JPH108967A - Direct cylinder injection type spark ignition engine - Google Patents
Direct cylinder injection type spark ignition engineInfo
- Publication number
- JPH108967A JPH108967A JP8165477A JP16547796A JPH108967A JP H108967 A JPH108967 A JP H108967A JP 8165477 A JP8165477 A JP 8165477A JP 16547796 A JP16547796 A JP 16547796A JP H108967 A JPH108967 A JP H108967A
- Authority
- JP
- Japan
- Prior art keywords
- intake
- port
- combustion chamber
- intake valve
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/24—Cylinder heads
- F02F1/42—Shape or arrangement of intake or exhaust channels in cylinder heads
- F02F1/4214—Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
- F02F1/4221—Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder particularly for three or more inlet valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F3/00—Pistons
- F02F3/26—Pistons having combustion chamber in piston head
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B1/00—Engines characterised by fuel-air mixture compression
- F02B1/02—Engines characterised by fuel-air mixture compression with positive ignition
- F02B1/04—Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/12—Other methods of operation
- F02B2075/125—Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B2275/00—Other engines, components or details, not provided for in other groups of this subclass
- F02B2275/18—DOHC [Double overhead camshaft]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B2275/00—Other engines, components or details, not provided for in other groups of this subclass
- F02B2275/48—Tumble motion in gas movement in cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3017—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
- F02D41/3023—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
- F02D41/3029—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/24—Cylinder heads
- F02F2001/244—Arrangement of valve stems in cylinder heads
- F02F2001/245—Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Valve-Gear Or Valve Arrangements (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、直接筒内噴射式火
花点火機関に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct cylinder injection type spark ignition engine.
【0002】[0002]
【従来の技術】従来の直接筒内噴射式火花点火機関とし
ては、例えば図8(特開平4−112931号)に示す
ようなものがある。ここに開示された直接筒内噴射式火
花点火機関は、ピストン1頂面に形成された凹状の燃焼
室2と、ピストン1の上昇に伴い点火時点に於て燃焼室
3の壁近傍に挿入される点火プラグ4と、吸気ポート5
下部に、燃焼室3に対し斜め下向きに高圧燃料噴射弁6
を設置し、燃料を少なくとも特定機関運転状態の時に噴
射し、燃料の成層化をし、超希薄空燃比で運転し燃費の
向上を図るものである。しかしながら、この噴射弁6、
点火プラグ4の位置関係の場合、一般のエンジンにおけ
る吸気ポート形状では、吸気ポート5から吸気弁を介し
て燃焼室3に入ってくる吸入空気は、燃焼室上面を吸気
側から排気側、そして下向きにピストン方向、更にピス
トン1表面に沿って、吸気弁方向へと回転するような順
方向のタンブル流9を形成するようになるため、燃料は
上記ガス流動により点火プラグ4方向へ直接向かい、点
火プラグ4への液状燃料付着による失火が起こり易いと
いう問題点があった。2. Description of the Related Art As a conventional direct in-cylinder injection type spark ignition engine, for example, there is one as shown in FIG. 8 (Japanese Patent Application Laid-Open No. 4-112931). The direct in-cylinder injection spark ignition engine disclosed herein is inserted into a concave combustion chamber 2 formed on the top surface of a piston 1 and near the wall of the combustion chamber 3 at the time of ignition as the piston 1 rises. Spark plug 4 and intake port 5
In the lower part, a high-pressure fuel injection valve 6 obliquely downward with respect to the combustion chamber 3
The fuel injection is performed at least when the engine is in a specific engine operating state, stratification of the fuel is performed, and operation is performed at an ultra-lean air-fuel ratio to improve fuel efficiency. However, this injection valve 6,
In the case of the positional relationship of the ignition plug 4, in the intake port shape of a general engine, the intake air entering the combustion chamber 3 from the intake port 5 via the intake valve passes through the upper surface of the combustion chamber from the intake side to the exhaust side and downward. Then, a tumble flow 9 is formed in the forward direction such that it rotates in the direction of the piston and further along the surface of the piston 1 in the direction of the intake valve. There is a problem that misfire is likely to occur due to the adhesion of the liquid fuel to the plug 4.
【0003】そして、この対策としては、図9に示すよ
うなものがある(特開平6−146886号)。これ
は、前記、ピストン1頂面に形成された凹状の燃焼室2
と、ピストン1の上昇に伴い点火時点に於て燃焼室3の
側壁近傍に挿入される点火プラグ4と、吸気ポート5下
部に、燃焼室3に対し斜め下向きに高圧燃料噴射弁6を
設置する直接筒内噴射式火花点火機関に於て、吸気ポー
ト5が直立になるようにヘッド設計をし、これにより、
ポート5から吸気弁7を介して燃焼室3に入ってくる吸
入空気は、まず下向きにピストン方向へ導かれ、続いて
ピストン1表面に沿っていき、排気弁方向へ上昇し、燃
焼室上面を排気側から吸気側へと回転するような前述と
逆方向のタンブル流10を形成するようになるものであ
る。このため、燃料は上記逆方向のタンブル流ガス流動
10により点火プラグ4方向へ直接向かわず、一度ピス
トン1表面を介して、点火プラグ方向へ行くため、燃料
微粒化、及び気化が進み、点火プラグ4への液状燃料付
着による失火は無くなり、安定して運転できるようにな
る。As a countermeasure for this, there is a countermeasure as shown in FIG. 9 (Japanese Patent Laid-Open No. 6-146886). This is due to the concave combustion chamber 2 formed on the top surface of the piston 1.
A spark plug 4 inserted near the side wall of the combustion chamber 3 at the time of ignition as the piston 1 rises, and a high-pressure fuel injection valve 6 installed obliquely downward with respect to the combustion chamber 3 below the intake port 5. In the direct cylinder injection type spark ignition engine, the head is designed so that the intake port 5 is upright.
