JPH1089490A - Sealing device utilized with magnetic fluid - Google Patents

Sealing device utilized with magnetic fluid

Info

Publication number
JPH1089490A
JPH1089490A JP8262306A JP26230696A JPH1089490A JP H1089490 A JPH1089490 A JP H1089490A JP 8262306 A JP8262306 A JP 8262306A JP 26230696 A JP26230696 A JP 26230696A JP H1089490 A JPH1089490 A JP H1089490A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic fluid
magnetic pole
wall surface
peripheral wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8262306A
Other languages
Japanese (ja)
Inventor
Takumi Kimura
巧 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP8262306A priority Critical patent/JPH1089490A/en
Publication of JPH1089490A publication Critical patent/JPH1089490A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve sealing performance by performing the stable holding of a magnetic fluid in the tip end of a magnetic pole, and enhancing a pressure tightness characteristic in a sealing part of this magnetic fluid. SOLUTION: This sealing device 1 is constituted so as to utilize a magnetic fluid to be set up in an annular clearance 4 lying between a bearing part 3 (housing member) and a turning shaft 2. In this case, a position of a tip end 7b of a pole member 7 (first pole part) is set to the position being opposed to the other side peripheral wall surface 2a adjacent to a ring groove 8a formed in a second pole part 10, while a magnetic fluid ML is provided in space between an inner circumferetial wall surface 7a in and around the tip end 7b of this pole member 7 and the peripheral wall surface 2a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁性流体を利用し
た密封装置に関し、磁性流体の安定した保持を行い、磁
性流体シール部の耐圧特性を向上させて密封性能を向上
し得る技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealing device using a magnetic fluid, and more particularly to a technique capable of stably holding a magnetic fluid, improving the pressure resistance of a magnetic fluid sealing portion, and improving sealing performance.

【0002】[0002]

【従来の技術】従来より、外部磁場の磁力により、壁面
活性剤等の流体中に懸濁して存在する磁性体の粒子が磁
気吸引され、その位置を保持し得る特性を備えた磁性流
体を利用した種々の密封装置がある。
2. Description of the Related Art Conventionally, a magnetic fluid having a characteristic of being able to maintain its position by magnetically attracting magnetic particles suspended in a fluid such as a surface active agent by a magnetic force of an external magnetic field is used. Various sealing devices are available.

【0003】図2は、磁性流体を利用した密封装置10
0の断面構成説明図であり、この密封装置100は、圧
力差のある高圧側H’及び低圧側L’の2領域間にまた
がる回転軸101及び回転軸101の軸受部103に備
えられている。
FIG. 2 shows a sealing device 10 using a magnetic fluid.
0 is a cross-sectional configuration explanatory view, and the sealing device 100 is provided on a rotating shaft 101 and a bearing portion 103 of the rotating shaft 101 spanning two regions of a high pressure side H ′ and a low pressure side L ′ having a pressure difference. .

【0004】軸受部103は、回転軸101の保持及び
密封を行う円筒部103aと、円筒部103aの一方の
端部に、内部空間を真空状態(低圧側L’)とする容器
102の開口端部102aにボルトにより取り付けられ
るフランジ部103bを備えている。
[0004] The bearing portion 103 has a cylindrical portion 103a for holding and sealing the rotary shaft 101, and an open end of the container 102 having an internal space in a vacuum state (low pressure side L ') at one end of the cylindrical portion 103a. A flange portion 103b is provided on the portion 102a with a bolt.

【0005】また、軸受部103と回転軸101とはベ
アリングB1,B2により相対回転運動に対する動的な
保持が行われている。
The bearing 103 and the rotating shaft 101 are dynamically held by a bearing B1, B2 with respect to a relative rotational movement.

【0006】そして密封性に関しては、軸受部103の
円筒部103a内側に備えられた環状の磁石104によ
り形成される磁気回路MC’に介在させた磁性流体M
L’により行っている。
[0006] With respect to the sealing performance, the magnetic fluid M interposed in a magnetic circuit MC 'formed by an annular magnet 104 provided inside the cylindrical portion 103a of the bearing portion 103.
L '.

【0007】磁石104は軸方向に異極(N及びSと図
示される)が配されており、軸方向両側には磁石104
の磁極となる磁極部材105,106が備えられてい
る。そして、回転軸101の磁極部材105,106に
対向する部位に複数本の周方向に連続する凹溝107
a,107b,・・・を形成し、磁極部材105,10
6内周面と各凹溝の間の凸条部108a,108b,・
・・の頂面との間隙に磁束が集中するように発生させて
(すなわち凸条部108a,108b,・・・の頂面で
磁束密度が高まるように)、これらの間隙に磁性流体M
L’が保持されて磁性流体シール部を形成するようにし
ている。
The magnet 104 is provided with different poles (shown as N and S) in the axial direction, and the magnets 104 are provided on both sides in the axial direction.
Are provided. Then, a plurality of circumferentially continuous concave grooves 107 are formed in a portion of the rotating shaft 101 facing the magnetic pole members 105 and 106.
, 107b,...
6, convex ridges 108a, 108b,...
.. are generated such that the magnetic flux concentrates in the gaps with the top surfaces of the magnetic fluids (that is, the magnetic flux density increases on the top surfaces of the ridges 108a, 108b,...)
L ′ is held to form a magnetic fluid seal portion.

