range of n = 1 to N Is calculated.)

【0022】また、第2の条件である「各体積データと
の差分が最小」と言うことから、 MinΣ|an| (8) (但し、”MinΣ”はn=1〜Nの範囲で累算したも
のが最小になることを示す。)となる。
[0022] In addition, from the fact that a second condition, "the difference between each volume data is minimum," says, MinΣ | a n | (8 ) ( However, "MinΣ" Louis in the range of n = 1~N The calculated value is the minimum.)

【0023】式(6)と各体積データとの差分は、 an=αt+β−Vn (9) となり、図2の時間軸からサンプリング時間を”T”と
すれば、”t=nT”となり、式(9)は an=αnT+β−Vn (10) となる。
The difference between equation (6) and each volume data is as follows: a n = αt + β−V n (9), and if the sampling time is “T” from the time axis in FIG. 2, it becomes “t = nT”. , equation (9) is a n = αnT + β-V n (10).

【0024】式(10)を式(7)に従いn=1〜Nの
範囲で累算すると、 Σan=(1+2+3+…+N)αT+Nβ−ΣVn =N(N+1)αT/2+Nβ−ΣVn (11) となる。
[0024] Formula If (10) accumulates in the range of n = 1 to N according to Equation (7), Σan = (1 + 2 + 3 + ... + N) αT + Nβ-ΣV n = N (N + 1) αT / 2 + Nβ-ΣV n (11) Becomes

【0025】式(7)から式(11)は”0”となり、 0=N(N+1)αT/2+Nβ−ΣVn Nβ=ΣVn−N(N+1)αT/2 β=ΣVn/N−(N+1)αT/2 (12) となる。From equation (7), equation (11) becomes “0”, and 0 = N (N + 1) αT / 2 + Nβ−ΔV n Nβ = ΔV n −N (N + 1) αT / 2 β = ΔV n / N− ( N + 1) αT / 2 (12)

【0026】一方、”α”及び”β”が式(8)を満た
せば、 MinΣan 2 (13) も満足する。
On the other hand, "alpha" and "beta" are satisfies the equation (8), MinΣa n 2 ( 13) is also satisfactory.

【0027】従って、 an 2=(αt+β−Vn)2 =(αnT+β−Vn)2 (14) となる。[0027] Thus, a n 2 = (αt + β-V n) becomes 2 = (αnT + β-V n) 2 (14).

【0028】ここで、式(12)を代入すれば、 an 2=(αnT+ΣVn/N−(N+1)αT/2−Vn)2 =((n−(N+1)/2)αT−(Vn−ΣVn/N))2 =(n−(N+1)/2)2α22 +2(n−(N+1)/2)(Vn−ΣVn/N)αT +(Vn−ΣVn/N)2 =(n2−(N+1)n+((N+1)/2)222 −2(nVn−nΣVn/N−(N+1) Vn/2 +(N+1)ΣVn /2N)αT +(Vn−ΣVn/N)2 (15) となる。[0028] Here, by substituting the equation (12), a n 2 = (αnT + ΣV n / N- (N + 1) αT / 2-V n) 2 = ((n- (N + 1) / 2) αT- ( V n -ΣV n / n)) 2 = (n- (n + 1) / 2) 2 α 2 T 2 +2 (n- (n + 1) / 2) (V n -ΣV n / n) αT + (V n - ΣV n / n) 2 = ( n 2 - (n + 1) n + ((n + 1) / 2) 2) α 2 T 2 -2 (nV n -nΣV n / N- (n + 1) V n / 2 + (n + 1) ΣV n / 2N) αT + (V n -ΣV n / N) 2 (15)

【0029】さらに、式(15)を式(13)に従いn
=1〜Nの範囲で累算すると、 Σan 2=(Σn2−(N+1)Σn+N((N+1)/2)2
22−2(ΣnVn−ΣnΣVn/N−ΣVn((N+1)/
2)+N(N+1)ΣVn/2N)αT+Z (16) となる。ここで”Z”は式(15)の第3項の累算値で
あり”α”には依存しない数値である。
Further, the equation (15) is changed to n according to the equation (13).
= When accumulating in the range of 1~N, Σa n 2 = (Σn 2 - (N + 1) Σn + N ((N + 1) / 2) 2) α
2 T 2 -2 (ΣnV n -ΣnΣV n / N-ΣV n ((N + 1) /
2) + N (N + 1) ΣV n / 2N) αT + Z (16) Here, “Z” is the accumulated value of the third term of the equation (15) and is a numerical value independent of “α”.

