JPH1089298A - Manufacture of impeller for blower - Google Patents

Manufacture of impeller for blower

Info

Publication number
JPH1089298A
JPH1089298A JP8267852A JP26785296A JPH1089298A JP H1089298 A JPH1089298 A JP H1089298A JP 8267852 A JP8267852 A JP 8267852A JP 26785296 A JP26785296 A JP 26785296A JP H1089298 A JPH1089298 A JP H1089298A
Authority
JP
Japan
Prior art keywords
impeller
blower
microcapsules
injection molding
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8267852A
Other languages
Japanese (ja)
Inventor
Soichiro Asada
壮一郎 朝田
Keiichi Watanabe
啓一 渡辺
Yasunari Goto
康成 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Industrial Co Ltd
Taiheiyo Kogyo KK
Original Assignee
Pacific Industrial Co Ltd
Taiheiyo Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Industrial Co Ltd, Taiheiyo Kogyo KK filed Critical Pacific Industrial Co Ltd
Priority to JP8267852A priority Critical patent/JPH1089298A/en
Publication of JPH1089298A publication Critical patent/JPH1089298A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ideal impeller for a blower freed from a shrinkage and a warp during molding even when a vane has a thick wall by a method wherein microcapsules having a thermal expansion property are mixed in a thermoplastic resin material to effect injection molding. SOLUTION: A manufacturing method for an impeller for a blower is such that microcapsules having a thermal expansion property are worked in a pellet- form manner once and a plurality of blade parts 2 and a hub part 3, of which an impeller 1 for a blower consists are injection-molded by using a material prepared by mixing the pellets in thermoplastic resin. In the injection molding thereof, a part of the microcapsules having the thermal expansion property are expanded into fine hollow spherical bodies at the mixing process of an injection molding machine. Thereafter, a material is injected in a cavity in a state that a 10-30% space part remains. By a molten resin after injection and the surplus heat of the microcapsules, the non-expansion parts of the microcapsules are expanded in a manner that the cavity is fully filled therewith and the fine hollow spherical bodies are uniformly dispersed in a molded product.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は熱膨張性のマイクロカプ
セルを一旦ペレット状に加工し、これをオレフィン系の
熱可塑性樹脂材料等に混合し、射出成形時の加熱により
ペレットが膨張して微細な中空球体を呈するようにした
送風機用羽根車の製造方法に関し、特に樹脂成形時にお
ける羽根車の羽根の厚みを理想通りの厚肉に形成しても
ヒケやソリを無くし送風機用羽根車の性能向上(騒音及
び送風機全圧効率、静圧効率)を図ると共に、成形品の
重量低減及び成形時間の短縮を図り、生産性の向上を図
ろうとするものである。
BACKGROUND OF THE INVENTION The present invention relates to a method of processing a heat-expandable microcapsule into pellets, mixing the pellets with an olefin-based thermoplastic resin material, etc. The present invention relates to a method for manufacturing an impeller for a blower having a hollow hollow sphere. The objective is to improve the efficiency (noise and total pressure efficiency of the blower, the static pressure efficiency), to reduce the weight of the molded product and to shorten the molding time, and to improve the productivity.

【0002】[0002]

【従来の技術】従来、この種の送風機は金属プレス加工
によるものが多用されていたが、特に近年では樹脂成形
によるものが多用されるようになってきた。また、この
種の送風機においては、性能を向上させるために羽根車
の羽根部断面形状を、NACA系列とかGotting
en翼列とかの翼理論に準じた形状とすることが推奨さ
れている。この場合、羽根部断面積はいわゆる流線形を
基本とした翼形状に設定されることになる。例えば、家
庭用エアコンの室外機に用いられる羽根車では、直径が
φ300mm程度あるため羽根部の最大肉厚は理論上約
15mm前後になる。
2. Description of the Related Art Heretofore, blowers of this type have often been used by metal press working, but in recent years, blowers by resin molding have come to be used frequently. In this type of blower, in order to improve the performance, the impeller blade section shape is changed to NACA series or Gotting.
It is recommended that the shape be based on the wing theory such as en cascade. In this case, the blade sectional area is set to a blade shape based on a so-called streamline. For example, an impeller used for an outdoor unit of a home air conditioner has a diameter of about φ300 mm, so that the maximum thickness of the blade is theoretically about 15 mm.

