JPH1089769A - Combustion controller for hot-water supplier - Google Patents

Combustion controller for hot-water supplier

Info

Publication number
JPH1089769A
JPH1089769A JP8271633A JP27163396A JPH1089769A JP H1089769 A JPH1089769 A JP H1089769A JP 8271633 A JP8271633 A JP 8271633A JP 27163396 A JP27163396 A JP 27163396A JP H1089769 A JPH1089769 A JP H1089769A
Authority
JP
Japan
Prior art keywords
control
temperature
water temperature
amount
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8271633A
Other languages
Japanese (ja)
Inventor
Masaaki Asano
公明 朝野
Yasuo Nakanishi
康雄 中西
Nobuyuki Emoto
信之 江本
Yoshihiko Tanaka
良彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP8271633A priority Critical patent/JPH1089769A/en
Publication of JPH1089769A publication Critical patent/JPH1089769A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Combustion (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a combustion controller for a hot-water supplier, which is capable of preventing an air-fuel ratio from being deviated largely from the optimum air-fuel ratio in the transient period of initial period of starting hot-water supplying operation, in a hot-water supplier, in which the supplying amount of fuel is controlled through feed-forward(FF) control and feedback(FB) control while the amount of ventilation is controlled through FF control. SOLUTION: A combustion controller for a hot-water supplier is provided with a burner 20, a fuel supplying means, a ventilating means, a heat exchanger 11, an input water temperature sensor 42, an input water flow rate sensor 41 and an output hot-water temperature sensor 52 while a necessary combustion heat amount is operated from a set output hot-water temperature, an input water temperature and an input water flow rate to control the amount of supplying fuel, supplied by the fuel supplying means, and the amount of ventilation, effected by the ventilating means, through FF control. On the other hand, the fuel supplying amount is controlled from a difference between the set output hot-water temperature and an output hot-water temperature, detected by the output hot-water temperature sensor 52, through FB control. The combustion controller for a hot-water supplier is provided with a controller 60, controlling the supplying amount of fuel through only the FF control in a period from the starting of hot-water supplying operation until the output hot-water temperature, detected by the output hot-water temperature sensor 52, enters within a given range with respect to the set output hot-water temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は給湯器の燃焼制御装
置に関する。
[0001] The present invention relates to a combustion control device for a water heater.

【0002】[0002]

【従来の技術】従来、例えばリターンノズル方式のガン
タイプ比例制御バーナを用いた給湯器においては、給湯
器を所定の号数で運転する場合に、燃料供給量について
は給湯器のフィードフォワード(以下FFとする)制御
号数+フィードバック(以下FBとする)制御号数に基
づいてFF+FB制御を行うと共に、送風量については
給湯器のFF制御号数に基づいてFF制御を行ってい
た。その理由は、燃料供給量にバラツキが生じた場合、
燃料供給量が給湯器のFF制御号数+FB制御号数に基
づいてFF+FB制御されても、実際の燃料供給量は実
際のFF制御値に近い値になることから、送風量をFF
+FB制御で制御すると、実際には送風量と燃料供給量
との空燃比が送風量のFB制御分だけ最適空燃比からズ
レてくることになるからである。
2. Description of the Related Art Conventionally, for example, in a water heater using a return-nozzle type gun-type proportional control burner, when the water heater is operated at a predetermined number, a fuel supply amount is determined by a feedforward (hereinafter referred to as "feed forward") of the water heater. FF + FB control is performed based on the control number + feedback (hereinafter referred to as FB) control number, and FF control is performed on the amount of blown air based on the FF control number of the water heater. The reason is that if the fuel supply varies,
Even if the fuel supply amount is FF + FB controlled based on the FF control number of the water heater + FB control number, the actual fuel supply amount is close to the actual FF control value.
This is because, if the control is performed by + FB control, the air-fuel ratio between the blown air amount and the fuel supply amount actually deviates from the optimum air-fuel ratio by the amount of the FB control of the blown air amount.

【0003】[0003]

【発明が解決しようとする課題】ところが上記のよう
に、燃料供給量をFF+FB制御で制御し、送風量をF
F制御で制御するようにした給湯器においては、運転開
始から初期の立ち上がりの過渡期に設定出湯温度と検出
された出湯温度との差が大きいことから、燃料供給量の
FB制御値が多くなり、その一方、送風量はFF制御の
みであり、結果として運転開始初期の過渡期において空
燃比が最適空燃比から大きくズレる問題があった。ま
た、燃料供給量をFF+FB制御で制御し、送風量をF
F制御で制御するようにした給湯器においては、入水温
度センサや出湯温度センサや流量センサによる検出誤
差、或いは缶体効率等に生じる誤差があるため、例えば
設定出湯温度と検出入水温度と検出入水流量とによって
演算される給湯器のFF制御号数には誤差を含むことに
なる。従って前記センサによる検出値における誤差が大
きい場合には、演算されるFF制御号数と本当に必要な
FF制御号数との間に大きな誤差を生じることになる。
その結果、FB制御号数に及ぼす誤差の影響が非常に大
きくなり、FF+FB制御号数で制御する燃料供給量と
FF制御号数だけで制御する送風量との関係において、
その空燃比が最適空燃比から大きくズレてくる問題があ
った。
However, as described above, the fuel supply amount is controlled by FF + FB control, and
In the water heater controlled by the F control, the difference between the set hot water temperature and the detected hot water temperature in a transitional period from the start of operation to the initial rise is large, so that the FB control value of the fuel supply amount increases. On the other hand, the air flow is only FF control, and as a result, there is a problem that the air-fuel ratio largely deviates from the optimum air-fuel ratio in a transitional period at the beginning of operation. Also, the fuel supply amount is controlled by FF + FB control, and
In a water heater controlled by the F control, there are errors detected by a water inlet temperature sensor, a water outlet temperature sensor, a flow rate sensor, or errors in can body efficiency. The FF control number of the water heater calculated based on the flow rate includes an error. Therefore, if the error in the value detected by the sensor is large, a large error occurs between the calculated FF control number and the really required FF control number.
As a result, the influence of the error on the FB control number becomes very large, and in the relationship between the fuel supply amount controlled by the FF + FB control number and the air flow rate controlled by only the FF control number,
There is a problem that the air-fuel ratio greatly deviates from the optimum air-fuel ratio.

【0004】そこで本発明は、上記従来における問題を
解消し、燃料供給量をFF+FB制御で制御し且つ送風
量をFF制御で制御するようにした給湯器において、給
湯運転開始初期の過渡期において空燃比が最適空燃比か
ら大きくズレるのを防止し、また燃料供給量をFF+F
B制御で制御し且つ送風量をFF制御で制御するように
した給湯器において、センサ類の検出誤差等に起因して
空燃比が最適空燃比から大きくズレるのを防止すること
ができる給湯器の燃焼制御装置の提供を課題とする。
Accordingly, the present invention solves the above-mentioned conventional problems, and in a water heater in which the fuel supply amount is controlled by FF + FB control and the air supply amount is controlled by FF control, the water supply is evacuated during the initial transition period of the hot water supply operation. The fuel ratio is prevented from greatly deviating from the optimum air-fuel ratio, and the fuel supply amount is set to FF + F.
In a water heater controlled by B control and the amount of blown air is controlled by FF control, it is possible to prevent the air-fuel ratio from largely deviating from the optimum air-fuel ratio due to a detection error of a sensor or the like. It is an object to provide a combustion control device.