【0008】形成された磁性流体シール部は、低圧側
L’と高圧側H’との間に複数の室109a,109
b,・・・を形成し、各室の圧力が順次磁性流体シール
部の耐圧範囲内で変化することにより、密封領域の両側
で圧力差がある場合においても効果的な密封性を発揮し
得るようになっている。
The formed magnetic fluid seal portion has a plurality of chambers 109a, 109 between the low pressure side L 'and the high pressure side H'.
By forming b,... and sequentially changing the pressure of each chamber within the pressure resistance range of the magnetic fluid seal portion, effective sealing performance can be exhibited even when there is a pressure difference on both sides of the sealed area. It has become.

【0009】尚、110a,110bはベアリングB
1,B2の間での磁石104及び磁極部材105,10
6の軸方向の位置を定めるスペーサリング、111は円
筒部103aの内側に備えられた各構成部材を封止固定
する固定環部材、112,113は円筒部103a内周
面側と磁極部材105,106の外周面側との密封性を
維持するOリングである。
Note that 110a and 110b are bearings B
1 and B2 between the magnet 104 and the magnetic pole members 105 and 10
6, a spacer ring 111 for determining the axial position; 111, a fixed ring member for sealing and fixing each component provided inside the cylindrical portion 103a; 112, 113, an inner peripheral surface of the cylindrical portion 103a and the magnetic pole member 105; An O-ring for maintaining the sealing property with respect to the outer peripheral surface side of 106.

【0010】[0010]

【発明が解決しようとする課題】図3は、密封装置10
0の磁場の強さを説明する図であり、図2のD1部を拡
大した図を上側に示し、磁極部材105と回転軸101
の間の隙間(S1−S1線に示される位置)の磁束の分
布を磁場の強さとして下側に模式的に表わしたものであ
る。
FIG. 3 shows a sealing device 10.
FIG. 3 is a diagram illustrating the strength of a magnetic field of 0, and an enlarged view of a portion D1 in FIG.
The distribution of the magnetic flux in the gap (the position shown by the line S1-S1) between them is schematically shown on the lower side as the strength of the magnetic field.

【0011】すなわち、磁石104により形成される磁
気回路MC’の磁束は、磁性体である凸条部108a
(複数の凸条部全てが該当するが、代表して記載する)
に磁束が集中するので、磁束密度の大きい領域と小さい
領域とに分かれて存在する。従って、凸条部108aの
頂面の磁場の強さ120aはその両側の凹溝107a,
107bにおける磁場の強さ121a,121bとは極
めて大きな差分Δfが存在することになる。
That is, the magnetic flux of the magnetic circuit MC 'formed by the magnet 104 is generated by the magnetic ridges 108a.
(All of the multiple ridges are applicable, but are listed as representatives.)
Since the magnetic flux is concentrated in the region, the magnetic flux is divided into a region having a large magnetic flux density and a region having a small magnetic flux density. Accordingly, the magnetic field strength 120a on the top surface of the ridge 108a is reduced by the concave grooves 107a on both sides thereof.
An extremely large difference Δf exists between the magnetic field strengths 121a and 121b at 107b.

【0012】また、磁性流体ML’が凸条部108aに
保持される保持力の強さは、この磁場の強さの差分Δf
により定められると共に、保持力の強さがそれぞれの磁
性流体シール部による耐圧性能に比例している。
The strength of the holding force for holding the magnetic fluid ML 'on the ridge 108a is the difference Δf of the strength of the magnetic field.
And the strength of the holding force is proportional to the pressure resistance performance of each magnetic fluid seal portion.

【0013】しかしながら従来技術においては、磁極部
材105に対する回転軸101に設けられた凹溝と凸条
部の軸方向の位置関係は、磁極部材105の端部104
aの位置が最も端の凹溝107aよりも内側(凸条部1
08a側)に位置するように配置していた。従って、磁
場の強さとして端部104aに対向する位置で、小さな
ピーク122が発生していた。
However, in the prior art, the axial positional relationship between the concave groove provided on the rotating shaft 101 and the ridge portion with respect to the magnetic pole member 105 is determined by the end portion 104 of the magnetic pole member 105.
a is inside the groove 107a at the end (the convex ridge 1).
08a side). Therefore, a small peak 122 was generated at a position facing the end 104a as the strength of the magnetic field.