【0003】ところで、この厚さのものをインジェクシ
ョン成形すれば当然ながら樹脂の熱収縮によるヒケや反
りにより羽根の表面に凹凸が生じ、羽根表面に沿った層
流の流れに剥離が生じ乱流が発生して騒音が高くなる。
なお、前記のヒケや反りを防止するために冷却時間を長
くして徐冷することも行われているが、これは成形サイ
クルタイムのアップとなり生産性の低下をきたすことに
なる。従って、従来は、主として製造上の制約から、樹
脂成形であれば理論形状の中間断面形状もしくは圧力面
側の形状に合わせた均一肉厚の羽根部形状(たとえば2
〜4mm)としていた。
[0003] By injection molding of this thickness, irregularities occur on the surface of the blade due to sink and warpage due to thermal shrinkage of the resin, and a laminar flow along the surface of the blade separates to generate turbulent flow. Generated noise increases.
In order to prevent the above-mentioned sink marks and warpage, the cooling time is lengthened and the cooling is gradually performed. However, this results in an increase in the molding cycle time and a reduction in productivity. Conventionally, therefore, mainly due to manufacturing restrictions, in the case of resin molding, the blade portion shape (for example, 2 mm) having a uniform thickness conforming to the intermediate cross-sectional shape of the theoretical shape or the shape on the pressure surface side.
44 mm).

【0004】また、近年この翼理論に準じた厚肉翼を樹
脂成形で実現する手段として中空成形法とか二回成形法
とかの方法が採用されつつある。前者の中空成形法では
熱可塑性の溶融樹脂を金型のキャビティに射出した後、
前記キャビティに圧縮窒素などの不活性ガスを圧入し
て、複数の羽根内部に中空部を成形する羽根車の成形方
法である。また、後者の二回成形法では、厚肉部分を二
回に分けて成形する方法であり、まず厚肉翼の半分の厚
肉部分を成形し、その後残りの部分を再度成形する方法
である。
In recent years, a method such as a hollow molding method or a two-time molding method has been adopted as a means for realizing a thick-walled wing according to the wing theory by resin molding. In the former hollow molding method, after injecting the thermoplastic molten resin into the mold cavity,
An impeller molding method for press-fitting an inert gas such as compressed nitrogen into the cavity to form a hollow portion inside a plurality of blades. Further, in the latter twice molding method, the thick part is divided into two parts, and the thick part is first molded into a half thick part, and then the remaining part is molded again. .

【0005】また、従来品における射出成形法では、型
から取り出した後の変形を防止するために寸法安定剤と
して樹脂の中に多量のタルクや層状雲母を細かく粉砕し
たマイカを混合させていた。この理由は、送風機用羽根
車1の羽根部は、ハブ部から片持ち状態となり成形後金
型から取り出した後、羽根の自重により下方へ変形し易
くなるため、成形金型内において十分冷却してから取り
出す必要があるが生産性の関係からある程度冷却した段
階で取り出さなければならないためである。
In addition, in the conventional injection molding method, a large amount of talc or layered mica is finely pulverized and mixed with mica as a dimensional stabilizer in order to prevent deformation after being removed from a mold. The reason is that the blade portion of the impeller 1 for the blower becomes cantilevered from the hub portion and is taken out of the mold after molding, and is easily deformed downward by its own weight. This is because it is necessary to take it out at a stage where it has been cooled to some extent from the viewpoint of productivity.

【0006】一方、製品の軽量化を図るためにガラス中
空ビーズを用いた各種の製品が提案されている。例え
ば、実開昭59−182463,実開昭59−1824
64号に示される軽量化ハンドル、また実開平6−71
411号に示される食品用容器等がある。
On the other hand, various products using glass hollow beads have been proposed in order to reduce the weight of the products. For example, Japanese Utility Model Application Laid-open No. Sho 59-182463, Japanese Utility Model Application Laid-open No. Sho 59-1824.
The lightweight handle shown in No. 64.
No. 411.

【0007】[0007]

【発明が解決しようとする課題】しかし、前記の中空成
形方法では、圧入したガスの充填で樹脂の肉厚をインジ
ェクション成形並に、均一にコントロールすることが出
来ない。これは、全てのブレード部分に流入する樹脂の
粘度、温度、射出圧力、射出量を全く同じにすることに
より可能となるが現実の射出成形でこれを実現すること
は不可能であり、羽根車の中空部は成り行き任せであっ
た。
However, in the above-mentioned hollow molding method, it is not possible to control the thickness of the resin uniformly by injection gas filling as well as injection molding. This can be achieved by making the viscosity, temperature, injection pressure, and injection amount of the resin flowing into all blade portions exactly the same, but it is impossible to realize this by actual injection molding. The hollow part of this was a matter of course.