【0005】[0005]

【課題を解決するための手段】上記課題を達成するた
め、本発明の給湯器の燃焼制御装置は、バーナと、該バ
ーナへの燃料供給手段及び送風手段と、前記バーナの燃
焼熱によって内部を通る水を加熱して出湯する熱交換器
と、該熱交換器の上流側の入水管に設けられる入水温度
センサ及び入水流量センサと、前記熱交換器の下流側の
出湯管に設けられる出湯温度センサとを有し、設定出湯
温度と入水温度と入水流量とから必要燃焼熱量を演算し
て、前記燃料供給手段による燃料供給量と前記送風手段
による送風量とをFF制御すると共に、前記設定出湯温
度と前記出湯温度センサによる出湯温度との差に基づい
て前記燃料供給量をFB制御するようにした給湯器の燃
焼制御装置において、給湯運転開始から前記出湯温度セ
ンサによる出湯温度が設定出湯温度に対して一定の範囲
内に入るまでの期間は前記燃料供給量の制御をFF制御
のみで行うコントローラを有することを第1の特徴とし
ている。また本発明の給湯器の燃焼制御装置は、バーナ
と、該バーナへの燃料供給手段及び送風手段と、前記バ
ーナの燃焼熱によって内部を通る水を加熱して出湯する
熱交換器と、該熱交換器の上流側の入水管に設けられる
入水温度センサ及び入水流量センサと、前記熱交換器の
下流側の出湯管に設けられる出湯温度センサとを有し、
設定出湯温度と入水温度と入水流量とから必要燃焼熱量
を演算して、前記燃料供給手段による燃料供給量と前記
送風手段による送風量とをFF制御すると共に、前記設
定出湯温度と前記出湯温度センサによる出湯温度との偏
差に基づいて前記燃料供給量をFB制御するようにした
給湯器の燃焼制御装置において、設定出湯温度と前記入
水温度センサによる入水温度との差が一定温度未満とな
る場合には前記燃料供給量の制御をFF制御のみで行う
コントローラを有することを第2の特徴としている。
In order to achieve the above object, a combustion control apparatus for a water heater according to the present invention comprises a burner, a means for supplying fuel to the burner and a means for blowing air, and the inside of which is heated by combustion heat of the burner. A heat exchanger for heating and passing hot water through the water, an incoming water temperature sensor and an incoming water flow sensor provided on an inlet pipe upstream of the heat exchanger, and a hot water temperature provided on a outlet pipe downstream of the heat exchanger. And a sensor for calculating the required amount of combustion heat from the set tapping temperature, incoming water temperature, and incoming water flow rate, and performs FF control of the fuel supply amount by the fuel supply means and the blown amount by the blower means. In the combustion control device of the water heater, wherein the fuel supply amount is FB-controlled based on a difference between a temperature and a tapping temperature by the tapping temperature sensor, the tapping temperature by the tapping temperature sensor from the start of the tapping operation. Setting tapping period until fall within a certain range with respect to temperature is in the first, comprising a controller for controlling the fuel supply amount in the FF control only. In addition, the combustion control device for a water heater according to the present invention includes a burner, a fuel supply unit and a blowing unit for the burner, a heat exchanger that heats water passing therethrough by the heat of combustion of the burner, and outputs hot water. An inlet water temperature sensor and an incoming water flow rate sensor provided on an inlet pipe on the upstream side of the exchanger, and a hot water temperature sensor provided on a outlet pipe on the downstream side of the heat exchanger,
The required amount of combustion heat is calculated from the set tap water temperature, the incoming water temperature, and the incoming water flow rate, and the FF control of the fuel supply amount by the fuel supply means and the blast amount by the blower means is performed. When the difference between the set hot water temperature and the hot water temperature detected by the hot water temperature sensor is less than a certain temperature in the combustion control device of the hot water supply device that performs FB control of the fuel supply amount based on the deviation from the hot water temperature due to Has a second feature that it has a controller that controls the fuel supply amount only by FF control.

【0006】上記本発明の第1の特徴によれば、給湯運
転開始から出湯温度が設定出湯温度に対して一定の範囲
に上昇してくるまでの給湯運転初期の過渡期間において
は、送風量の制御のみならず燃料供給量の制御もFF制
御だけとなる。よって本来なら過渡期間では設定出湯温
度と検出出湯温度との大きな差による大きな値のFB制
御量が燃料供給量に加わり、燃料供給量過剰による空燃
比のズレが大きくなるところ、この第1の特徴によれば
前記FB制御量が燃量供給に加わらないので、燃料供給
量と送風量とによる空燃比が最適空燃比から大くズレる
のを防止することができる。第1の特徴において、給湯
運転開始から前記出湯温度センサによる出湯温度が設定
出湯温度に対して一定の範囲内に入るまでの期間とは、
給湯運転開始による燃焼の開始から出湯温度が設定出湯
温度対して一定温度範囲以内にまで上昇するまでの期間
で、前記出湯温度が設定出湯温度に対して一定温度範囲
以内まで上昇するとは、要するに設定出湯温度と出湯温
度との差による燃料供給量のFB制御量が空燃比におけ
る最適空燃比からの大きなズレとなって顕著に現れなく
なる温度まで上昇するということである。よって最適空
燃比からの空燃比のズレを一定範囲内に納めることがで
きるような温度差を一定温度範囲として予め実験によっ
て定めればよい。前記一定温度範囲は、例えば設定出湯
温度−5℃とすることができる。さらには設定出湯温度
−(2〜5℃)とすることができる。さらに広い範囲と
しては設定出湯温度±(2〜5℃)とすることができ
る。上記第2の特徴によれば、設定出湯温度と前記入水
温度センサによる入水温度との差が一定温度未満となる
場合には前記燃料供給量の制御をFF制御のみで行うこ
とになる。設定出湯温度と入水温度センサによる入水温
度との差が一定温度未満となる場合には、それに伴うF
F制御値(例えばFF制御号数)の誤差が大きくなり、
その結果、FB制御されるべき燃料供給量のFB制御値
が大きくなり、よってFF制御量のみで制御した送風量
との空燃比が最適空燃比から大きくズレてしまう所、第
2の特徴においては、設定出湯温度と入水温度センサに
よる入水温度との差が一定温度未満となる場合には燃料
供給量もFF制御量だけで制御することになるので、空
燃比が最適空燃比から大きくズレるのを防止することが
できる。第2の特徴において、設定出湯温度と入水温度
センサによる入水温度との差が一定温度未満という場合
の、条件としての一定温度は予め実験により適当な値を
定めることができる。
According to the first aspect of the present invention, during the transitional period of the initial stage of the hot water supply operation from the start of the hot water supply operation to the time when the tapping temperature rises to a certain range with respect to the set tapping temperature, the air flow rate is reduced. The control of the fuel supply amount as well as the control is only the FF control. Therefore, in the transient period, a large value of the FB control amount due to a large difference between the set hot water temperature and the detected hot water temperature is added to the fuel supply amount, and the deviation of the air-fuel ratio due to the excessive fuel supply amount becomes large. According to this, the FB control amount does not add to the fuel amount supply, so that it is possible to prevent the air-fuel ratio based on the fuel supply amount and the air flow amount from largely deviating from the optimum air-fuel ratio. In the first feature, the period from the start of hot water supply operation to the time when the tapping temperature detected by the tapping temperature sensor falls within a certain range with respect to the set tapping temperature is
In the period from the start of combustion by the start of hot water supply operation to the time when the tapping temperature rises to within a certain temperature range with respect to the set tapping temperature, the tapping temperature rises to within a certain temperature range with respect to the set tapping temperature. This means that the FB control amount of the fuel supply amount due to the difference between the hot water temperature and the hot water temperature rises to a temperature at which the air-fuel ratio significantly deviates from the optimal air-fuel ratio and no longer appears significantly. Therefore, a temperature difference that can keep the deviation of the air-fuel ratio from the optimum air-fuel ratio within a certain range may be determined in advance by experiments as a certain temperature range. The fixed temperature range may be, for example, a set tapping temperature −5 ° C. Furthermore, it can be set to the set tapping temperature-(2 to 5 ° C). A wider range can be set hot water temperature ± (2-5 ° C.). According to the second feature, when the difference between the set hot water temperature and the incoming water temperature by the incoming water temperature sensor is less than a certain temperature, the control of the fuel supply amount is performed only by the FF control. If the difference between the set hot water temperature and the incoming water temperature by the incoming water temperature sensor is less than a certain temperature, the F
The error of the F control value (for example, the number of FF control numbers) increases,
As a result, the FB control value of the fuel supply amount to be subjected to FB control becomes large, and the air-fuel ratio with the air flow rate controlled only by the FF control amount largely deviates from the optimum air-fuel ratio. However, when the difference between the set outlet temperature and the incoming water temperature by the incoming water temperature sensor is less than a certain temperature, the fuel supply amount is also controlled only by the FF control amount, so that the air-fuel ratio largely deviates from the optimal air-fuel ratio. Can be prevented. In the second feature, when the difference between the set hot water temperature and the incoming water temperature by the incoming water temperature sensor is less than a certain temperature, the constant temperature as a condition can be set to an appropriate value in advance by experiments.