【0014】一般的には磁性流体を安定して保持するに
はなるべく大きな保持力で磁性流体を保持することが好
ましいが、このピーク112は、実際には磁性流体M
L’の保持には使用されずに磁力の損失となり、端部の
凸条部108aにおける磁性流体ML’の保持力低下を
引き起こして、結果的には磁性流体シール部の密封性能
の低下、特に耐圧特性を低下させている。
In general, in order to stably hold the magnetic fluid, it is preferable to hold the magnetic fluid with as large a holding force as possible.
It is not used for holding L ′, and causes a loss of magnetic force, causing a decrease in the holding force of the magnetic fluid ML ′ at the protruding ridge 108 a at the end. The withstand voltage characteristics are reduced.

【0015】また、このピーク112は、端部の凸条部
108aでの磁力の損失の他に、小さい磁性流体保持力
を有するために意図しない挙動を示すことがあり、低圧
側L’で耐圧特性の低下や圧力変動を生じさせる原因と
なっていた。
The peak 112 may exhibit an unintended behavior due to a small magnetic fluid holding force, in addition to the loss of magnetic force at the protruding ridge 108a at the end. This has been a cause of deterioration in characteristics and pressure fluctuation.

【0016】この現象を図4により説明すると、低圧側
L’と高圧側H’との間に圧力差が発生していない状態
は図4(a)の状態であり、この状態では低圧側L’,
室109a,109b・・・,高圧側H’は同じ大気圧
状態である。
FIG. 4 illustrates this phenomenon. FIG. 4A shows a state in which no pressure difference is generated between the low-pressure side L 'and the high-pressure side H'. ',
The chambers 109a, 109b,..., High-pressure side H ′ are in the same atmospheric pressure state.

【0017】次に、例えば低圧側L’の圧力を真空ポン
プ等により低下させると、高圧側H’の圧力は大気圧状
態で一定であるが、低圧側L’の圧力が序々に低下し始
める(図4(b)の状態)。
Next, for example, when the pressure on the low pressure side L 'is reduced by a vacuum pump or the like, the pressure on the high pressure side H' is constant at atmospheric pressure, but the pressure on the low pressure side L 'starts to decrease gradually. (State of FIG. 4B).

【0018】そして、低圧側L’の圧力と室109aの
圧力差が、凸条部108aと磁極部材105の間隙に保
持されている磁性流体ML’の耐圧特性を越えると、バ
ーストと呼ばれる圧力均衡化現象が発生して低圧側L’
と室109aが導通して、その圧力差が解消される(図
4(c)の状態)。この時、端部104aに小さい磁性
流体保持力があることから磁性流体ML’は低圧側L’
に向けて流動しやすく、耐圧特性が他の部位に比べて小
さくなったり、また、流動した磁性流体ML’の一部が
端部104aに留まり、磁性流体ML’の量が減少しや
すくなる(図4(d)の状態)。
When the pressure difference between the pressure on the low pressure side L 'and the pressure in the chamber 109a exceeds the pressure resistance of the magnetic fluid ML' held in the gap between the ridge 108a and the magnetic pole member 105, a pressure balance called a burst occurs. And the low pressure side L '
And the chamber 109a are conducted, and the pressure difference is eliminated (the state of FIG. 4C). At this time, since the end portion 104a has a small magnetic fluid holding force, the magnetic fluid ML 'is moved to the low pressure side L'.
And the pressure resistance becomes smaller than other parts, or a part of the flowed magnetic fluid ML ′ stays at the end 104a, and the amount of the magnetic fluid ML ′ tends to decrease ( FIG. 4D).

【0019】この圧力均衡化現象は、低圧側L’の圧力
が下がるにつれて、断続的に発生するもので、序々に高
圧側H’の室へ伝播されていく。従って、最も低圧側
L’での発生頻度が一番多く、また、低圧側L’の圧力
変動や乱れも頻繁に発生し易くなるので、解決すべき問
題となっていた。
This pressure equalization phenomenon occurs intermittently as the pressure on the low pressure side L 'decreases, and is gradually propagated to the chamber on the high pressure side H'. Therefore, the frequency of occurrence on the low-pressure side L 'is the highest, and pressure fluctuations and disturbances on the low-pressure side L' tend to occur frequently.