【0008】また、送風機用羽根車は、回転体であるか
ら当然重量のバランスのとれていることが必要である。
JISB0905「回転機器の釣り合い良さ」に規定さ
れているように回転体の振動、騒音を抑えるためには使
用される目的により重量アンバランスを修正する必要が
ある。
Further, since the impeller for the blower is a rotating body, it is naturally necessary to balance the weight.
As specified in JISB0905 "Good balance of rotating equipment", it is necessary to correct the weight imbalance depending on the purpose of use in order to suppress the vibration and noise of the rotating body.

【0009】しかし、前記の如く中空部が成り行き任せ
であれば重量バランスも成り行き任せであり、成形後、
大きな重量アンバランスが生じた場合には後工程でバラ
ンス修正しても修正しきれないことになる。そこで、前
記二回成形法を行う事になるが、サイクルタイムの大幅
な増加となり効率的な成形方法とは言えなかった。
However, as described above, if the hollow portion is left as it is, the weight balance is also left as it is.
When a large weight imbalance occurs, it cannot be completely corrected even if the balance is corrected in a subsequent process. Therefore, the above-described molding method is performed twice, but the cycle time is greatly increased, and it cannot be said that the molding method is efficient.

【0010】二回成形法では、15mm前後もある厚肉
部分が中実となることにより重量が非常に大きくなり、
モータの起動トルクを必要としモータの大容量化につな
がり効率向上を図ることができなかった。
[0010] In the twice molding method, the weight becomes very large because the thick portion, which is about 15 mm, becomes solid.
Since the starting torque of the motor is required, the capacity of the motor is increased, and the efficiency cannot be improved.

【0011】また、前記のタルクやマイカは寸法安定剤
としては効果的であるが、重量が重いというデメリット
のほか、ヒケ、変形防止材料としての効果には限度があ
った。その理由はマイカは鱗片状の無機物であり、長さ
方向の寸法安定性向上には効果的であるが、厚さ方向の
収縮防止等の寸法安定性には効果的ではない。
Although talc and mica are effective as dimensional stabilizers, they have disadvantages of heavy weight, and have limited effects as sink and deformation preventing materials. The reason is that mica is a scale-like inorganic substance and is effective for improving dimensional stability in the length direction, but is not effective for dimensional stability such as prevention of shrinkage in the thickness direction.

【0012】つまり、従来の寸法安定剤であるタルク、
マイカは前述したごとく、不規則表面性状をした細分、
鱗片状の薄い細片であるため樹脂がキャビティ内に流
動、固化していく際、添加物の表面状態により硬化の度
合いが異なり、圧力のかかる部分とかからない部分、ま
た密に充填される部分と疎に充填される部分が生じ残留
応力となりこの差が金型から取り出した後変形につなが
っていた。
That is, talc, which is a conventional dimensional stabilizer,
As described above, mica is subdivided into irregular surface textures.
When the resin flows into the cavity and solidifies because of the scale-like thin flakes, the degree of hardening differs depending on the surface condition of the additive, and the part where pressure is not applied and the part that is densely filled A sparsely filled portion was formed, resulting in residual stress, and this difference led to deformation after being removed from the mold.