【0007】[0007]

【発明の実施の形態】図1は本発明の実施の形態例に係
る給湯器の全体図である。図2は本発明の給湯器の燃焼
制御装置による第1の制御例を説明するフローチャート
である。図3は本発明の給湯器の燃焼制御装置による第
2の制御例を説明するフローチャートである。
FIG. 1 is an overall view of a water heater according to an embodiment of the present invention. FIG. 2 is a flowchart illustrating a first control example by the combustion control device for a water heater according to the present invention. FIG. 3 is a flowchart illustrating a second control example by the combustion control device for a water heater according to the present invention.

【0008】図1を参照して、給湯器は熱交換缶体10内
に瞬間式熱交換器11を備え、前記熱交換缶体10に対して
は、燃料供給手段であるリターンノズル方式のガンタイ
プ比例制御バーナ20が臨み、また燃焼に供される空気の
送風手段として送風機30が設けられている。前記ガンタ
イプ比例制御バーナ20へは石油燃料が供給されると共に
その一部はノズルから噴射されることなく戻ることによ
って噴霧量が調節されるようになっている。前記瞬間式
熱交換器11に対しては入水管40と出湯管50がそれぞれ接
続され、入水管40からの水は熱交換缶体10の瞬間式熱交
換器11を通る間に加熱され、温水となって出湯管50に出
湯され、給湯カラン51等から給湯される。前記入水管40
には入水流量センサ41、入水温度センサ42が設けられ、
また前記出湯管50には出湯温度センサ52が設けられてい
る。
Referring to FIG. 1, the water heater includes an instantaneous heat exchanger 11 in a heat exchange can body 10, and a return nozzle type gun as a fuel supply means is provided to the heat exchange can body 10. A type proportional control burner 20 is provided, and a blower 30 is provided as a means for blowing air used for combustion. Petroleum fuel is supplied to the gun type proportional control burner 20, and a part of the burner is returned without being injected from the nozzle, so that the spray amount is adjusted. An inlet pipe 40 and a tapping pipe 50 are respectively connected to the instantaneous heat exchanger 11, and water from the inlet pipe 40 is heated while passing through the instantaneous heat exchanger 11 of the heat exchange can 10, and Then, hot water is supplied to the hot water supply pipe 50, and hot water is supplied from the hot water supply curan 51 or the like. The inlet pipe 40
Is provided with an incoming water flow sensor 41 and an incoming water temperature sensor 42,
The tapping tube 50 is provided with a tapping temperature sensor 52.

【0009】コントローラ60は給湯器全体の制御を行う
もので、リモコン70からの指令を入力し、また前記入水
流量センサ41による検出入水流量、入水温度センサ42に
よる検出入水温度、前記出湯温度センサ52による検出出
湯温度、その他の給湯器に設備された各センサからの情
報を入力し、前記バーナ20から噴霧される燃料供給量を
制御すると共に前記送風機30によって供給される送風量
を制御し、その他の給湯器に設備されたポンプ、弁等の
部材を制御する。今、リモコン70によって設定出湯温度
が決められ、給湯カラン51等が開かれて、入水管40に最
低作動水量以上の流量が流れると、バーナ20による燃焼
が開始される。前記コントローラ60による出湯温度制御
は原則としてFF制御とFB制御により行い、それに伴
って燃料供給量を原則してFF制御とFB制御で行い、
その一方、送風量についてはFF制御のみで行う。即
ち、コントローラ60は給湯が開始されると、設定出湯温
度と検出入水温度と、検出入水流量とから次式1でFF
制御号数を演算し、該FF制御号数に対応しするFF制
御燃料供給量になるようバーナ20を制御する。同様にF
F制御号数に対応しするFF制御送風量になるように送
風機30を制御する。そしてFF制御燃料供給量とFF制
御送風量とは最適空燃比となる関係とされている。
The controller 60 controls the entire water heater, inputs a command from a remote controller 70, and controls the flow rate of incoming water detected by the incoming water flow sensor 41, the incoming water temperature detected by the incoming water temperature sensor 42, and the outgoing water temperature sensor. Hot water temperature detected by 52, information from each sensor provided in the other water heater is input, and the amount of fuel supplied from the burner 20 is controlled and the amount of air supplied by the blower 30 is controlled. It controls members such as pumps and valves provided in other water heaters. Now, the set tapping temperature is determined by the remote controller 70, the hot water supply curran 51 and the like are opened, and when the flow rate equal to or more than the minimum working water amount flows through the water inlet pipe 40, the combustion by the burner 20 is started. The tapping temperature control by the controller 60 is performed by FF control and FB control in principle, and accordingly, the fuel supply amount is controlled by FF control and FB control in principle.
On the other hand, the blowing amount is controlled only by the FF control. That is, when the hot water supply is started, the controller 60 calculates the FF from the set hot water temperature, the detected incoming water temperature, and the detected incoming water flow rate by the following equation 1.
The control number is calculated, and the burner 20 is controlled so that the FF control fuel supply amount corresponds to the FF control number. Similarly F
The blower 30 is controlled so that the FF control air flow amount corresponding to the F control number is obtained. The FF control fuel supply amount and the FF control air supply amount are set to have a relationship that provides an optimum air-fuel ratio.