【0020】特開平1−220777号では、この問題
の対策として、図5(a)に示されるように、端部10
4aに形成される磁場の大きさを小さくすることを目的
として、最も低圧側L’の凹溝107a’の巾を広くし
ているが、この構成においても、端部104aには小さ
い磁場のピーク130が現れており、この小ピーク13
0による問題は程度的には小さくなったとはいえ依然と
して存在していた。
In Japanese Unexamined Patent Publication No. 1-220777, as a countermeasure against this problem, as shown in FIG.
Although the width of the concave groove 107a 'on the low-pressure side L' is widened for the purpose of reducing the magnitude of the magnetic field formed in 4a, even in this configuration, the small magnetic field peaks at the end 104a. 130 appear, and this small peak 13
The problem with 0 was still present, albeit to a lesser extent.

【0021】また、この端部104aの磁場の小ピーク
130を小さくしようと、図5(b)に示されるよう
に、面取り104bを施した場合においても、131,
132のように小ピークは発生し、上記の問題は解決さ
れずにいた。
In order to reduce the small peak 130 of the magnetic field at the end 104a, as shown in FIG. 5B, even when chamfering 104b is performed, 131,
132, a small peak was generated, and the above problem was not solved.

【0022】本発明は上記従来技術の問題を解決するた
めになされたもので、その目的とするところは、磁性流
体を保持する部位における磁場の大きさを大きくすると
共に、磁性流体を保持する部位の近傍での不必要な磁場
の形成を防止して、磁性流体の安定した保持を行い、磁
性流体シール部の耐圧特性を高めて密封性能を向上する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art. It is an object of the present invention to increase the magnitude of a magnetic field in a portion for holding a magnetic fluid and to increase Is to prevent an unnecessary magnetic field from being formed in the vicinity of the magnetic fluid, stably hold the magnetic fluid, improve the pressure resistance of the magnetic fluid seal portion, and improve the sealing performance.

【0023】[0023]

【課題を解決するための手段】上記目的を達成するため
に本発明にあっては、ハウジング部材と、該ハウジング
部材に挿通されて相対回転運動を行う軸との間の、環状
隙間に配置され、前記環状隙間を通過する磁界を形成す
る磁力発生手段と、前記環状隙間の内側または外側の一
方の周壁面から突出する環状の第1の磁極部と、前記環
状隙間の他方の周壁面に、前記第1の磁極部に対向して
設けられた複数本の環状溝と、これら環状溝の間に前記
周壁面と略同じ高さの凸条部とを有する第2の磁極部
と、前記第1の磁極部と第2の磁極部の凸条部の間に、
磁界により保持されて前記環状隙間を密封する磁性流体
と、を備える磁性流体を利用した密封装置において、前
記第1の磁極部の少なくとも一端部の位置を、前記第2
の磁極部に形成された環状溝の端部の溝に隣接する他方
の周壁面に対向する位置とすると共に、この第1の磁極
部の端部と他方の周壁面との間に前記磁性流体を備えた
ことを特徴とする。
In order to achieve the above object, according to the present invention, there is provided an annular gap between a housing member and a shaft inserted through the housing member and performing relative rotational movement. A magnetic force generating means for forming a magnetic field passing through the annular gap, an annular first magnetic pole portion protruding from one of the inner or outer peripheral wall surfaces of the annular gap, and the other peripheral wall surface of the annular gap, A second magnetic pole portion having a plurality of annular grooves provided to face the first magnetic pole portion, and a ridge having substantially the same height as the peripheral wall surface between the annular grooves; Between the first magnetic pole portion and the ridge of the second magnetic pole portion,
A magnetic fluid that is held by a magnetic field and seals the annular gap. In a sealing device using a magnetic fluid, the position of at least one end of the first magnetic pole portion is set to the second fluid.
At the position opposite to the other peripheral wall surface adjacent to the groove at the end of the annular groove formed at the magnetic pole portion, and the magnetic fluid is provided between the end portion of the first magnetic pole portion and the other peripheral wall surface. It is characterized by having.

【0024】この磁性流体を利用した密封装置による
と、第1の磁極部と第2の磁極部の凸条部の間の磁界に
より保持される磁性流体が、ハウジングと軸の間の環状
隙間を複数領域に分割して密封すると共に、第1の磁極
部の端部は前記第2の磁極部に形成された環状溝の端部
の溝に隣接する他方の周壁面に対向するので、この第1
の磁極部の端部には、他の第1の磁極部と第2の磁極部
の凸条部の間に形成される磁界と同等の強さの磁界が形
成され、磁性流体の安定した保持が行なわれる。
According to the sealing device using the magnetic fluid, the magnetic fluid held by the magnetic field between the ridges of the first magnetic pole and the second magnetic pole forms the annular gap between the housing and the shaft. Since it is divided into a plurality of regions and sealed, the end of the first magnetic pole portion faces the other peripheral wall surface adjacent to the groove at the end of the annular groove formed in the second magnetic pole portion. 1
At the end of the magnetic pole portion, a magnetic field having the same strength as the magnetic field formed between the other first magnetic pole portion and the ridge portion of the second magnetic pole portion is formed, and the magnetic fluid is stably held. Is performed.