The intake air that enters the combustion chamber 3 from the port 5 via the intake valve 7 is first guided downward in the direction of the piston, then follows the surface of the piston 1 and rises in the direction of the exhaust valve, and moves upward in the direction of the exhaust valve. This is to form a tumble flow 10 in the opposite direction to that described above, which rotates from the exhaust side to the intake side. Therefore, the fuel does not directly go to the spark plug 4 direction by the above-described tumble flow gas flow 10 but goes to the spark plug once through the surface of the piston 1, so that the fuel atomization and vaporization progress, and the spark plug No misfire due to adhesion of the liquid fuel to the fuel cell 4 can be achieved, and stable operation can be achieved.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、このよ
うな従来の直接筒内噴射式火花点火機関にあっては、逆
方向のタンブル流を形成するため、吸気ポートが直列に
なるヘッド設計をしているため、エンジンの全高がアッ
プし、新エンジン化による対応が必要な構成となってお
り、コストが大幅に増大するという問題点があった。
又、本仕様に於ては、強成層域、均質域では安定した運
転ができるものの、成層と均質の中間の弱成層域は安定
した燃焼が困難である。However, in such a conventional direct in-cylinder injection type spark ignition engine, in order to form a tumble flow in the opposite direction, a head design in which the intake ports are arranged in series is adopted. As a result, the overall height of the engine is increased, and a configuration is required to respond to the new engine, resulting in a problem that the cost is greatly increased.
In this specification, stable operation is possible in a strong stratified zone and a homogeneous zone, but stable combustion is difficult in a weak stratified zone between a stratified zone and a homogeneous zone.
【0005】本発明は、このような従来の問題点に着目
してなされたもので、1つの気筒に3つの吸気弁と吸気
ポートを形成し、その内中央の吸気ポートは逆タンブル
流ガス流動を作る形状、その他の2つの吸気ポートは順
タンブル流ガス流動を作る形状とし、運転条件に応じて
順、逆タンブル流ガス流動を作るポートを可変動弁機構
を用いて吸気弁リフト量をかえて開閉することで、上記
問題点を解決することを目的としている。The present invention has been made in view of such a conventional problem. Three intake valves and three intake ports are formed in one cylinder, and a central intake port among them has a reverse tumble flow gas flow. The other two intake ports are shaped to create forward tumble flow gas flow, and the ports that create forward and reverse tumble flow gas flow are varied in intake valve lift using a variable valve mechanism according to operating conditions. It is intended to solve the above-mentioned problem by opening and closing.
【0006】[0006]
【課題を解決するための手段】本発明は上述の課題を解
決するために、ピストン頂面に形成された凹部を有する
燃焼室と、該燃焼室の側壁近傍に挿入される点火プラグ
と、吸気ポート下部に燃焼室に対し斜め下向きに燃料を
筒内に直接噴射するようにした高圧燃料噴射弁を有する
直接筒内噴射式火花点火機関に於て、1つの気筒に3つ
の吸気弁と吸気ポートを形成し、第1吸気弁につながる
中央第1ポート部はそのポートを介して流入する吸気流
れが燃焼室内で逆タンブル流を形成するようなポート形
状とし、第1吸気弁の両側の2つの第2吸気弁につなが
る第2ポート部はそのポートを介して流入する吸気流れ
が燃焼室内で順タンブル流を形成するようなポート形状
とし、そして、該第1,第2吸気弁を機関の運転条件に
より開閉制御する可変動弁機構を設けた構成とする。According to the present invention, there is provided a combustion chamber having a recess formed in a top surface of a piston, a spark plug inserted near a side wall of the combustion chamber, and an intake air. In a direct cylinder injection type spark ignition engine having a high pressure fuel injection valve in which a fuel is directly injected into a cylinder obliquely downward with respect to a combustion chamber below a port, one cylinder has three intake valves and one intake port. And a central first port portion connected to the first intake valve has a port shape such that an intake flow flowing through the port forms a reverse tumble flow in the combustion chamber. The second port portion connected to the second intake valve has a port shape such that an intake flow flowing through the port forms a forward tumble flow in the combustion chamber, and the first and second intake valves are operated by the engine. Open / close control according to conditions A structure in which a variable valve mechanism.
【0007】また、本発明は、機関の運転条件が低中速
・低負荷域の成層燃焼領域では可変動弁機構により第2
吸気弁は停止し第1吸気弁のみリフトさせ、且つ燃料噴
射時期を圧縮行程後期に設定し、機関の運転条件が低中
速・中負荷域の弱成層燃焼領域では第1吸気弁は停止し
第2吸気弁のみリフトさせ、且つ燃料噴射時期を圧縮行
程前期に設定し、一方機関の運転条件が高速・高負荷域
の均質燃焼領域では可変動弁機構により第1吸気弁,第
2吸気弁共にリフトさせ、且つ燃料噴射時期を吸気行程
時に設定する構成とする。Further, in the present invention, when the operating condition of the engine is in a stratified combustion region in a low-medium-speed, low-load region, the second valve-operating mechanism uses a variable valve mechanism.
The intake valve is stopped, only the first intake valve is lifted, and the fuel injection timing is set in the latter stage of the compression stroke. When the operating condition of the engine is in a low stratified combustion region in a low / medium speed / medium load region, the first intake valve is stopped. Only the second intake valve is lifted, and the fuel injection timing is set in the first half of the compression stroke. On the other hand, in the homogeneous combustion region where the engine operating condition is a high speed / high load region, the first intake valve and the second intake valve are controlled by the variable valve mechanism. Both are lifted, and the fuel injection timing is set during the intake stroke.
【0008】また、本発明は、順タンブル,逆タンブル
を形成するポート形状として、中央第1ポート部は逆タ
ンブルを形成する為第1吸気弁近くでシリンダに対し直
立する形状とし、第2ポート部は順タンブルを形成する
為吸気弁近くではストレート形状とする。Further, the present invention provides a port shape for forming a forward tumbling and a reverse tumbling, wherein a central first port portion has a shape standing upright with respect to a cylinder near a first intake valve in order to form a reverse tumbling, The part is formed straight near the intake valve to form a forward tumble.
【0009】また、本発明は、順タンブル形成時および
逆タンブル形成時に各々でガス流動を強化するピストン
形状としてピストン冠面の吸排気弁方向の対称線の中心
に逆タンブル用の深いキャビティを設け、その両側に順
タンブル用の浅いキャビティを設ける構成とする。Further, according to the present invention, a deep cavity for reverse tumbling is provided at the center of a symmetrical line in the direction of the intake and exhaust valves on the piston crown surface as a piston shape for enhancing gas flow in each of forward tumbling and reverse tumbling. And shallow cavities for forward tumbling are provided on both sides thereof.
【0010】また、本発明は、3つの吸気弁のリフト量
において、第1吸気弁のリフト量を第2吸気弁のリフト
量よりも短く構成する。Further, in the present invention, the lift amount of the first intake valve is shorter than the lift amount of the second intake valve in the lift amounts of the three intake valves.