【0010】 FF制御号数=(設定出湯温度−検出入水温度)÷25×検出入水流量 ・・・式1FF control number = (set hot water temperature-detected incoming water temperature) ÷ 25 x detected incoming water flow rate formula 1

【0011】ここで号数の1号とは、1リットルの水を
1分間に25℃上昇させる熱量である。
Here, the number 1 is the amount of heat for raising 1 liter of water by 25 ° C. per minute.

【0012】次に前記FF制御により出湯した温水の温
度を出湯温度センサ52で検出し、これを検出出湯温度と
し、前記検出入水温度とから実際の出湯号数を次式2で
演算し、さらに式3でFB制御号数を演算する。
Next, the temperature of the hot water discharged from the hot water by the FF control is detected by a hot water temperature sensor 52, and the detected hot water temperature is used as the detected hot water temperature. Equation 3 calculates the number of FB control numbers.

【0013】 実際の出湯号数=(検出出湯温度−検出入水温度)÷25×検出入水流量 ・・・式2Actual number of outgoing hot water = (detected hot water temperature-detected incoming water temperature) ÷ 25 x detected incoming water flow rate formula 2

【0014】 FB制御号数=FF制御号数−実出湯号数 ・・・式3FB control number = FF control number-actual hot water number

【0015】式3でFB制御号数が演算されると、その
FB制御号数に対応した燃料供給量がFB制御燃料供給
量として前記FF制御燃料供給量に加算されて、バーナ
20が制御される。一方、FB制御号数が演算されても、
送風量についてはFF制御送風量で引き続き送風機30が
制御される。送風量をFF制御だけで行う理由は、燃料
供給量に比べて送風量の制御はそれ程正確でなくともあ
まり問題とならないこと、及び送風量についてもFF制
御+FB制御で制御を行う場合には、燃料供給量にバラ
ツキが生じた場合、燃料供給量がFF制御号数+FB制
御号数で制御されても、給湯器の実際の制御号数はFF
制御号数に近い値となることから、送風量をFF制御号
数+FB制御号数で制御すると、実際には送風量と燃料
供給量との空燃比が送風量のFB制御号数分だけ最適空
燃比からズレてくることになるからである。
When the FB control number is calculated by the equation 3, the fuel supply amount corresponding to the FB control number is added to the FF control fuel supply amount as the FB control fuel supply amount, and
20 is controlled. On the other hand, even if the FB control number is calculated,
With respect to the blowing amount, the blower 30 is continuously controlled by the FF control blowing amount. The reason why the blast amount is controlled only by the FF control is that the control of the blast amount is not so problematic even if it is not so accurate as compared with the fuel supply amount, and when the blast amount is also controlled by the FF control + FB control, When the fuel supply amount varies, the actual control number of the water heater is FF even if the fuel supply amount is controlled by the FF control number + FB control number.
Since the value is close to the control number, if the air flow rate is controlled by the FF control number + FB control number, the air-fuel ratio between the air flow rate and the fuel supply amount is actually optimal for the FB control number of the air flow rate This is because it will deviate from the air-fuel ratio.

【0016】次に本発明の給湯器の燃焼制御装置におけ
る前記コントローラ60による前記バーナ20の燃料供給量
と送風機30の送風量の制御の第1の実施の形態を、図2
に沿って説明する。即ち、第1の実施の形態において
は、図示しない給湯運転スイッチがリモコン70等におい
てオンされ、且つ給湯カラン51の開放等により入水流量
センサ41が最低作動水量以上を検出すると、バーナ20の
燃焼が開始され、給湯運転が開始される。この給湯運転
が開始されると(ステップS11でイエス)、コントロー
ラ60は、リモコン70で設定された設定出湯温度と検出入
水温度と検出入水流量とから必要出湯号数を上記式1で
演算し、これをFF制御出湯号数とする。そしてコント
ローラ60は前記このFF制御出湯号数に対応する燃料供
給量のFF制御燃料供給量と送風量のFF制御送風量と
を演算して、そのFF制御燃料供給量とFF制御送風量
とでバーナ20と送風機30との制御を開始する。そして前
記給湯運転の開始に伴いバーナ20と送風機30の制御を開
始すると、一定の短い時間間隔で、前記出湯温度センサ
52が検出する検出出湯温度を監視し、検出出湯温度が設
定出湯温度に対して一定温度範囲内に入ったか否かを監
視する(ステップS12)。そして、運転開始から検出出
湯温度が設定出湯温度に対して一定温度範囲内に入るま
での間(ステップS12でノー)の立ち上がりは、燃料供
給量及び送風量の制御を何れも前記FF制御号数に基づ
くFF制御値にてFF制御する(ステップS13)。一
方、ステップS12において、検出出湯温度が設定出湯温
度に対して一定温度範囲内に入った時点において(ステ
ップS12でイエス)、コントローラ60は、バーナ20の燃
料供給量については、FF制御に加えてFB制御をも開
始し、以後FF+FB制御で燃料供給量を制御すると共
にFF制御で送風量を制御する原則状態に入る(ステッ
プS14)。
Next, a first embodiment of the control of the fuel supply amount of the burner 20 and the blower amount of the blower 30 by the controller 60 in the water heater combustion control apparatus of the present invention will be described with reference to FIG.
It is explained along. That is, in the first embodiment, when the hot water supply operation switch (not shown) is turned on by the remote controller 70 and the like, and the incoming water flow rate sensor 41 detects the minimum operating water amount or more by opening the hot water supply curan 51 or the like, the combustion of the burner 20 is stopped. Then, the hot water supply operation is started. When the hot water supply operation is started (Yes in step S11), the controller 60 calculates the required number of hot water from the set hot water temperature, the detected hot water temperature, and the detected hot water flow rate set by the remote controller 70 using the above equation 1, This will be referred to as the number of FF control outlets. The controller 60 calculates the FF control fuel supply amount of the fuel supply amount corresponding to the FF control hot water supply number and the FF control air supply amount of the air supply amount, and calculates the FF control fuel supply amount and the FF control air supply amount. Control of the burner 20 and the blower 30 is started. When the control of the burner 20 and the blower 30 is started in accordance with the start of the hot water supply operation, the hot water temperature sensor is
The detected tapping temperature detected by 52 is monitored, and it is monitored whether the detected tapping temperature is within a certain temperature range with respect to the set tapping temperature (step S12). The rise from the start of operation to the time when the detected hot water temperature falls within a certain temperature range with respect to the set hot water temperature (No in step S12) is the time when the control of the fuel supply amount and the air blowing amount is performed by the FF control number. FF control is performed with the FF control value based on (step S13). On the other hand, in step S12, when the detected hot water temperature falls within a certain temperature range with respect to the set hot water temperature (Yes in step S12), the controller 60 determines the fuel supply amount of the burner 20 in addition to the FF control. The FB control is also started, and thereafter, the fuel supply amount is controlled by the FF + FB control and the air flow rate is controlled by the FF control to enter a principle state (step S14).