【0025】[0025]

【発明の実施の形態】以下に本発明を図示の実施の形態
に基づいて説明する。図1(a)は磁性流体を利用した
密封装置1の断面構成説明図であり、本発明の特徴的な
構成部分を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on the illustrated embodiment. FIG. 1A is an explanatory diagram of a cross-sectional configuration of a sealing device 1 using a magnetic fluid, and shows characteristic components of the present invention.

【0026】この密封装置1は、例えば内部を真空状態
にする真空チャンバの外側から内部に回転動力を伝達す
る回転軸2の回転動導入部等に備えられるものであり、
圧力差のある低圧側L及び高圧側Hの2領域間にまたが
る回転軸2及び回転軸2が挿通される、ハウジング部材
としての軸受部3の間の環状隙間4に備えられている。
This sealing device 1 is provided, for example, in a rotary motion introducing portion of a rotary shaft 2 for transmitting rotary power from the outside to the inside of a vacuum chamber for making the inside a vacuum.
The rotary shaft 2 extending between two regions of the low-pressure side L and the high-pressure side H having a pressure difference is provided in an annular gap 4 between the bearing portions 3 as a housing member through which the rotary shaft 2 is inserted.

【0027】この軸受部3は、回転軸2の保持及び密封
を行う円筒部3aと、円筒部3aの一方の端部に、内部
空間を真空状態(低圧側L)とする不図示の容器の開口
端部に取り付けられるフランジ部3bを備えている。
The bearing portion 3 includes a cylindrical portion 3a for holding and sealing the rotating shaft 2 and a container (not shown) provided at one end of the cylindrical portion 3a with an internal space in a vacuum state (low pressure side L). It has a flange 3b attached to the opening end.

【0028】密封装置1において、軸受部3と回転軸2
とはベアリング5(片側のみ図示されている)により相
対回転運動に対する動的な保持が行われている。そして
密封性に関しては、軸受部3の円筒部3a内側に備えら
れた磁力発生手段としての環状の磁石6により形成され
る磁気回路MCに介在させた磁性流体MLにより行って
いる。
In the sealing device 1, the bearing 3 and the rotating shaft 2
The dynamic holding of the relative rotational movement is performed by the bearing 5 (only one side is shown). The sealing is performed by a magnetic fluid ML interposed in a magnetic circuit MC formed by an annular magnet 6 as a magnetic force generating means provided inside the cylindrical portion 3a of the bearing portion 3.

【0029】磁石6は軸方向に異極(N及びSと図示さ
れる)が配されており、軸方向両側には磁石6に当接し
て磁極となる第1の磁極部としての磁極部材7(片側の
み図示されている)が備えられている。回転軸2には、
周壁面2aの磁極部材7に対向する部位に複数本の周方
向に連続する凹溝8a〜8dが形成されている。
The magnet 6 is provided with different poles (shown as N and S) in the axial direction, and a magnetic pole member 7 as a first magnetic pole portion which contacts the magnet 6 and becomes a magnetic pole on both sides in the axial direction. (Only one side is shown). On the rotating shaft 2,
A plurality of circumferentially continuous concave grooves 8a to 8d are formed in a portion of the peripheral wall surface 2a facing the magnetic pole member 7.

【0030】各凹溝の間は、周壁面2aの高さと略同じ
高さの凸条部9a〜9dが形成されることになり、凹溝
8a〜8d及び凸条部9a〜9dが第2の磁極部10と
して機能する。
The protruding ridges 9a to 9d having substantially the same height as the height of the peripheral wall surface 2a are formed between the concave grooves, and the concave grooves 8a to 8d and the protruding ridges 9a to 9d are formed in the second Function as the magnetic pole portion 10.

【0031】そして、磁極部材7の軸方向における低圧
側Lの端部7bは、低圧側L方向の端部に位置する凹溝
8aに隣接する回転軸2の周壁面2aの端部2cに、オ
ーバーラップするように位置している。尚、端部2cも
第2の磁極部10の一部として機能する。
The end 7b of the magnetic pole member 7 on the low pressure side L in the axial direction is connected to the end 2c of the peripheral wall surface 2a of the rotary shaft 2 adjacent to the concave groove 8a located at the end in the low pressure side L direction. They are located to overlap. The end 2c also functions as a part of the second magnetic pole 10.

【0032】従って、この凸条部9a〜9dの頂面と第
1の磁極部材7の内周壁面7aとの間及び、端部2cと
第1の磁極部材7の端部7b近傍の内周壁面7aとの間
に磁性流体MLが保持され、磁性流体シール部(磁性流
体MLの集合体として)を形成している。
Accordingly, between the top surfaces of the ridges 9a to 9d and the inner peripheral wall surface 7a of the first magnetic pole member 7, and the inner periphery near the end 2c and the end 7b of the first magnetic pole member 7. The magnetic fluid ML is held between the magnetic fluid ML and the wall surface 7a, and forms a magnetic fluid seal portion (as an aggregate of the magnetic fluid ML).