【0011】[0011]
【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。なお、以下の記載におい
て、従来技術で示した部品や部材と同一の部品や部材に
ついては、同一の参照番号を用いて説明する。Embodiments of the present invention will be described below in detail with reference to the drawings. In the following description, the same parts and members as those described in the related art will be described using the same reference numerals.
【0012】(第1の実施の形態)図1及び図2は、本
発明の第1の実施の形態を示す図である。まず、第1の
実施の形態の直接筒内噴射式火花点火機関の構成を説明
すると、ピストン1頂面に形成された凹部を有する燃焼
室2と、該燃焼室の側壁近傍に挿入される点火プラグ4
と、吸気ポート5a下部に、燃焼室3に対し斜め下向き
に燃料を筒内に直接噴射するようにした高圧燃料噴射弁
6を有する直接筒内噴射式火花点火機関に於て、1つの
気筒に3つの吸気弁7a,7bと吸気ポート5a,5b
を形成し、第1吸気弁7aにつながる中央第1ポート部
5aはそのポートを介して流入する吸気流れが、燃焼室
3内で逆タンブル流10を形成するようなポート形状と
し、第1吸気弁7aの両側の2つの第2吸気弁7bにつ
ながる第2ポート部5bは、そのポートを介して流入す
る吸気流れが、燃焼室3内で順タンブル流9を形成する
ようなポート形状とする。そして、該第1吸気弁7a、
第2吸気弁7bを機関の運転条件により開閉制御する可
変動弁機構11を設ける。(First Embodiment) FIGS. 1 and 2 are views showing a first embodiment of the present invention. First, the configuration of a direct in-cylinder injection spark ignition engine according to a first embodiment will be described. A combustion chamber 2 having a recess formed on the top surface of a piston 1 and an ignition inserted near a side wall of the combustion chamber Plug 4
In a direct cylinder injection type spark ignition engine having a high pressure fuel injection valve 6 below the intake port 5a for directly injecting fuel obliquely downward with respect to the combustion chamber 3 into the cylinder, one cylinder Three intake valves 7a, 7b and intake ports 5a, 5b
And a central first port portion 5a connected to the first intake valve 7a has a port shape such that an intake flow flowing through the port forms a reverse tumble flow 10 in the combustion chamber 3. The second port portion 5b connected to the two second intake valves 7b on both sides of the valve 7a has a port shape such that an intake flow flowing through the port forms a forward tumble flow 9 in the combustion chamber 3. . Then, the first intake valve 7a,
A variable valve mechanism 11 for controlling the opening and closing of the second intake valve 7b according to operating conditions of the engine is provided.
【0013】順タンブル、逆タンブルを形成するポート
形状としては、中央第1ポート部5aは、逆タンブルを
形成する為、第1吸気弁7a近くでシリンダ13に対し
直立する形状とし、第2ポート部5bは、順タンブルを
形成する為、第2吸気弁7b近くではストレート形状と
する。As for the port shape for forming the forward tumbling and the reverse tumbling, the central first port portion 5a is formed so as to be upright with respect to the cylinder 13 near the first intake valve 7a in order to form the reverse tumbling. The portion 5b has a straight shape near the second intake valve 7b in order to form a forward tumble.
【0014】次に作用を説明する。Next, the operation will be described.
【0015】機関の運転条件が、低中速・低負荷域の成
層燃焼領域では、図3に示すように、可変動弁機構11
により第2吸気弁7bは停止し、第1吸気弁7aのみを
リフトさせ、筒内のガス流動を強める。中央第1ポート
部5aから第1吸気弁7aを介して燃焼室3に入ってく
る吸入空気は、まず下向きにピストン方向へ導く。続い
てピストン1表面に沿っていき、排気弁方向へ上昇し、
燃焼室3上面を排気側から吸気側へと回転するような逆
タンブル流9を形成し、燃料を圧縮行程後期に噴射する
ことで、該逆タンブル流ガス流動9により燃料の点火プ
ラグ4周りを成層化し、超希薄空燃比で運転して燃費の
向上を図るとともに、かつ燃料は点火プラグ4方向へ直
接向かわず、一度ピストン1表面を介して、プラグ方向
へ行く。これにより、燃料微粒化、及び気化が進み、点
火プラグ4への液状燃料付着による失火は無く、安定し
て運転できるようになる。In the stratified combustion region where the operating condition of the engine is a low-medium-speed, low-load region, as shown in FIG.
As a result, the second intake valve 7b stops, only the first intake valve 7a is lifted, and the gas flow in the cylinder is strengthened. The intake air entering the combustion chamber 3 from the central first port portion 5a via the first intake valve 7a is first guided downward in the direction of the piston. Subsequently, it follows the surface of the piston 1 and rises in the direction of the exhaust valve.
A reverse tumble flow 9 is formed such that the upper surface of the combustion chamber 3 rotates from the exhaust side to the intake side, and the fuel is injected late in the compression stroke. The fuel is stratified and operated at an ultra-lean air-fuel ratio to improve fuel efficiency, and the fuel does not directly go to the spark plug 4 but goes to the plug once through the surface of the piston 1. As a result, the atomization and vaporization of the fuel progress, and there is no misfire due to the adhesion of the liquid fuel to the ignition plug 4, so that stable operation can be achieved.
【0016】機関の運転条件が、低中速・中負荷域の弱
成層燃焼領域では、図4に示すように、可変動弁機構1
1により第1吸気弁7aは停止し第2吸気弁7bのみリ
フトさせ、筒内のガス流動を強める。2つの第2ポート
部5bから第2吸気弁7bを介して燃焼室3に入ってく
る吸入空気は、燃焼室3上面を吸気側から排気側へ向か
い、ピストン方向へ下降する。続いてピストン1表面に
沿って排気側から吸気側へと回転するような2つの順タ
ンブル流10を形成し、燃料を圧縮行程前期に噴射する
ことで、該2つの順タンブル流ガス流動10の中間に燃
料混合気の帯を生成する弱い成層化をし、希薄空燃比で
運転し燃費の向上を図る。In the weak stratified combustion region where the engine is operating in a low-medium-speed / medium-load region, as shown in FIG.