【0030】また、式(16)を変形すると、 Σan 2=(N(2N+1)(N+1)/6−(N+1)N(N+1)/2 +N(N+1)2/4)α22 −2(ΣnVn−(N+1)ΣVn/2)αT +Z =(N(2N+1)(N+1)/6+N(N+1)2/4)α22 −2(ΣnVn−(N+1)ΣVn/2)αT +Z =N(N+1)(N−1)α22/12 −2(ΣnVn−(N+1)ΣVn/2)αT +Z (17) となる。Further, by modifying the equation (16), Σa n 2 = (N (2N + 1) (N + 1) / 6- (N + 1) N (N + 1) / 2 + N (N + 1) 2/4) α 2 T 2 - 2 (ΣnV n - (n + 1) ΣV n / 2) αT + Z = (n (2N + 1) (n + 1) / 6 + n (n + 1) 2/4) α 2 T 2 -2 (ΣnV n - (n + 1) ΣV n / 2 ) αT + Z = n (n + 1) (n-1) α 2 T 2/12 -2 (ΣnV n - (n + 1) become ΣV n / 2) αT + Z (17).

【0031】ここで、式(17)を Y=Aα2−2Bα+Z (18) A=N(N+1)(N−1)T2/12 (19) B=(ΣnVn−(N+1)ΣVn/2)T (20) と置換すると Y=A(α2−2αB/A+B2/A2)+W =A(α−B/A)2+W (21) (但し、Wはαに依存しない数値である。)となる。[0031] Here, equation (17) Y = Aα 2 -2Bα + Z (18) A = N (N + 1) (N-1) T 2/12 (19) B = (ΣnV n - (N + 1) ΣV n / 2) When T (20) is substituted, Y = A (α 2 −2αB / A + B 2 / A 2 ) + W = A (α−B / A) 2 + W (21) (where W is a numerical value independent of α) There is.)

【0032】式(21)において”α=B/A”の時に
最小値をとるので、式(21)に式(19)及び式(2
0)を代入すると、 α={(ΣnVn−(N+1)ΣVn/2)T}/{N(N+1)
(N−1)T2/12}={12ΣnVn−6(N+1) Σ
n}/N(N+1)(N−1)T (22) となる。
Since the minimum value is obtained when “α = B / A” in the equation (21), the equations (19) and (2) are added to the equation (21).
0), α = {({nV n- (N + 1) ΣV n / 2) T} / {N (N + 1)
(N-1) T 2/ 12} = {12ΣnV n -6 (N + 1) Σ
V n} / N (N + 1) become (N-1) T (22 ).

【0033】すなわち、式(22)を用いてサンプリン
グした体積データから流速値”α”を計算することによ
り、式(22)ではサンプリングした全ての体積データ
を計算に使用するので従来例のように流速計算の結果が
不安定にならない。
That is, by calculating the flow velocity value "α" from the sampled volume data using the equation (22), all the sampled volume data is used for the calculation in the equation (22). The result of the flow velocity calculation does not become unstable.

【0034】例えば、図3は従来例により計算した流速
値と実施例で計算した流速値の一例を示している。図3
中”イ”の破線は従来例によるもの、図3中”ロ”の実
線は実施例によるものである。
For example, FIG. 3 shows an example of a flow velocity value calculated in the conventional example and a flow velocity value calculated in the embodiment. FIG.
The broken line of "a" in the middle is based on the conventional example, and the solid line of "b" in FIG. 3 is based on the embodiment.