【0033】形成された磁性流体シール部は、低圧側L
と高圧側Hとの間に複数の室11a〜11dを形成し、
各室の圧力が順次磁性流体シール部の耐圧範囲内で変化
することにより、密封領域の両側で圧力差がある場合に
おいても効果的な密封性を発揮し得るようになってい
る。
The formed magnetic fluid seal portion is connected to the low pressure side L
And a plurality of chambers 11a to 11d are formed between
By sequentially changing the pressure of each chamber within the pressure-resistant range of the magnetic fluid seal portion, effective sealing can be exhibited even when there is a pressure difference on both sides of the sealed area.

【0034】尚、12は磁石6と磁極部材7の軸方向の
位置を定めるスペーサリング、13は円筒部3a内周面
側と磁極部材7の外周面側との密封性を維持するOリン
グである。
Reference numeral 12 denotes a spacer ring that determines the axial position of the magnet 6 and the magnetic pole member 7, and 13 denotes an O-ring that maintains the sealing between the inner peripheral surface of the cylindrical portion 3a and the outer peripheral surface of the magnetic pole member 7. is there.

【0035】図1(b)は、密封装置1の磁性流体シー
ル部における磁場の強さを説明する図であり、磁極部材
7と回転軸2の第2の磁極部10の隙間(S2−S2線
に示される位置)の磁束の分布を磁場の強さとして模式
的に表わしたものである。
FIG. 1B is a diagram for explaining the strength of the magnetic field in the magnetic fluid seal portion of the sealing device 1, and shows the gap (S 2 -S 2) between the magnetic pole member 7 and the second magnetic pole portion 10 of the rotating shaft 2. The distribution of the magnetic flux at the position indicated by the line) is schematically represented as the strength of the magnetic field.

【0036】すなわち、磁石6により形成される磁気回
路MCの磁束は、凸条部9a〜9d及び端部2cに磁束
が集中するので、山の部分の磁束密度の大きい領域と谷
の部分の磁束密度の小さい領域とに分かれて存在してい
る。
That is, the magnetic flux of the magnetic circuit MC formed by the magnet 6 concentrates on the ridges 9a to 9d and the end 2c. It is divided into low density areas.

【0037】端部2cにおける磁場の強さは山21で表
わされており、凸条部9a〜9dにおける磁場の強さ2
2a〜22dとほぼ同じ強さを示すと共に、従来技術に
おいて発生していた磁極部材の端部の不必要な磁場の小
ピークは、山21の立ち上がり部21aに発生していな
い。
The strength of the magnetic field at the end 2c is represented by a peak 21, and the strength of the magnetic field at the ridges 9a to 9d is 2
In addition to showing the same strength as 2a to 22d, the small peak of the unnecessary magnetic field at the end of the magnetic pole member generated in the prior art is not generated in the rising portion 21a of the peak 21.

【0038】従って、端部7bでの磁場の強さの低下は
見られず、この領域における安定した磁性流体MLの保
持を行い、結果として磁性流体シール部の耐圧特性が高
まり、密封性能が向上する。
Accordingly, the strength of the magnetic field at the end portion 7b is not reduced, and the magnetic fluid ML is stably held in this region. As a result, the pressure resistance of the magnetic fluid seal portion is increased, and the sealing performance is improved. I do.

【0039】本発明の効果を確認する為に、以下のよう
な具体例で効果確認試験を行った。試験対象としては、
磁極部材の配置を図1のような配置とし、軸の磁極部の
直径が15mm、凸条部の個数を左右合わせて20の本
発明を適用したサンプルと、構成及び寸法が同じで磁極
部材の配置を図2のような配置とした従来のサンプルと
の耐圧特性を試験した。
In order to confirm the effect of the present invention, an effect confirmation test was conducted in the following specific examples. As a test object,
The arrangement of the magnetic pole members is as shown in FIG. 1, the diameter of the magnetic pole portion of the shaft is 15 mm, and the number of the ridges is 20. A withstand voltage characteristic of a conventional sample having the arrangement shown in FIG. 2 was tested.

【0040】試験の結果としては、従来技術によるサン
プルが、2.7kgf /cm2 の耐圧値を示したのに対
し、本発明を適用したサンプルは3.0kgf /cm2
耐圧値を示し、効果が確認された。
As a result of the test, the sample according to the prior art exhibited a withstand voltage of 2.7 kgf / cm 2 , while the sample to which the present invention was applied exhibited a withstand voltage of 3.0 kgf / cm 2 , The effect was confirmed.