Due to 1, the first intake valve 7a is stopped and only the second intake valve 7b is lifted to increase the gas flow in the cylinder. The intake air entering the combustion chamber 3 from the two second port portions 5b via the second intake valves 7b goes down the upper surface of the combustion chamber 3 from the intake side to the exhaust side, and descends in the piston direction. Subsequently, two forward tumble flows 10 are formed along the surface of the piston 1 so as to rotate from the exhaust side to the intake side, and the fuel is injected in the first half of the compression stroke, so that the two forward tumble flows 10 Weak stratification to generate a band of fuel mixture in the middle and operation at lean air-fuel ratio to improve fuel efficiency.
【0017】さらに機関の運転条件が、高速・高負荷域
の均質燃焼領域では、図5に示すように、可変動弁機構
11により第1吸気弁7a、第2吸気弁7b共にリフト
させ、ポート面積を大きくすると共に、燃料を少なくと
も吸気行程時に噴射することで、均質混合気を作り、出
力領域も十分な性能を確保できる。Further, in the homogeneous combustion region where the operating condition of the engine is a high-speed and high-load region, as shown in FIG. 5, both the first intake valve 7a and the second intake valve 7b are lifted by the variable valve mechanism 11, By increasing the area and injecting the fuel at least during the intake stroke, a homogeneous air-fuel mixture is created, and sufficient performance can be ensured in the output region.
【0018】(第2の実施の形態)次に、図6を参照し
て第2の実施の形態を説明する。第2の実施の形態の直
接筒内噴射式火花点火機関は、ピストン1頂面に形成さ
れた凹状の燃焼室2と、ピストン1の上昇に伴い点火時
点に於て燃焼室3の側壁近傍に挿入される点火プラグ4
と、吸気ポート5a下部に、燃焼室3に対し斜め下向き
に高圧燃料噴射弁6を設置する直接筒内噴射式火花点火
機関に於て、1つの気筒に3つの吸気弁7a,7bと吸
気ポート5a,5bを形成し、第1吸気弁7aにつなが
る中央第1ポート部5aはそのポートを介して流入する
吸気流れが、燃焼室3内で逆タンブル流9を形成するよ
うなポート形状とする。第1吸気弁7aの両側の2つの
第2吸気弁7bにつながる第2ポート部5bは、そのポ
ートを介して流入する吸気流れが、燃焼室3内で順タン
ブル流10を形成するようなポート形状とする。そし
て、該第1吸気弁7a、第2吸気弁7bを機関の運転条
件により開閉制御する可変動弁機構11を設ける前述の
第1の実施の形態において、順タンブル形成時および逆
タンブル形成時に各々でガス流動を強化するピストン形
状として、ピストン冠面の吸排気弁方向の対称線16の
中心に逆タンブル用の深いキャビティ14を設け、その
両側に順タンブル用の浅いキャビティ15を設ける。(Second Embodiment) Next, a second embodiment will be described with reference to FIG. The direct in-cylinder injection spark ignition engine according to the second embodiment has a concave combustion chamber 2 formed on the top surface of a piston 1 and a vicinity of a side wall of a combustion chamber 3 at the time of ignition as the piston 1 rises. Spark plug 4 to be inserted
In a direct cylinder injection type spark ignition engine in which a high-pressure fuel injection valve 6 is installed obliquely downward with respect to the combustion chamber 3 below the intake port 5a, three intake valves 7a, 7b and an intake port are provided for one cylinder. The central first port portion 5a, which forms 5a and 5b and is connected to the first intake valve 7a, has a port shape such that the intake air flowing through the port forms a reverse tumble flow 9 in the combustion chamber 3. . The second port portion 5b connected to the two second intake valves 7b on both sides of the first intake valve 7a has a port in which the intake air flowing through the port forms a forward tumble flow 10 in the combustion chamber 3. Shape. In the first embodiment, the variable valve mechanism 11 for controlling the opening and closing of the first intake valve 7a and the second intake valve 7b according to the operating conditions of the engine is provided. In order to enhance the gas flow, a deep cavity 14 for reverse tumbling is provided at the center of the symmetry line 16 in the direction of the intake and exhaust valves on the piston crown surface, and shallow cavities 15 for forward tumble are provided on both sides thereof.
【0019】これにより、機関の運転条件が、低中速・
低負荷域の成層燃焼領域で可変動弁機構11により第1
吸気弁7aは停止し第2吸気弁7bのみリフトさせる領
域では、中央第1ポート部5aから第1吸気弁7aを介
して燃焼室3に入ってくる吸入空気は、ピストン1冠面
の吸排気弁方向の対称線16の中心に、逆タンブル用の
深いキャビティ14がにより、該キャビティ内で逆タン
ブル方向に回転し、燃料を圧縮行程後期に噴射すること
で、燃料は逆タンブル流ガス流動9により一度ピストン
表面を介して、プラグ方向へ行くため、点火プラグ方向
へ直接向かわず、燃料微粒化、及び気化が進み、点火プ
ラグ4への液状燃料付着による失火無しで、点火プラグ
周りに混合気を集中できるため、安定して運転できるよ
うになる。As a result, the operating condition of the engine is
The first operation is performed by the variable valve mechanism 11 in the stratified combustion region in a low load region.
In a region where the intake valve 7a is stopped and only the second intake valve 7b is lifted, the intake air entering the combustion chamber 3 from the central first port portion 5a via the first intake valve 7a draws and exhausts the piston 1 crown surface. At the center of the symmetry line 16 in the valve direction, a deep cavity 14 for counter-tumbling is rotated in the counter-tumbling direction in the cavity, and the fuel is injected late in the compression stroke so that the fuel flows through the counter-tumble gas flow 9. Once through the piston surface, the fuel goes to the plug, so that the fuel does not go directly to the spark plug, the fuel atomization and vaporization progress, and there is no misfire due to the adhesion of the liquid fuel to the spark plug 4 and the air-fuel mixture around the spark plug Can be concentrated, so that stable driving can be achieved.