【0035】また、台風等の強風時を想定して液面が影
響を受け、レベル計の値が上下してしまい,体積を求め
る際に実際の体積よりも”約±100[kL/H]”の
誤差が発生してしまう程度の液面のゆれがあるものとす
る。
Further, the liquid level is affected assuming a strong wind such as a typhoon or the like, and the value of the level meter fluctuates, so that when calculating the volume, it is "about ± 100 [kL / H] higher than the actual volume. It is assumed that there is a fluctuation of the liquid level to such an extent that an error "1" occurs.

【0036】図3中時間軸”0”〜”50”迄の間は石
油の流入若しくは流出が無い状態で、時間軸”51”
〜”97”迄の間は流速”3600[kL/H]”で石
油を流入した状態である。
In FIG. 3, during the time axis "0" to "50", there is no oil inflow or outflow, and the time axis "51".
Up to "97", the state where oil flowed in at a flow rate of "3600 [kL / H]".

【0037】図3に示す状態における流速値の変動範囲
は図4に示すようになる。図4から分かるように実施例
によれば従来例と比較して約10倍程度精度が向上する
ことになる。言い換えれば、石油タンク内の液面変動の
影響を受けにくいことになる。
The variation range of the flow velocity value in the state shown in FIG. 3 is as shown in FIG. As can be seen from FIG. 4, according to the embodiment, the accuracy is improved about 10 times compared with the conventional example. In other words, it is less susceptible to liquid level fluctuations in the oil tank.

【0038】この結果、体積データ(Vn )を用いて {12ΣnVn−6(N+1)ΣVn}/N(N+1)(N−1)
T (但し、”Σ”はn=1〜Nの範囲で累算することを示
す。)なる計算式を用いて流速値を計算することによ
り、石油タンク内の液面変動の影響を受けにくくなる。
As a result, using the volume data (V n ), {12ΣnV n −6 (N + 1) ΣV n } / N (N + 1) (N−1)
T (however, “Σ” indicates that accumulation is performed in the range of n = 1 to N). By calculating the flow velocity value using the formula, it is hardly affected by the liquid level fluctuation in the oil tank. Become.

【0039】[0039]

【発明の効果】以上説明したことから明らかなように、
本発明によれば次のような効果がある。体積データ(V
n )を用いて {12ΣnVn−6(N+1)ΣVn}/N(N+1)(N−1)
T (但し、”Σ”はn=1〜Nの範囲で累算することを示
す。)なる計算式を用いて流速値を計算することによ
り、石油タンク内の液面変動の影響を受けにくい流速計
算装置が実現できる。
As is apparent from the above description,
According to the present invention, the following effects can be obtained. Volume data (V
n) using {12ΣnV n -6 (N + 1 ) ΣV n} / N (N + 1) (N-1)
T (however, “Σ” indicates that accumulation is performed in the range of n = 1 to N). By calculating the flow velocity value using the calculation formula, it is hardly affected by the liquid level fluctuation in the oil tank. A flow velocity calculator can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る流速計算装置の一実施例を示す構
成ブロック図である。
FIG. 1 is a configuration block diagram showing one embodiment of a flow velocity calculating device according to the present invention.

【図2】流速計算式を説明する為の特性曲線図である。FIG. 2 is a characteristic curve diagram for explaining a flow velocity calculation formula.

【図3】本発明による効果を示す特性曲線図である。FIG. 3 is a characteristic curve showing the effect of the present invention.

【図4】実施例及び従来例における流速値を示す表であ
る。
FIG. 4 is a table showing flow velocity values in an example and a conventional example.

【図5】従来の石油タンク内部の一例を示す構成図であ
る。
FIG. 5 is a configuration diagram showing an example of the interior of a conventional oil tank.

【図6】体積データと体積データにより計算された流速
を示す特性曲線図である。
FIG. 6 is a characteristic curve diagram showing volume data and a flow velocity calculated based on the volume data.