【0041】[0041]

【発明の効果】上記実施の形態により説明された本発明
の磁性流体を利用した密封装置によると、磁性流体が保
持される磁極の端部においても、端部以外で形成される
磁場と同等の強さの磁場が形成されると共に、磁性流体
が保持される部位の近傍での不必要な磁場の形成が防止
される。
According to the sealing device using the magnetic fluid of the present invention described in the above embodiment, even at the end of the magnetic pole holding the magnetic fluid, the magnetic field is equal to the magnetic field formed at other than the end. A strong magnetic field is formed, and an unnecessary magnetic field is prevented from being formed near the portion where the magnetic fluid is held.

【0042】従って、磁性流体は安定して保持され、耐
圧特性が高まり、密封性能が向上する。
Accordingly, the magnetic fluid is stably held, the pressure resistance is improved, and the sealing performance is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)は本発明を適用した密封装置の断面
構成説明図であり、図1(b)は磁性流体シール部にお
ける磁場の強さを説明する図。
FIG. 1A is a cross-sectional configuration diagram of a sealing device to which the present invention is applied, and FIG. 1B is a diagram illustrating the strength of a magnetic field in a magnetic fluid seal portion.

【図2】図2は従来の密封装置の断面構成説明図。FIG. 2 is an explanatory view of a cross-sectional configuration of a conventional sealing device.

【図3】図3は従来の密封装置の断面構成説明図と磁場
の強さを説明する図。
FIG. 3 is a diagram illustrating a cross-sectional configuration of a conventional sealing device and a diagram illustrating the strength of a magnetic field.

【図4】図4は耐圧特性を越える圧力が加わった時の圧
力均衡化現象を説明する図。
FIG. 4 is a diagram illustrating a pressure balancing phenomenon when a pressure exceeding the pressure resistance characteristic is applied.

【図5】図5は他の従来技術による密封装置の断面構成
説明図。
FIG. 5 is an explanatory view of a sectional configuration of a sealing device according to another conventional technique.

【符号の説明】[Explanation of symbols]

1 密封装置 2 回転軸 2a 周壁面 2c 端部 3 軸受部(ハウジング部材) 4 環状隙間 5 ベアリング 6 磁石(磁力発生手段) 7 磁極部材(第1の磁極部) 7a 内周壁面 7b 端部 8a,8b,8c,8d 凹溝 9a,9b,9c,9d 凸条部 10 第2の磁極部 11a,11b,11c,11d 室 12 スペーサリング 13 Oリング 21 山(磁場の強さ) 21a 立ち上がり部 22a,22b,22c,22d 磁場の強さ DESCRIPTION OF SYMBOLS 1 Sealing device 2 Rotating shaft 2a Peripheral wall surface 2c End part 3 Bearing part (housing member) 4 Annular clearance 5 Bearing 6 Magnet (magnetic force generating means) 7 Magnetic pole member (first magnetic pole part) 7a Inner peripheral wall surface 7b End part 8a, 8b, 8c, 8d Grooves 9a, 9b, 9c, 9d Convex ridges 10 Second magnetic poles 11a, 11b, 11c, 11d Chamber 12 Spacer ring 13 O-ring 21 Mountain (magnetic field strength) 21a Rising portion 22a 22b, 22c, 22d Magnetic field strength

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ハウジング部材と、該ハウジング部材に
挿通されて相対回転運動を行う軸との間の、環状隙間に
配置され、 前記環状隙間を通過する磁界を形成する磁力発生手段
と、 前記環状隙間の内側または外側の一方の周壁面から突出
する環状の第1の磁極部と、 前記環状隙間の他方の周壁面に、前記第1の磁極部に対
向して設けられた複数本の環状溝と、これら環状溝の間
に前記他方の周壁面と略同じ高さの凸条部とを有する第
2の磁極部と、 前記第1の磁極部と第2の磁極部の凸条部の間に、磁界
により保持されて前記環状隙間を密封する磁性流体と、 を備える磁性流体を利用した密封装置において、 前記第1の磁極部の少なくとも一端部の位置を、前記第
2の磁極部に形成された環状溝の端部の溝に隣接する他
方の周壁面に対向する位置とすると共に、この第1の磁
極部の端部と他方の周壁面との間に前記磁性流体を備え
たことを特徴とする磁性流体を利用した密封装置。
1. A magnetic force generating means disposed in an annular gap between a housing member and a shaft inserted through the housing member and performing relative rotational movement, the magnetic force generating means forming a magnetic field passing through the annular gap; An annular first magnetic pole portion protruding from one peripheral wall surface inside or outside the gap; and a plurality of annular grooves provided on the other peripheral wall surface of the annular gap so as to face the first magnetic pole portion And a second magnetic pole portion having between the annular grooves a convex ridge having substantially the same height as the other peripheral wall surface; and between the first magnetic pole portion and the convex ridge portion of the second magnetic pole portion. A magnetic fluid that is held by a magnetic field and seals the annular gap. A sealing device using a magnetic fluid, comprising: forming a position of at least one end of the first magnetic pole portion on the second magnetic pole portion. Facing the other peripheral wall surface adjacent to the groove at the end of the formed annular groove. A sealing device using a magnetic fluid, wherein the magnetic fluid is provided between an end of the first magnetic pole portion and the other peripheral wall surface.
JP8262306A 1996-09-12 1996-09-12 Sealing device utilized with magnetic fluid Pending JPH1089490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8262306A JPH1089490A (en) 1996-09-12 1996-09-12 Sealing device utilized with magnetic fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8262306A JPH1089490A (en) 1996-09-12 1996-09-12 Sealing device utilized with magnetic fluid