【0017】上記コントローラ60による燃料供給量と送
風量の制御の第1の実施の形態において、給湯運転開始
から出湯温度が設定出湯温度に対して一定の範囲に上昇
してくるまでの給湯運転初期の立ち上がり期間において
は、通常において設定出湯温度と検出出湯温度とに大き
な温度差があるため、FB制御を組み合わせた場合に
は、前記設定出湯温度と検出出湯温度との温度差に基づ
き、大きなFB制御号数が演算されることになり、また
それによって大きなFB制御燃料供給量となる。大きな
FB制御燃料供給量がFF制御燃料供給量に加わる場合
には、FF制御送風量だけの送風量に対しての燃料供給
量の空燃比が最適空燃比から大きくズレることとなる。
本第1の実施の形態において、給湯運転開始から出湯温
度が設定出湯温度に対して一定の範囲に上昇してくるま
での給湯運転初期の立ち上がり期間においては前記FB
制御量が燃料供給量に加わらないので、燃料供給量と送
風量とによる空燃比が最適空燃比から大きくズレるのを
防止することができる。
In the first embodiment of the control of the amount of fuel supplied and the amount of air blown by the controller 60, the initial operation of the hot water supply operation from the start of the hot water supply operation until the tapping temperature rises to a certain range with respect to the set tapping temperature. In the rising period of the normal temperature, there is usually a large temperature difference between the set hot water temperature and the detected hot water temperature. Therefore, when FB control is combined, a large FB is generated based on the temperature difference between the set hot water temperature and the detected hot water temperature. The control number is calculated, which results in a large FB control fuel supply amount. When the large FB control fuel supply amount is added to the FF control fuel supply amount, the air-fuel ratio of the fuel supply amount with respect to the air supply amount of only the FF control air supply amount largely deviates from the optimal air-fuel ratio.
In the first embodiment, during the initial rising period of the hot water supply operation from the start of the hot water supply operation until the tapping temperature rises to a certain range with respect to the set tapping temperature, the FB
Since the control amount is not added to the fuel supply amount, it is possible to prevent the air-fuel ratio based on the fuel supply amount and the blowing amount from largely deviating from the optimum air-fuel ratio.

【0018】上記において、給湯運転開始から前記出湯
温度センサによる出湯温度が設定出湯温度に対して一定
の範囲内に入るまでの期間とは、給湯運転開始による燃
焼の開始から出湯温度が設定出湯温度に対して一定温度
範囲以内にまで上昇するまでの期間で、前記出湯温度が
設定出湯温度に対して一定温度範囲以内まで上昇すると
は、要するに設定出湯温度と出湯温度との差による燃料
供給量のFB制御量が空燃比における最適空燃比からの
大きなズレとなって顕著に現れなくなる温度まで上昇す
るということである。よって最適空燃比からの空燃比の
ズレを一定範囲内に納めることができるような温度差を
一定温度範囲として、予め実験によって定めればよい。
前記一定温度範囲は、例えば設定出湯温度−5℃とする
ことができる。さらには設定出湯温度−(2〜5℃)と
することができる。さらに広い範囲としては設定出湯温
度±(2〜5℃)とすることができる。
In the above description, the period from the start of the hot water supply operation to the time when the tapping temperature detected by the tapping temperature sensor falls within a certain range with respect to the set tapping temperature is defined as the time from the start of combustion at the start of the hot water supply operation to the setting of the tapping temperature. In the period until the temperature rises to within a certain temperature range, the tapping temperature rises to within a certain temperature range with respect to the set tapping temperature, that is, the fuel supply amount due to the difference between the set tapping temperature and the tapping temperature. This means that the FB control amount becomes a large deviation from the optimal air-fuel ratio in the air-fuel ratio and rises to a temperature at which the FB control amount does not appear significantly. Therefore, the temperature difference that can keep the deviation of the air-fuel ratio from the optimum air-fuel ratio within a certain range may be determined in advance by experiments as a certain temperature range.
The fixed temperature range may be, for example, a set tapping temperature −5 ° C. Furthermore, it can be set to the set tapping temperature-(2 to 5 ° C). A wider range can be set hot water temperature ± (2-5 ° C.).

【0019】次に本発明の給湯器の燃焼制御装置におけ
る前記コントローラ60による前記バーナ20の燃料供給量
と送風機30の送風量の制御の第2の実施の形態を、図3
に沿って説明する。即ち、第2の実施の形態において
は、図示しない給湯運転スイッチがリモコン70等におい
てオンされ、且つ給湯カラン51の開放等により入水流量
センサ41が最低作動水量以上を検出すると、バーナ20の
燃焼が開始され、給湯運転が開始される。給湯運転中
(ステップS21でイエス)においては、コントローラ60
は、リモコン70で設定された設定出湯温度と検出入水温
度と検出入水流量とから必要出湯号数を演算してFF制
御号数とすると共に、検出温度と上記検出入水温度との
差が一定温度未満となるか否かを監視(ステップS22)
する。そして前記温度差が一定温度未満ではない場合
(ステップS22でノーの場合)には、原則通り、コント
ローラ60は、燃料供給量をFF制御号数に対応するFF
制御燃料供給量とFB制御号数に対応するFB制御燃料
供給量の組み合わせにて、FF+FB制御し、送風量に
ついてはFF制御号数に対応するFF制御送風量にてF
F制御を行う(ステップS23)。一方、温度差が一定温
度未満の場合(ステップS22でイエスの場合)には、コ
ントローラ60はその間上記原則を止めて、燃料供給量に
ついてもFF制御号数に対応するFF制御燃料供給量に
てFF制御し、送風量については元通りFF制御号数に
対応するFF制御送風量にてFF制御を行うようにする
(ステップS24)。
Next, a second embodiment of the control of the fuel supply amount of the burner 20 and the blower amount of the blower 30 by the controller 60 in the combustion control apparatus for a water heater of the present invention will be described with reference to FIG.
It is explained along. That is, in the second embodiment, when the hot water supply operation switch (not shown) is turned on by the remote controller 70 or the like and the incoming water flow rate sensor 41 detects the minimum operating water amount or more due to the opening of the hot water supply curan 51 or the like, the combustion of the burner 20 is stopped. Then, the hot water supply operation is started. During the hot water supply operation (Yes in step S21), the controller 60
Calculates the required hot water number from the set hot water temperature, the detected hot water temperature, and the detected hot water flow rate set by the remote controller 70 to obtain the FF control number, and the difference between the detected temperature and the detected hot water temperature is a constant temperature. It is monitored whether it becomes less than (Step S22)
I do. If the temperature difference is not less than the predetermined temperature (NO in step S22), the controller 60 sets the fuel supply amount to the FF corresponding to the FF control number in principle.
FF + FB control is performed by the combination of the control fuel supply amount and the FB control fuel supply amount corresponding to the FB control number, and the air flow rate is determined by the FF control air flow rate corresponding to the FF control number.
F control is performed (step S23). On the other hand, when the temperature difference is less than the certain temperature (in the case of YES in step S22), the controller 60 stops the above-mentioned principle during that time, and also adjusts the fuel supply amount to the FF control fuel supply amount corresponding to the FF control number. The FF control is performed, and the FF control is performed with the FF control air flow corresponding to the FF control number as before (step S24).