【0020】機関の運転条件が、低中速・中負荷域の弱
成層燃焼領域では、可変動弁機構11により第1吸気弁
7aが停止し、第2吸気弁7bのみリフトさせる領域で
は、筒内のガス流動は、2つの第2ポート部5bから第
2吸気弁7bを介して燃焼室3に入り、浅いキャビティ
15により順タンブル流10をピストン冠面の吸排気弁
方向の対称線16をはさんで2つ形成し、燃料を該タン
ブル流の中間に圧縮行程前期に噴射することで、該2つ
の順タンブル流ガス流動10の中間に燃料混合気の帯を
生成する弱い成層化をし、希薄空燃比で運転し燃費の向
上を図る。In an engine operating condition in a low stratified combustion region in a low / medium speed / medium load region, the variable intake valve mechanism 11 stops the first intake valve 7a and in a region where only the second intake valve 7b lifts, The gas flow inside the combustion chamber 3 enters the combustion chamber 3 from the two second ports 5b through the second intake valve 7b, and the forward tumble flow 10 is formed by the shallow cavity 15 into a symmetrical line 16 of the piston crown surface in the direction of the intake and exhaust valves. By forming the two in between and injecting the fuel in the middle of the tumble flow in the first half of the compression stroke, a weak stratification is generated in the middle of the two forward tumble flow gas flows 10 to form a band of the fuel mixture. The operation is performed at a lean air-fuel ratio to improve fuel efficiency.
【0021】さらに機関の運転条件が、高速・高負荷域
の均質燃焼領域では、可変動弁機構11により第1吸気
弁7a、第2吸気弁7b共にリフトさせ、ポート面積を
大きくすると共に、燃料を少なくとも吸気行程時に噴射
することで、均質混合気を作り、出力領域も十分な性能
を確保できる。Further, in the homogeneous combustion region where the operating condition of the engine is a high-speed and high-load region, both the first intake valve 7a and the second intake valve 7b are lifted by the variable valve mechanism 11 to increase the port area and increase the fuel area. By injecting at least at the time of the intake stroke, a homogeneous air-fuel mixture is produced, and sufficient performance can be ensured in the output region.
【0022】(第3の実施の形態)次に、図7を参照し
て第3の実施の形態を説明する。(Third Embodiment) Next, a third embodiment will be described with reference to FIG.
【0023】第3の実施の形態の直接筒内噴射式火花点
火機関は、ピストン1頂面に形成された凹部を有する燃
焼室2と、該燃焼室の側壁近傍に挿入される点火プラグ
4と、吸気ポート5a下部に、燃焼室3に対し斜め下向
きに燃料を筒内に直接噴射するようにした高圧燃料噴射
弁6を有する直接筒内噴射式火花点火機関に於て、1つ
の気筒に3つの吸気弁7a,7bと吸気ポート5a,5
bを形成し、第1吸気弁7aにつながる中央第1ポート
部5aは、そのポートを介して流入する吸気流れが、燃
焼室3内で逆タンブル流9を形成するようなポート形状
とする。第1吸気弁7aの両側の2つの第2吸気弁7b
につながる第2ポート部5bは、そのポートを介して流
入する吸気流れが、燃焼室3内で順タンブル流10を形
成するようなポート形状とする。そして、該第1吸気弁
7a、第2吸気弁7bを機関の運転条件により開閉制御
する可変動弁機構11を設ける前述の第1の実施の形態
において、3つの吸気弁7a,7bのリフト量に関し
て、第1吸気弁7aのリフト量17aを第2吸気弁7b
のリフト量17bよりも短くする。これにより機関の運
転条件が、高速・高負荷域の均質燃焼領域での可変動弁
機構11によって第1吸気弁7a、第2吸気弁7bを共
にリフトさせ、燃料を少なくとも吸気行程時に噴射する
領域では、第1吸気弁7aと燃料噴霧の干渉が少なくな
るため吸気弁へのデポジット付着、すす発生が減少でき
る。The direct in-cylinder injection spark ignition engine according to the third embodiment includes a combustion chamber 2 having a recess formed on the top surface of a piston 1, an ignition plug 4 inserted near the side wall of the combustion chamber. In a direct cylinder injection type spark ignition engine having a high pressure fuel injection valve 6 for directly injecting fuel obliquely downward with respect to the combustion chamber 3 into the cylinder below the intake port 5a, three cylinders per cylinder Intake valves 7a, 7b and intake ports 5a, 5
b, and the central first port portion 5a connected to the first intake valve 7a has a port shape such that the intake air flowing through the port forms the reverse tumble flow 9 in the combustion chamber 3. Two second intake valves 7b on both sides of the first intake valve 7a
The second port portion 5b connected to the port has a port shape such that the intake flow flowing through the port forms a forward tumble flow 10 in the combustion chamber 3. In the first embodiment described above, in which the variable valve mechanism 11 for controlling the opening and closing of the first intake valve 7a and the second intake valve 7b according to the operating conditions of the engine is provided, the lift amounts of the three intake valves 7a and 7b are set. , The lift amount 17a of the first intake valve 7a is
Is smaller than the lift amount 17b. Thus, the operating condition of the engine is such that the first intake valve 7a and the second intake valve 7b are both lifted by the variable valve mechanism 11 in the homogeneous combustion region in the high speed / high load region, and the fuel is injected at least during the intake stroke. In this case, the interference between the first intake valve 7a and the fuel spray is reduced, so that the deposit on the intake valve and the occurrence of soot can be reduced.