Publications (1)

Publication Number Publication Date
JPH1089490A true JPH1089490A (en) 1998-04-07

Family

ID=17373960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8262306A Pending JPH1089490A (en) 1996-09-12 1996-09-12 Sealing device utilized with magnetic fluid

Country Status (1)

Country Link
JP (1) JPH1089490A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305694B1 (en) * 1998-11-26 2001-10-23 Ferrotec Corporation Ferrofluid sealing device
JP2012023965A (en) * 2010-07-20 2012-02-09 Globeride Inc Fishing reel
CN105972219A (en) * 2016-07-29 2016-09-28 广西科技大学 Staggered tooth end face type magnetic fluid sealing device
CN106015583A (en) * 2016-07-28 2016-10-12 广西科技大学 Symmetrical staggered-tooth type magnetic fluid sealing device
CN106015584A (en) * 2016-07-28 2016-10-12 广西科技大学 Magnetic-source-series magnetic fluid sealing device
CN107906207A (en) * 2017-12-13 2018-04-13 广西科技大学 A kind of series parallel type device for sealing magnetic fluid
CN114110172A (en) * 2021-12-03 2022-03-01 清华大学 Magnetic liquid sealing device with surface texture

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305694B1 (en) * 1998-11-26 2001-10-23 Ferrotec Corporation Ferrofluid sealing device
JP2012023965A (en) * 2010-07-20 2012-02-09 Globeride Inc Fishing reel
CN106015583A (en) * 2016-07-28 2016-10-12 广西科技大学 Symmetrical staggered-tooth type magnetic fluid sealing device
CN106015584A (en) * 2016-07-28 2016-10-12 广西科技大学 Magnetic-source-series magnetic fluid sealing device
CN105972219A (en) * 2016-07-29 2016-09-28 广西科技大学 Staggered tooth end face type magnetic fluid sealing device
CN107906207A (en) * 2017-12-13 2018-04-13 广西科技大学 A kind of series parallel type device for sealing magnetic fluid
CN107906207B (en) * 2017-12-13 2023-05-02 广西科技大学 Series-parallel magnetic fluid sealing device
CN114110172A (en) * 2021-12-03 2022-03-01 清华大学 Magnetic liquid sealing device with surface texture
CN114110172B (en) * 2021-12-03 2023-03-10 清华大学 Magnetic liquid sealing device with surface texture

Similar Documents

Publication Publication Date Title
US6672592B1 (en) Magnetic fluid seal
JPH1089490A (en) Sealing device utilized with magnetic fluid
JP2004317486A (en) Device for detecting rotation angle
JP3719330B2 (en) Sealing device using magnetic fluid
US6290233B1 (en) Sealing apparatus
WO2015098202A1 (en) Magnetic fluid sealing apparatus
JP2000002338A (en) Sealing device using magnetic fluid
JPH1194095A (en) Sealing device making use of magnetic fluid
US7125170B2 (en) Fluid dynamic bearing motor
JPH01126474A (en) Magnetic fluid seal
JPH1137304A (en) Sealing device utilizing magnetic fluid
JP3716654B2 (en) Sealing device using magnetic fluid
JPH08109998A (en) Vacuum double bellows pipe
JP4140309B2 (en) Sealing device using magnetic fluid
JPH10196799A (en) Sealing device using magnetic fluid
JPS61201916A (en) Bearing device
JP3256449B2 (en) Sealing device using magnetic fluid
JPH0565922A (en) Bearing device with sealing function
JPH01164869A (en) Seal device using magnetic fluid
JP2602065Y2 (en) Magnetic fluid sealing device
JPS60155066A (en) Seal structure using magnetic fluid
JPH04171370A (en) Noncontact type shaft seal device
JPH09189363A (en) Shaft seal device for vacuum
JP2002031245A (en) Magnetic fluid sealing device
JPH01126475A (en) Magnetic fluid seal

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020709