【0020】給湯器において設定出湯温度が決まると、
該設定出湯温度と検出入水温度と検出入水流量とから必
要な燃焼熱量として、FF制御号数が上記式1により演
算され、これに基づいて、FF制御燃料供給量が決定さ
れ、またFF制御送風量が決定されて運転が行われる。
ところが、前記検出入水温度の値は入水温度センサ42が
有する検出誤差を含み、また前記検出入水流量の値は入
水流量センサ41が有する検出誤差を含むことから、前記
検出入水温度値を用いて演算した前記FF制御号数(演
算FF制御号数とする)は、既に本当に必要なFF制御
号数(真FF制御号数とする)に対して誤差を含んだも
のとなっている。よって、真FF制御号数と演算FF制
御号数との誤差が大きい場合には、FB制御号数が大き
くなり、その結果、FB制御をも行う燃料供給量とFF
制御だけを行う送風量との空燃比が最適空燃比から大き
くズレることになる。前記真FF制御号数と演算FF制
御号数との誤差は、上記式1と次式4を用いて式5で演
算することができる。
When the set hot water temperature is determined in the water heater,
The required FF control number is calculated from the set hot water temperature, the detected incoming water temperature, and the detected incoming water flow rate as the required amount of combustion heat by the above equation 1, and based on this, the FF control fuel supply amount is determined, and the FF control fuel supply amount is determined. The air flow is determined and the operation is performed.
However, since the value of the detected incoming water temperature includes the detection error of the incoming water temperature sensor 42, and the value of the detected incoming water flow rate includes the detection error of the incoming water flow rate sensor 41, it is calculated using the detected incoming water temperature value. The above-mentioned FF control number (hereinafter referred to as operation FF control number) includes an error with respect to the already required FF control number (hereinafter referred to as true FF control number). Therefore, when the error between the true FF control number and the arithmetic FF control number is large, the FB control number becomes large, and as a result, the fuel supply amount and the FF that also perform the FB control
The air-fuel ratio with the amount of air to be controlled only greatly deviates from the optimum air-fuel ratio. The error between the true FF control number and the calculation FF control number can be calculated by Expression 5 using Expression 1 and Expression 4 below.

【0021】 真FF制御号数=(検出出湯温度−真入水温度)÷25×真入水流量 ・・・式4 ここで、真入水温度:本当の入水温度 真入水流量:本当の入水流量True FF control number = (Detected hot water temperature−True water temperature) ÷ 25 × True water flow ... Equation 4 Here, True water temperature: Real water temperature True water flow: Real water flow

【0022】 FF制御号数誤差=|(真FF制御号数−演算FF制御号数)| ÷真FF制御号数 ・・・式5FF control number error = | (true FF control number−operation FF control number) | ÷ true FF control number ・ ・ ・ Equation 5

【0023】前記FF制御号数誤差に対して影響を及ぼ
す誤差は、検出入水温度の誤差と検出入水流量の誤差で
ある。そしてその中で、検出入水温度の誤差によるFF
制御号数誤差の影響は、設定出湯温度と検出入水温度と
の差によって大きく変化することがわかった。即ち、上
記式5において、検出入水流量の誤差を考慮から外す
と、前記FF制御号数誤差は、次式6で表すことができ
る。
The errors affecting the FF control number error are an error in the detected incoming water temperature and an error in the detected incoming water flow rate. And, among them, the FF due to the error of the detected inlet water temperature
It was found that the effect of the control number error greatly changed depending on the difference between the set hot water temperature and the detected hot water temperature. That is, in the above formula 5, if the error of the detected incoming water flow rate is excluded from consideration, the FF control number error can be expressed by the following formula 6.

【0024】 FF制御号数誤差=|(検出入水温度−真入水温度)| ÷(設定出湯温度−真入水温度) =(検出入水温度−真入水温度) ÷{設定出湯温度−(検出入水温度−Δt)} =Δt/(ΔT+Δt) ≒Δt/ΔT ・・・式6 ここで、Δt:検出入水温度の真入水温度に対する誤差 ΔT:設定出湯温度−検出入水温度FF control number error = | (detected incoming water temperature−true incoming water temperature) | ÷ (set outgoing water temperature−true incoming water temperature) = (detected incoming water temperature−true incoming water temperature) ÷ {set outgoing water temperature− (detected incoming water temperature) −Δt)} = Δt / (ΔT + Δt) ≒ Δt / ΔT Expression 6 where Δt: error of detected incoming water temperature with respect to true incoming water temperature ΔT: set outgoing water temperature−detected incoming water temperature

【0025】式6から明らかにように、FF制御号数誤
差は、ΔT、即ち設定出湯温度と検出入水温度との差、
に大きく左右されることが判る。例えば、入水温度セン
サ42の検出誤差を検出入水温度の誤差Δtとして、例え
ばΔt=1℃とした場合において、上記設定出湯温度を
65℃とし、検出入水温度が15℃の場合には、FF制御号
数誤差は1/(65−15)=0.02で2%となり、設定出湯
温度を40℃とし、検出入水温度が15℃の場合には、FF
制御号数誤差は1/(40−15)=0.04で4%となる。ま
た設定出湯温度を40℃とし、検出入水温度が30℃の場合
には、FF制御号数誤差は1/(40−30)=0.10で10%
にもなる。
As is apparent from Equation 6, the FF control number error is ΔT, ie, the difference between the set hot water temperature and the detected hot water temperature,
It can be seen that it is greatly affected by For example, when the detection error of the incoming water temperature sensor 42 is set as an error Δt of the detected incoming water temperature, for example, when Δt = 1 ° C., the above set outlet water temperature is
If the detected inlet water temperature is 65 ° C and the detected inlet water temperature is 15 ° C, the FF control number error is 2% at 1 / (65-15) = 0.02, the set outlet temperature is 40 ° C, and the detected inlet water temperature is 15 ° C. In that case, FF
The control number error is 4% at 1 / (40−15) = 0.04. If the set tap water temperature is 40 ° C and the detected inlet water temperature is 30 ° C, the FF control number error is 1 / (40−30) = 0.10 and 10%
Also.