【0024】[0024]
【発明の効果】以上説明してきたように、本発明によれ
ば、その構成を、ピストン頂面に形成された凹部を有す
る燃焼室と、該燃焼室の壁近傍に挿入される点火プラグ
と、吸気ポート下部に燃焼室に対し斜め下向きに燃料を
筒内に直接噴射するようにした高圧燃料噴射弁を有する
直接筒内噴射式火花点火機関に於て、1つの気筒に3つ
の吸気弁と吸気ポートを形成し、第1吸気弁につながる
中央第1ポート部はそのポートを介して流入する吸気流
れが燃焼室内で逆タンブル流を形成するようなポート形
状とし、第1吸気弁の両側の2つの第2吸気弁につなが
る第2ポート部はそのポートを介して流入する吸気流れ
が燃焼室内で順タンブル流を形成するようなポート形状
とする。そして、該第1,第2吸気弁を機関の運転条件
により開閉制御する可変動弁機構を設け、機関の運転条
件が、低中速・低負荷域の成層燃焼領域では、可変動弁
機構により第2吸気弁は停止し第1吸気弁のみリフトさ
せ、筒内のガス流動を強めると共に、中央第1ポート部
から第1吸気弁を介して燃焼室に入ってくる吸入空気
は、まず下向きにピストン方向へ導かれ、続いてピスト
ン表面に沿っていき、排気弁方向へ上昇し、燃焼室上面
を排気側から吸気側へと回転するような逆タンブル流を
形成し、燃料を圧縮行程後期に噴射することで、該逆タ
ンブル流ガス流動により燃料の点火プラグ周りを成層化
し、超希薄空燃比で運転し燃費の向上を図るとともに、
かつ燃料は点火プラグ方向へ直接向かわず、一度ピスト
ン表面を介して、プラグ方向へ行くため、燃料微粒化、
及び気化が進み、点火プラグへの液状燃料付着による失
火は無く、安定して運転できるようになる。機関の運転
条件が、低中速・中負荷域の弱成層燃焼領域では、可変
動弁機構により第1吸気弁は停止し第2吸気弁のみリフ
トさせ、筒内のガス流動を強めると共に、2つの第2ポ
ート部から第2吸気弁を介して燃焼室に入ってくる吸入
空気は、燃焼室上面を吸気側から排気側へ向かい、ピス
トン方向へ下降し、続いてピストン表面に沿って排気側
から吸気側へと回転するような2つの順タンブル流を形
成し、燃料を圧縮行程前期に噴射することで、該2つの
順タンブル流ガス流動の中間に燃料混合気の帯を生成す
る弱い成層化をし、希薄空燃比で運転し燃費の向上を図
る。さらに機関の運転条件が、高速・高負荷域の均質燃
焼領域では、可変動弁機構により第1吸気弁、第2吸気
弁共にリフトさせ、ポート面積を大きくすると共に、燃
料を少なくとも吸気行程時に噴射することで、均質混合
気を作り、出力領域も十分な性能を確保できる。As described above, according to the present invention, the structure of the combustion chamber having the recess formed on the top surface of the piston, the spark plug inserted near the wall of the combustion chamber, In a direct cylinder injection type spark ignition engine having a high pressure fuel injection valve in which a fuel is directly injected into a cylinder obliquely downward with respect to a combustion chamber at a lower portion of an intake port, three intake valves per cylinder and intake air are provided. A central first port portion which forms a port and is connected to the first intake valve has a port shape such that an intake flow flowing through the port forms a reverse tumble flow in the combustion chamber. The second port portion connected to the two second intake valves has a port shape such that the intake flow flowing through the ports forms a forward tumble flow in the combustion chamber. A variable valve mechanism for controlling the opening and closing of the first and second intake valves according to the operating conditions of the engine is provided. When the operating conditions of the engine are in a stratified combustion region in a low-medium-speed, low-load region, the variable valve mechanism is used. The second intake valve is stopped and only the first intake valve is lifted to increase the gas flow in the cylinder, and the intake air entering the combustion chamber from the central first port portion via the first intake valve is first directed downward. It is guided in the direction of the piston, then moves along the piston surface, rises in the direction of the exhaust valve, and forms a reverse tumble flow that rotates the upper surface of the combustion chamber from the exhaust side to the intake side. By injecting, the surroundings of the fuel ignition plug are stratified by the reverse tumble flow gas flow, driving at an ultra-lean air-fuel ratio and improving fuel efficiency,
And the fuel does not go directly to the spark plug, but goes to the plug once through the piston surface.
In addition, vaporization proceeds, and there is no misfire due to adhesion of liquid fuel to the ignition plug, and stable operation can be performed. When the operating condition of the engine is a weak stratified combustion region in a low-medium-speed / medium-load region, the first intake valve is stopped by the variable valve operating mechanism, and only the second intake valve is lifted, thereby increasing the gas flow in the cylinder, and The intake air that enters the combustion chamber from the two second ports through the second intake valve goes from the intake side to the exhaust side on the upper surface of the combustion chamber, descends toward the piston, and then descends along the piston surface toward the exhaust side. Weak stratification that forms two forward tumble flows that rotate from the air to the intake side and injects fuel in the first half of the compression stroke creates a zone of fuel mixture in the middle of the two forward tumble flow gas flows And operate at a lean air-fuel ratio to improve fuel efficiency. Furthermore, in the homogeneous combustion region where the operating condition of the engine is a high-speed and high-load region, both the first intake valve and the second intake valve are lifted by a variable valve mechanism to increase the port area and to inject fuel at least during the intake stroke. By doing so, a homogeneous air-fuel mixture can be created, and sufficient performance can be ensured in the output region.
【0025】各実施の形態は、それぞれ上記共通の効果
に加えて、さらに以下のような効果がある。Each embodiment has the following effects in addition to the above-mentioned common effects.
【0026】可変動弁機構を備えているので、高負荷域
の出力特性に関して低速、中速、高速で適した作動角を
選ぶことにより、筒内直噴エンジンの出力向上特性に加
えて、さらに向上することができる。Since the variable valve mechanism is provided, by selecting an appropriate operating angle at low speed, medium speed and high speed with respect to the output characteristics in a high load range, in addition to the output improving characteristics of the direct injection engine, furthermore, Can be improved.
【図1】本発明の第1の実施の形態の直接筒内噴射式火
花点火機関を示す図であり、(a)は上面図、(b)は
(a)におけるA―A線断面図、(b)は(a)におけ
るB―B線断面図である。FIG. 1 is a view showing a direct in-cylinder injection spark ignition engine according to a first embodiment of the present invention, (a) is a top view, (b) is a cross-sectional view taken along line AA in (a), (B) is a sectional view taken along line BB in (a).
【図2】本発明の第1の実施の形態の直接筒内噴射式火
花点火機関を示す側面図である。 FIG. 2 is a side view showing the direct in-cylinder injection spark ignition engine according to the first embodiment of the present invention.
【図3】本発明の第1の実施の形態の作用を示す図であ
る。FIG. 3 is a diagram showing the operation of the first embodiment of the present invention.
【図4】本発明の第1の実施の形態の作用を示す図であ
る。FIG. 4 is a diagram showing the operation of the first embodiment of the present invention.
【図5】本発明の第1の実施の形態の作用を示す図であ
る。FIG. 5 is a diagram showing the operation of the first embodiment of the present invention.
【図6】本発明の第2の実施の形態の直接筒内噴射式火
花点火機関を示す図であり、(a)は上面図、(b)は
(a)におけるC―C線断面図、(c)は(a)におけ
るD―D線断面図である。6A and 6B are views showing a direct in-cylinder injection spark ignition engine according to a second embodiment of the present invention, wherein FIG. 6A is a top view, FIG. 6B is a cross-sectional view taken along line CC in FIG. (C) is a sectional view taken along line DD in (a).