【符号の説明】[Explanation of symbols]

1 石油タンク 2 レベル計 3 浮き 4 石油 5 体積データ記憶回路 6 流速計算回路 100 流入口 101 流出口 102 体積データ 103 読出データ 104 流速値データ DESCRIPTION OF SYMBOLS 1 Oil tank 2 Level meter 3 Floating 4 Oil 5 Volume data storage circuit 6 Flow rate calculation circuit 100 Inlet 101 Outlet 102 Volume data 103 Read data 104 Flow velocity value data

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】石油タンク内の液面変化に基づき石油の流
速を求める流速計算装置において、 サンプリングされた体積データが順次記憶される体積デ
ータ記憶回路と、 この体積データ記憶回路の複数の出力データに基づき石
油の流速を計算して出力する流速計算回路とを備えたこ
とを特徴とする流速計算装置。
1. A flow rate calculating device for determining a flow rate of oil based on a change in a liquid level in an oil tank, a volume data storage circuit for sequentially storing sampled volume data, and a plurality of output data of the volume data storage circuit. And a flow rate calculation circuit for calculating and outputting the flow rate of the oil based on the flow rate.
【請求項2】前記体積データ記憶回路に記憶されている
前記体積データ(Vn )を用いて {12ΣnVn−6(N+1)ΣVn}/N(N+1)(N−1)
T (但し、”Σ”はn=1〜Nの範囲で累算することを示
す。)なる計算式を用いて流速値を計算する流速計算回
路を備えたことを特徴とする特許請求の範囲請求項1記
載の流速計算装置。
2. Using the volume data (V n ) stored in the volume data storage circuit, {12ΣnV n -6 (N + 1) ΣV n } / N (N + 1) (N−1)
A flow rate calculating circuit for calculating a flow rate value by using a calculation formula of T (where "Σ" indicates that accumulation is performed in the range of n = 1 to N). The flow velocity calculation device according to claim 1.
JP24018996A 1996-09-11 1996-09-11 Flow velocity calculating device Pending JPH1090295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24018996A JPH1090295A (en) 1996-09-11 1996-09-11 Flow velocity calculating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24018996A JPH1090295A (en) 1996-09-11 1996-09-11 Flow velocity calculating device

Publications (1)

Publication Number Publication Date
JPH1090295A true JPH1090295A (en) 1998-04-10

Family

ID=17055795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24018996A Pending JPH1090295A (en) 1996-09-11 1996-09-11 Flow velocity calculating device

Country Status (1)

Country Link
JP (1) JPH1090295A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020259051A1 (en) * 2019-06-27 2020-12-30 南京智鹤电子科技有限公司 Method and apparatus for measuring fuel tank and server

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020259051A1 (en) * 2019-06-27 2020-12-30 南京智鹤电子科技有限公司 Method and apparatus for measuring fuel tank and server

Similar Documents

Publication Publication Date Title
JPH0427489B2 (en)
US5736650A (en) Venturi flow meter for measurement in a fluid flow passage
US6092409A (en) System for validating calibration of a coriolis flowmeter
US5987997A (en) Ultrasound flow measurement method
KR102042008B1 (en) Flowmeter Measurement Reliability Determination Devices and Methods
US5385056A (en) Pump station flowmeter
US7257495B2 (en) Flow meter filter system and method
JPH02161313A (en) Composite flowmeter
US4358947A (en) Method and apparatus for volumetric calibration of liquid flow sensor output signals
DE69309939D1 (en) FLOWMETER
JPH1090295A (en) Flow velocity calculating device
US4300399A (en) Measuring two-phase flow
CN100447535C (en) Dynamic response characteristics of flow meters
US5717820A (en) Speech recognition method and apparatus with automatic parameter selection based on hardware running environment
CN113959511B (en) Flow metering method, equipment, medium and product based on jet flow water meter
Johnson et al. Development of a turbine meter for two-phase flow measurement in vertical pipes
JPH0499921A (en) Mass flowmeter
EP4115153A1 (en) Selecting a measurement correction method
US4225778A (en) Flow detection system
JPH06341868A (en) Method for calculating quantity of discharged water
JP3617280B2 (en) A method for measuring the amount of water in a rainwater reservoir
JPH0450505Y2 (en)
WO2023107090A1 (en) Totalizing a flow rate of a multi-phase/single-phase flow
JP3237366B2 (en) Vibration type flow meter
JPH0319492B2 (en)