【0026】FF制御号数誤差は前記入水温度センサ42
の検出誤差のみならず、入水流量センサ41の検出誤差に
よっても増加する。そしてFF制御号数の誤差はFB制
御号数にそのまま反映され、さらにFB制御号数の演算
においてもセンサ類の検出誤差が影響する。よって、例
えばFB制御号数に及ぼす号数誤差の範囲が一定以上に
なる場合には、FB制御号数に基づく制御を行わない方
がむしろ好ましい制御となる場合がある。大きな号数誤
差に基づくFB制御号数によってFB制御燃料供給量を
演算して、燃料供給を行う場合には、FB制御を行わな
い送風量との空燃比が最適空燃比から大きくズレてしま
う。今、FB制御号数をそれ以上では行わないとする号
数の許容誤差が定められると、それに基づいて、前記F
F制御号数における全許容誤差が定まり、さらFF制御
号数の全許容誤差に対して入水温度センサ42の有する検
出誤差に基づくFF制御号数の許容誤差が定まる。今、
入水温度センサ42の有する検出誤差に基づくFF制御号
数の許容誤差を例えば8%とすると、検出誤差Δtが1
℃である入水温度センサ42を用いる場合には、上記式6
から、設定出湯温度と検出入水温度との許容される温度
差は、12.5℃となり、該温度差が12.5℃未満になると、
FF制御号数の許容誤差が8%を越えることになる。よ
ってこの場合には、燃料供給量のFB制御も行わないこ
ととなるのである。
The error of the FF control number is determined by the input water temperature sensor 42.
Increases due to the detection error of the incoming water flow rate sensor 41 as well as the detection error of. The error in the FF control number is directly reflected on the FB control number, and the detection error of the sensors also affects the calculation of the FB control number. Therefore, for example, when the range of the number error exerted on the FB control number becomes a certain value or more, it may be preferable to not perform the control based on the FB control number. When the FB control fuel supply amount is calculated based on the FB control number based on the large number error, and the fuel supply is performed, the air-fuel ratio with the air flow rate not performing the FB control greatly deviates from the optimum air-fuel ratio. Now, if the allowable error of the number that the FB control number is not performed any more is determined, based on the error,
The total allowable error in the F control number is determined, and the allowable error of the FF control number based on the detection error of the incoming water temperature sensor 42 is further determined with respect to the total allowable error of the FF control number. now,
Assuming that the permissible error of the FF control number based on the detection error of the incoming water temperature sensor 42 is, for example, 8%, the detection error Δt becomes 1
In the case of using the incoming water temperature sensor 42 which is
From, the allowable temperature difference between the set tap water temperature and the detected inlet water temperature is 12.5 ° C, and when the temperature difference is less than 12.5 ° C,
The tolerance of the number of FF control numbers exceeds 8%. Therefore, in this case, the FB control of the fuel supply amount is not performed.

【0027】前記設定出湯温度と検出入水温度との差が
何度未満となれば燃料供給の制御を送風量の制御と同様
にFF制御のみにするかの一定温度については、予め実
験を行うことで、FF制御号数の誤差が幾らになるまで
はFB制御を許容するか、さらに許容FF制御号数誤差
に基づいて、入水温度センサ42の検出誤差によるFF制
御号数の誤差が幾らにするまでFB制御を許容するかを
定め、式6によって定める。
An experiment must be performed in advance to determine whether the difference between the set hot water temperature and the detected hot water temperature is less than how many times the fuel supply control should be performed only with the FF control in the same way as the air flow rate control. Then, the FB control is allowed until the error of the number of FF control numbers becomes large, or the error of the number of FF control numbers due to the detection error of the input water temperature sensor 42 is determined based on the allowable FF control number error. It is determined whether or not the FB control is allowed up to, and is determined by Expression 6.

【0028】[0028]

【発明の効果】本発明は以上の構成よりなり、請求項1
に記載の給湯器の燃焼制御装置によれば、設定出湯温度
と入水温度と入水流量とから必要燃焼熱量を演算して、
燃料供給手段による燃料供給量と送風手段による送風量
とをFF制御すると共に、設定出湯温度と出湯温度セン
サによる出湯温度との差に基づいて前記燃料供給量をF
B制御するようにした給湯器の燃焼制御装置において、
給湯運転開始から前記出湯温度センサによる出湯温度が
設定出湯温度に対して一定の範囲内に入るまでの期間は
前記燃料供給量の制御をFF制御のみで行うコントロー
ラを有するので、給湯運転開始から出湯温度が設定出湯
温度に対して一定の範囲に上昇してくるまでの給湯運転
初期の過渡期間において、燃料供給量と送風量とによる
空燃比が最適空燃比から大くズレるのを防止することが
できる。また請求項2に記載の給湯器の燃焼制御装置に
よれば、設定出湯温度と入水温度と入水流量とから必要
燃焼熱量を演算して、燃料供給手段による燃料供給量と
送風手段による送風量とをFF制御すると共に、設定出
湯温度と出湯温度センサによる出湯温度との偏差に基づ
いて前記燃料供給量をFB制御するようにした給湯器の
燃焼制御装置において、設定出湯温度と入水温度センサ
による入水温度との差が一定温度未満となる場合には前
記燃料供給量の制御をFF制御のみで行うコントローラ
を有するので、センサの検出誤差によりFB制御される
べき燃料供給量のFB制御値が大きくなる前に、燃料供
給量のFB制御を止め、これによって燃料供給量と送風
量との空燃比が最適空燃比から大きくズレてしまうのを
防止することができる。
According to the present invention, there is provided the above construction.
According to the combustion control device of the water heater described in the above, the required amount of combustion heat is calculated from the set hot water temperature, incoming water temperature, and incoming water flow rate,
The fuel supply amount by the fuel supply means and the air supply amount by the blower means are FF-controlled, and the fuel supply amount is calculated based on the difference between the set tapping temperature and the tapping temperature by the tapping temperature sensor.
In the combustion control device of the water heater that performs the B control,
During the period from the start of hot water supply operation to the time when the hot water temperature detected by the hot water temperature sensor falls within a certain range with respect to the set hot water temperature, there is a controller that controls the fuel supply amount only by FF control. During the initial transition period of hot water supply operation until the temperature rises to a certain range with respect to the set hot water temperature, it is possible to prevent the air-fuel ratio due to the fuel supply amount and the air blowing amount from largely deviating from the optimum air-fuel ratio. it can. Also, according to the combustion control apparatus for a water heater according to claim 2, the required amount of combustion heat is calculated from the set outlet temperature, the incoming water temperature, and the incoming water flow rate, and the amount of fuel supplied by the fuel supply means and the amount of air blown by the blowing means are calculated. In the combustion control device of the water heater, the fuel supply amount is FB-controlled based on the difference between the set tapping temperature and the tapping temperature by the tapping temperature sensor. When the difference from the temperature is less than a certain temperature, a controller that controls the fuel supply amount only by the FF control is provided, so that the FB control value of the fuel supply amount to be FB controlled due to a detection error of the sensor increases. Before the FB control of the fuel supply amount is stopped, it is possible to prevent the air-fuel ratio between the fuel supply amount and the blowing amount from largely deviating from the optimum air-fuel ratio.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態例に係る給湯器の全体図で
ある。
FIG. 1 is an overall view of a water heater according to an embodiment of the present invention.

【図2】本発明の給湯器の燃焼制御装置による第1の制
御例を説明するフローチャートである。
FIG. 2 is a flowchart illustrating a first control example by the water heater combustion control device of the present invention.

【図3】本発明の給湯器の燃焼制御装置による第2の制
御例を説明するフローチャートである。
FIG. 3 is a flowchart illustrating a second control example by the combustion control device for a water heater according to the present invention.