【図7】本発明の第3の実施の形態の直接筒内噴射式火
花点火機関の説明図であり、(a)はカムプロフィール
を示す図、(b)は構成の要部周りの側面図である。FIGS. 7A and 7B are explanatory views of a direct in-cylinder injection spark ignition engine according to a third embodiment of the present invention, in which FIG. 7A shows a cam profile, and FIG. It is.
【図8】従来の直接筒内噴射式火花点火機関を示す図で
ある。FIG. 8 is a view showing a conventional direct in-cylinder injection spark ignition engine.
【図9】従来の直接筒内噴射式火花点火機関を示す図で
ある。FIG. 9 is a diagram showing a conventional direct in-cylinder injection spark ignition engine.
1 ピストン 2 燃焼室キャビティ 3 燃焼室 4 点火プラグ 5 吸気ポート 5a 逆タンブル用吸気ポート 5b 順タンブル用吸気ポート 6 高圧燃料噴射弁 7 吸気弁 7a 第1吸気弁 7b 第2吸気弁 8 排気弁 9 逆タンブルガス流動 10 順タンブルガス流動 11 可変動弁機構 12 エンジン制御ユニット 13 シリンダ 14 逆タンブル用深キャビティ 15 順タンブル用浅キャビティ 16 吸排気弁方向の対称線 17 作動角(カムプロフィール) 17a 第1吸気弁作動角 17b 第2吸気弁作動角 Reference Signs List 1 piston 2 combustion chamber cavity 3 combustion chamber 4 spark plug 5 intake port 5a reverse tumble intake port 5b forward tumble intake port 6 high-pressure fuel injection valve 7 intake valve 7a first intake valve 7b second intake valve 8 exhaust valve 9 reverse Tumble gas flow 10 Forward tumble gas flow 11 Variable valve mechanism 12 Engine control unit 13 Cylinder 14 Deep cavity for reverse tumble 15 Shallow cavity for forward tumble 16 Symmetry line in intake and exhaust valve direction 17 Working angle (cam profile) 17a First intake Valve operating angle 17b Second intake valve operating angle
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02B 23/10 F02B 23/10 D F02D 13/02 F02D 13/02 H F02F 1/42 F02F 1/42 F 3/26 3/26 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location F02B 23/10 F02B 23/10 D F02D 13/02 F02D 13/02 H F02F 1/42 F02F 1 / 42 F 3/26 3/26 A
Claims (5)
燃焼室と、該燃焼室の壁近傍に挿入される点火プラグ
と、吸気ポート下部に燃焼室に対し斜め下向きに燃料を
筒内に直接噴射するようにした高圧燃料噴射弁を有する
直接筒内噴射式火花点火機関に於て、 1つの気筒に3つの吸気弁と吸気ポートを形成し、第1
吸気弁につながる中央第1ポート部はそのポートを介し
て流入する吸気流れが燃焼室内で逆タンブル流を形成す
るようなポート形状とし、第1吸気弁の両側の2つの第
2吸気弁につながる第2ポート部はそのポートを介して
流入する吸気流れが燃焼室内で順タンブル流を形成する
ようなポート形状とされており、該第1,第2吸気弁を
機関の運転条件により開閉制御する可変動弁機構を設け
たことを特徴とする直接筒内噴射式火花点火機関。1. A combustion chamber having a concave portion formed on the top surface of a piston, a spark plug inserted near a wall of the combustion chamber, and fuel directly obliquely downward to the combustion chamber below an intake port into a cylinder. In a direct in-cylinder injection spark ignition engine having a high pressure fuel injection valve adapted to inject, three intake valves and an intake port are formed in one cylinder, and
The central first port portion connected to the intake valve has a port shape such that the intake flow flowing through the port forms a reverse tumble flow in the combustion chamber, and is connected to the two second intake valves on both sides of the first intake valve. The second port portion has a port shape such that an intake flow flowing through the port forms a forward tumble flow in the combustion chamber, and controls opening and closing of the first and second intake valves according to operating conditions of the engine. A direct in-cylinder injection spark ignition engine characterized by having a variable valve mechanism.
層燃焼領域では可変動弁機構により第2吸気弁は停止し
第1吸気弁のみリフトさせ、且つ燃料噴射時期を圧縮行
程後期に設定し、機関の運転条件が低中速・中負荷域の
弱成層燃焼領域では第1吸気弁は停止し第2吸気弁のみ
リフトさせ、且つ燃料噴射時期を圧縮行程前期に設定
し、一方機関の運転条件が高速・高負荷域の均質燃焼領
域では可変動弁機構により第1吸気弁,第2吸気弁共に
リフトさせ、且つ燃料噴射時期を吸気行程時に設定した
ことを特徴とする請求項1に記載の直接筒内噴射式火花
点火機関。2. In a stratified combustion region in which the operating condition of the engine is a low-medium-speed, low-load region, the second intake valve is stopped by the variable valve operating mechanism, only the first intake valve is lifted, and the fuel injection timing is changed to the latter stage of the compression stroke. The first intake valve is stopped and only the second intake valve is lifted, and the fuel injection timing is set in the first half of the compression stroke in the weak stratified combustion region where the engine operating conditions are low, medium speed, and medium load. A variable valve mechanism lifts both the first intake valve and the second intake valve and sets a fuel injection timing during an intake stroke in an engine operating condition in a homogeneous combustion region in a high speed / high load region. 2. The direct in-cylinder injection spark ignition engine according to 1.
ト形状として、中央第1ポート部は逆タンブルを形成す
る為第1吸気弁近くでシリンダに対し直立する形状と
し、第2ポート部は順タンブルを形成する為吸気弁近く
ではストレート形状としたことを特徴とする請求項1ま
たは請求項2に記載の直接筒内噴射式火花点火機関。3. A port shape for forming a forward tumbling and a reverse tumbling, wherein a central first port portion has a shape standing upright with respect to a cylinder near a first intake valve to form a reverse tumbling, and a second port portion has a forward tumbling shape. The direct in-cylinder injection spark ignition engine according to claim 1 or 2, wherein the engine is formed in a straight shape near the intake valve to form the spark plug.