【0013】また、従来のガラス中空ビーズを用いた各
種の樹脂製品においては、中空ビーズが製品の芯材とし
て配置されるように樹脂の射出成形用ノズルの他に中空
ビーズの供給ノズルを必要とし射出成形がかなり複雑で
あった。
[0013] Further, in various resin products using conventional glass hollow beads, a hollow nozzle supply nozzle is required in addition to the resin injection molding nozzle so that the hollow beads are arranged as a core material of the product. Injection molding was quite complicated.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するため
本発明は、送風機用羽根車1を構成する複数枚の羽根部
2及びハブ部3を射出成形するにあたり、オレフィン系
等の熱可塑性樹脂材料の中に、熱膨張性マイクロカプセ
ルを一旦ペレット状に加工したものを混合し、これをキ
ャビティ内に空間部を残して射出し、射出後の溶融樹脂
と熱膨張性マイクロカプセルの余熱によりキャビティ内
の空間部が完全に埋まるように、まだ膨張が十分でない
マイクロカプセルを微細な中空球体に膨張させるもので
あるから、従来の工法に比べて羽根の断面肉厚が厚いも
のであっても成形時の熱収縮による歪みが生じることが
ないため空気力学的に流れの剥離等の生じない理想の翼
形状とすることができ、且つ大幅な軽量化が図れる送風
機用羽根車の提供を目的とするものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to injection molding of a plurality of blades 2 and a hub 3 constituting an impeller 1 for a blower. Into the material, a mixture of the thermally expandable microcapsules once processed into a pellet form is mixed, and the mixture is injected while leaving a space in the cavity. The microcapsules that are not yet expanded are expanded into fine hollow spheres so that the space inside is completely filled, so even if the cross-sectional wall thickness of the blade is thicker than the conventional method, it can be molded Provided is an impeller for a blower that can be formed into an ideal blade shape that does not cause aerodynamic flow separation due to no distortion due to thermal shrinkage at the time and that can achieve significant weight reduction. It is an object of the present invention.

【0015】すなわち、本発明は、熱膨張性マイクロカ
プセルを一旦ペレット状に加工しこのペレットを熱可塑
性樹脂に混合してなる材料にて、送風機用羽根車1を構
成する複数枚の羽根部2及びハブ部3を射出成形するに
あたり、射出成形機のミキシング工程にて熱膨張性マイ
クロカプセルの一部を微細な中空球体に膨張させ、次い
でキャビテイ内に10〜30%の空間部を残してこの材
料を射出し、射出後の液溶融樹脂と熱膨張性マイクロカ
プセルの余熱により前記マイクロカプセルの未膨張分を
キャビティ内が完全に埋まるように膨張させ、成形品中
に微細な中空球体を均一に分散させるようにしたことを
特長とする送風機用羽根車の製造方法である。
That is, according to the present invention, a plurality of blade portions 2 constituting the impeller 1 for the blower are made of a material obtained by processing the thermally expandable microcapsules into pellets and mixing the pellets with a thermoplastic resin. In injection molding of the hub 3, a part of the heat-expandable microcapsules is expanded into fine hollow spheres in a mixing step of an injection molding machine, and then a space of 10 to 30% is left in the cavity. The material is injected, and the unexpanded portion of the microcapsule is expanded by the residual heat of the liquid molten resin and the heat-expandable microcapsule after the injection so that the inside of the cavity is completely filled, so that a fine hollow sphere is uniformly formed in the molded product. A method for manufacturing an impeller for a blower, characterized by being dispersed.

【0016】[0016]

【発明の実施の形態】以下、本発明の一実施例を図1〜
図3にもとづいて説明する。図1は、本発明に係る送風
機用羽根車の外観斜視図である。送風機用羽根車は、中
央のハブ部3の中心にモータのシャフトと結合するため
のボス部4が形成されており、ハブ部3の周囲に複数枚
の羽根部2が設けられている。この羽根部2は、図3に
示す通り、ハブ部3への取り付け部分が最も厚肉となり
外周へいくに従って徐々に薄くなっている。また、羽根
車2の断面形状は、図2に示す通り翼形形状となってお
り薄肉〜厚肉〜薄肉へと徐々に変化している。なお、5
はモータシャフトとの嵌合をより確実に行う為にインサ
ート成形された金属製のワッシャである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will now be described with reference to FIGS.
Description will be given based on FIG. FIG. 1 is an external perspective view of an impeller for a blower according to the present invention. In the impeller for a blower, a boss 4 for coupling with a motor shaft is formed at the center of a central hub 3, and a plurality of blades 2 are provided around the hub 3. As shown in FIG. 3, the blade portion 2 has the thickest portion attached to the hub portion 3 and becomes gradually thinner toward the outer periphery. Further, the cross-sectional shape of the impeller 2 is an airfoil shape as shown in FIG. 2 and gradually changes from thin to thick to thin. In addition, 5
Is a metal washer that is insert-molded to more securely fit the motor shaft.