【符号の説明】[Explanation of symbols]

10 熱交換缶体 11 瞬間式熱交換器 20 ガンタイプ比例制御バーナ 30 送風機 40 入水管 41 入水流量センサ 42 入水温度センサ 50 出湯管 52 出湯温度センサ 60 コントローラ 70 リモコン 10 Heat exchange can 11 Instantaneous heat exchanger 20 Gun type proportional control burner 30 Blower 40 Inlet pipe 41 Inlet flow sensor 42 Inlet temperature sensor 50 Outlet pipe 52 Outlet temperature sensor 60 Controller 70 Remote control

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 良彦 兵庫県神戸市中央区江戸町93番地 株式会 社ノーリツ内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshihiko Tanaka 93rd Edocho, Chuo-ku, Kobe-shi, Hyogo Inside Noritz Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 バーナと、該バーナへの燃料供給手段及
び送風手段と、前記バーナの燃焼熱によって内部を通る
水を加熱して出湯する熱交換器と、該熱交換器の上流側
の入水管に設けられる入水温度センサ及び入水流量セン
サと、前記熱交換器の下流側の出湯管に設けられる出湯
温度センサとを有し、設定出湯温度と入水温度と入水流
量とから必要燃焼熱量を演算して、前記燃料供給手段に
よる燃料供給量と前記送風手段による送風量とをフィー
ドフォワード制御すると共に、前記設定出湯温度と前記
出湯温度センサによる出湯温度との差に基づいて前記燃
料供給量をフィードバック制御するようにした給湯器の
燃焼制御装置において、給湯運転開始から前記出湯温度
センサによる出湯温度が設定出湯温度に対して一定の範
囲内に入るまでの期間は前記燃料供給量の制御をフィー
ドフォワード制御のみで行うコントローラを有すること
を特徴とする給湯器の燃焼制御装置。
1. A burner, a fuel supply means and a blowing means to the burner, a heat exchanger for heating water passing through the burner by combustion heat of the burner and discharging hot water, and a heat exchanger upstream of the heat exchanger. It has an incoming water temperature sensor and an incoming water flow sensor provided on the water pipe, and an outgoing water temperature sensor provided on the outgoing water pipe on the downstream side of the heat exchanger, and calculates the required amount of combustion heat from the set outgoing water temperature, incoming water temperature, and incoming water flow rate. The feed amount of the fuel supplied by the fuel supply unit and the amount of air blown by the blowing unit are feed-forward controlled, and the fuel supply amount is fed back based on a difference between the set tap temperature and the tap temperature by the tap temperature sensor. In the combustion control device for a water heater controlled, the period from the start of the hot water supply operation until the tapping temperature detected by the tapping temperature sensor falls within a certain range with respect to the set tapping temperature. A combustion control device for a water heater, comprising a controller for controlling the fuel supply amount only by feedforward control during the interval.
【請求項2】 バーナと、該バーナへの燃料供給手段及
び送風手段と、前記バーナの燃焼熱によって内部を通る
水を加熱して出湯する熱交換器と、該熱交換器の上流側
の入水管に設けられる入水温度センサ及び入水流量セン
サと、前記熱交換器の下流側の出湯管に設けられる出湯
温度センサとを有し、設定出湯温度と入水温度と入水流
量とから必要燃焼熱量を演算して、前記燃料供給手段に
よる燃料供給量と前記送風手段による送風量とをフィー
ドフォワード制御すると共に、前記設定出湯温度と前記
出湯温度センサによる出湯温度との偏差に基づいて前記
燃料供給量をフィードバック制御するようにした給湯器
の燃焼制御装置において、設定出湯温度と前記入水温度
センサによる入水温度との差が一定温度未満となる場合
には前記燃料供給量の制御をフィードフォワード制御の
みで行うコントローラを有することを特徴とする給湯器
の燃焼制御装置。
2. A burner, a means for supplying fuel to the burner and a means for blowing air to the burner, a heat exchanger for heating water passing through the interior by the heat of combustion of the burner and discharging hot water, and an inlet upstream of the heat exchanger. It has an incoming water temperature sensor and an incoming water flow sensor provided on the water pipe, and an outgoing water temperature sensor provided on the outgoing water pipe on the downstream side of the heat exchanger, and calculates the required amount of combustion heat from the set outgoing water temperature, incoming water temperature, and incoming water flow rate. Then, the feed amount of the fuel supplied by the fuel supply unit and the amount of air blown by the blowing unit are feedforward controlled, and the fuel supply amount is fed back based on a deviation between the set hot water temperature and the hot water temperature by the hot water temperature sensor. In the combustion control device for a water heater, the fuel supply amount is set when the difference between the set outlet temperature and the inlet temperature detected by the inlet temperature sensor is less than a certain temperature. A combustion control device for a water heater, comprising: a controller that performs the control of (1) only by feedforward control.
JP8271633A 1996-09-19 1996-09-19 Combustion controller for hot-water supplier Pending JPH1089769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8271633A JPH1089769A (en) 1996-09-19 1996-09-19 Combustion controller for hot-water supplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8271633A JPH1089769A (en) 1996-09-19 1996-09-19 Combustion controller for hot-water supplier

Publications (1)

Publication Number Publication Date
JPH1089769A true JPH1089769A (en) 1998-04-10

Family

ID=17502794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8271633A Pending JPH1089769A (en) 1996-09-19 1996-09-19 Combustion controller for hot-water supplier

Country Status (1)

Country Link
JP (1) JPH1089769A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000023748A1 (en) * 1998-10-16 2000-04-27 Georg Schmidt Method and device for regulating combustion in heating devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000023748A1 (en) * 1998-10-16 2000-04-27 Georg Schmidt Method and device for regulating combustion in heating devices

Similar Documents

Publication Publication Date Title
JPH1089769A (en) Combustion controller for hot-water supplier
JPS63213747A (en) Hot water supplier
JP2734390B2 (en) Hot water outlet temperature control method
JPH09184659A (en) Hot water supply apparatus
JP2870436B2 (en) Combustion equipment
JPH11230616A (en) Connecting unit for auxiliary hot water supply device
JP3006210B2 (en) Water heater control device
JP3769660B2 (en) Water heater
JP3487905B2 (en) Water heater and combustion control method using the same
JP3446502B2 (en) Combustion control device
JP3798142B2 (en) Combustion equipment
JPH08247547A (en) Hot water-supply device
JP6848265B2 (en) Hot water temperature control device
JPH05256515A (en) Hot water feeder and control method thereof
JP2541399B2 (en) Combustor spray nozzle control method
JPH1151481A (en) Hot water feeding device
JP2004353990A (en) Gas combustion equipment
JP3642135B2 (en) Water heater
JPH1183008A (en) Hot water heater
JP2616694B2 (en) Water heater overflow prevention device
JP2001050589A (en) Hot-water supplier
JP3166459B2 (en) Water heater
JPH01263456A (en) Hot water feeder
JPH0933037A (en) Method for controlling pressure of burner combustion air
JP3748464B2 (en) Water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050215