時に各々でガス流動を強化するピストン形状としてピス
トン冠面の吸排気弁方向の対称線の中心に逆タンブル用
の深いキャビティを設け、その両側に順タンブル用の浅
いキャビティを設けたことを特徴とする請求項1または
請求項2に記載の直接筒内噴射式火花点火機関。4. A deep cavity for reverse tumbling is provided at the center of a symmetrical line of the piston crown surface in the direction of the intake and exhaust valves as a piston shape for enhancing gas flow in each of forward tumbling and reverse tumbling. 3. The direct in-cylinder injection spark ignition engine according to claim 1, wherein a shallow cavity for forward tumbling is provided.
吸気弁のリフト量を第2吸気弁のリフト量よりも短くし
たことを特徴とする請求項1または請求項2に記載の直
接筒内噴射式火花点火機関。5. In the lift amounts of the three intake valves, the first
3. The direct in-cylinder injection spark ignition engine according to claim 1, wherein a lift amount of the intake valve is shorter than a lift amount of the second intake valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8165477A JPH108967A (en) | 1996-06-26 | 1996-06-26 | Direct cylinder injection type spark ignition engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8165477A JPH108967A (en) | 1996-06-26 | 1996-06-26 | Direct cylinder injection type spark ignition engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH108967A true JPH108967A (en) | 1998-01-13 |
Family
ID=15813154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8165477A Pending JPH108967A (en) | 1996-06-26 | 1996-06-26 | Direct cylinder injection type spark ignition engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH108967A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000077359A1 (en) * | 1999-06-11 | 2000-12-21 | Hitachi, Ltd. | Cylinder injection engine and method of combusting the engine |
WO2000077360A1 (en) * | 1999-06-11 | 2000-12-21 | Hitachi, Ltd. | Cylinder injection engine and fuel injection nozzle used for the engine |
FR2803626A1 (en) * | 2000-01-10 | 2001-07-13 | Magneti Marelli France | INTERNAL COMBUSTION ENGINE WITH DIRECT INJECTION WITH CONTROLLED VALVES |
JP2015121181A (en) * | 2013-12-24 | 2015-07-02 | 三菱自動車工業株式会社 | Engine |
JP2018003779A (en) * | 2016-07-06 | 2018-01-11 | トヨタ自動車株式会社 | Control device of internal combustion engine |
US20180347451A1 (en) * | 2017-06-06 | 2018-12-06 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Cylinder head for an internal combustion engine, internal combustion engine, and method for operating an internal combustion engine |
CN117569941A (en) * | 2024-01-12 | 2024-02-20 | 潍柴动力股份有限公司 | Engine cylinder cover and engine |
-
1996
- 1996-06-26 JP JP8165477A patent/JPH108967A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6659075B1 (en) | 1999-06-11 | 2003-12-09 | Hitachi, Ltd. | Cylinder injection engine and method of combusting engine |
WO2000077360A1 (en) * | 1999-06-11 | 2000-12-21 | Hitachi, Ltd. | Cylinder injection engine and fuel injection nozzle used for the engine |
US6722340B1 (en) | 1999-06-11 | 2004-04-20 | Hitachi, Ltd. | Cylinder injection engine and fuel injection nozzle used for the engine |
WO2000077359A1 (en) * | 1999-06-11 | 2000-12-21 | Hitachi, Ltd. | Cylinder injection engine and method of combusting the engine |
WO2001051790A1 (en) * | 2000-01-10 | 2001-07-19 | Magneti Marelli France | Internal combustion engine with controlled valves |
US6691672B2 (en) | 2000-01-10 | 2004-02-17 | Magneti Marelli France | Direct-injection internal combustion engine with controlled valves |
FR2803626A1 (en) * | 2000-01-10 | 2001-07-13 | Magneti Marelli France | INTERNAL COMBUSTION ENGINE WITH DIRECT INJECTION WITH CONTROLLED VALVES |
JP2015121181A (en) * | 2013-12-24 | 2015-07-02 | 三菱自動車工業株式会社 | Engine |
JP2018003779A (en) * | 2016-07-06 | 2018-01-11 | トヨタ自動車株式会社 | Control device of internal combustion engine |
US10107147B2 (en) | 2016-07-06 | 2018-10-23 | Toyota Jidosha Kabushiki Kaisha | Control device for internal combustion engine |
US20180347451A1 (en) * | 2017-06-06 | 2018-12-06 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Cylinder head for an internal combustion engine, internal combustion engine, and method for operating an internal combustion engine |
JP2018204607A (en) * | 2017-06-06 | 2018-12-27 | ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft | Cylinder head for internal combustion engine, internal combustion engine, and method for operating internal combustion engine |
CN117569941A (en) * | 2024-01-12 | 2024-02-20 | 潍柴动力股份有限公司 | Engine cylinder cover and engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7464687B2 (en) | Direct-injection engine, method of controlling the same, piston used in the same and fuel injection valve used in the same | |
US6615789B2 (en) | Piston for internal combustion engines | |
US6223715B1 (en) | Combustion chamber for direct injected engine | |
JP2007092693A (en) | Spark ignition type direct injection engine | |
US4532899A (en) | Internal combustion engine fuel-injection system | |
JPH11264319A (en) | Exhaust control device for internal combustion engine | |
US6799550B2 (en) | Spark-ignition engine having direct fuel injection | |
JP2003120300A (en) | Gasoline direct injection engine | |
US6129065A (en) | Piston for a cylinder injection engine | |
US6269790B1 (en) | Combustion chamber for DISI engines with exhaust side piston bowl | |
JPH108967A (en) | Direct cylinder injection type spark ignition engine | |
JPH10252477A (en) | Direct cylinder fuel injection type spark ignition engine | |
US6708667B2 (en) | Combustion chamber structure of in-cylinder fuel injection type engine | |
JP2653226B2 (en) | 2-stroke diesel engine | |
JP2917713B2 (en) | In-cylinder injection type internal combustion engine | |
JPH10288038A (en) | Direct injection type diesel engine | |
JPH1054246A (en) | In-cylinder injection type engine | |
JP3724045B2 (en) | Engine intake system | |
JP3146936B2 (en) | In-cylinder injection internal combustion engine | |
JPH10238352A (en) | Combustion chamber structure of cylinder injection type engine | |
JPH1193675A (en) | Cylinder fuel injection-type spark-ignition engine | |
KR100482548B1 (en) | A gasoline direct injection engines | |
JP3030413B2 (en) | In-cylinder injection internal combustion engine | |
JPH0533650A (en) | Two-cycle internal combustion engine | |
JP2001271649A (en) | Cylinder fuel injection engine and piston thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040907 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20040930 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060214 |