【0017】次に、本発明で用いる樹脂材料について説
明する。本発明の羽根車は、熱膨張性マイクロカプセル
を一旦ペレット状に加工しこのペレットを熱可塑性樹脂
に混合してなる材料にて射出成形されている。母材とな
る熱可塑性樹脂樹脂は、例えば、ポリプロピレン、ポリ
エチレン等のオレフィン系の樹脂材料であり、該熱可塑
性樹脂は、後述する熱膨張性マイクロカプセルが熱によ
り膨張開始する温度以下の溶融温度をもつものであれば
特に制約がない。
Next, the resin material used in the present invention will be described. The impeller of the present invention is formed by injection molding a material obtained by processing thermally expandable microcapsules into pellets and mixing the pellets with a thermoplastic resin. The thermoplastic resin serving as a base material is, for example, an olefin-based resin material such as polypropylene or polyethylene, and the thermoplastic resin has a melting temperature equal to or lower than a temperature at which a heat-expandable microcapsule described later starts to expand by heat. There is no particular restriction as long as it has.

【0018】また、前記熱可塑性樹脂に混合するペレッ
トは、前述の如く熱膨張性マイクロカプセルを一旦ペレ
ット状に加工したものが用いられ、このペレットの性質
としては、ある一定以上の温度がかかると軟化する熱可
塑性樹脂材料を外殻樹脂として内部に熱によりガス化す
るイソブタン、イソペンタン等の炭化水素を内包した熱
膨張性マイクロカプセルをペレット化したものである。
なお、前記熱膨張性マイクロカプセルの具体例として
は、イソブタン、イソペンタン等の炭化水素を塩化ビニ
リデン/アクリロニトリルの共重合体等のガスバリヤー
効果の大きい熱可塑性樹脂で包んだもので、例えば日本
フィライト(株)のEXPANCELがあげられる。
As the pellets to be mixed with the thermoplastic resin, those obtained by processing the heat-expandable microcapsules once into pellets as described above are used. It is formed by pelletizing heat-expandable microcapsules containing a hydrocarbon such as isobutane or isopentane which is gasified by heat inside using a softening thermoplastic resin material as an outer shell resin.
As a specific example of the heat-expandable microcapsules, a hydrocarbon such as isobutane and isopentane is wrapped with a thermoplastic resin having a large gas barrier effect such as a vinylidene chloride / acrylonitrile copolymer. EXPANCEL, Inc.).

【0019】次に、前記熱膨張性マイクロカプセルが射
出成形時にどのようにして膨張し、成形品の中に微細な
中空球体(以下、マイクロバルーンという。)として均
一に分散するのかを説明する。前記ペレットは、射出成
形機のミキシング工程の加熱により膨張して嵩が増え
る。この素材をキャビティ内に空間部が10〜30%残
るようにして射出し、射出後の溶融樹脂と熱膨張性マイ
クロカプセルの余熱によりキャビティ内が完全に埋まる
までマイクロカプセルが膨張するようになっている。な
お、熱膨張性マイクロカプセルを効率よく成形品の中に
均一分散させるには、射出成形のミキシング工程におい
て熱膨張性マイクロカプセルを破壊させずに、また、製
品となる金型のキャビティ内で効率よく膨張させること
がポイントである。
Next, how the thermally expandable microcapsules expand during injection molding and are uniformly dispersed as fine hollow spheres (hereinafter, referred to as microballoons) in a molded product will be described. The pellets expand due to heating in the mixing step of the injection molding machine and increase in bulk. This material is injected such that a space portion remains in the cavity by 10 to 30%, and the microcapsules expand until the inside of the cavity is completely filled by the residual heat of the injected molten resin and the thermally expandable microcapsules. I have. In order to efficiently disperse the heat-expandable microcapsules uniformly in the molded product, the heat-expandable microcapsules are not destroyed in the mixing step of injection molding, and are also efficiently dissipated in the cavity of the mold as a product. The point is to expand well.

【0020】つまり、前記の膨張したマイクロカプセ
ル、すなわちマイクロバルーンは外殻がわずか厚さ約
0.1μm程度であるから、さながらビニール風船のよ
うなものである。従って成形条件を適切に選定しないと
マイクロバルーンが成形工程で破壊することになる。
That is, the above-mentioned expanded microcapsules, that is, microballoons, are just like a vinyl balloon because the outer shell is only about 0.1 μm thick. Therefore, if the molding conditions are not properly selected, the microballoon will be broken in the molding process.

【0021】本発明者は、成形条件を種々検討し次の成
形条件により本発明の送風機用羽根車1を製作した。材
料の配合比率としては、ポリプロピレン90重量部に、
熱膨張性マイクロカプセルを3重量部含有したペレット
10重量部を添加混合した。また、射出成形について
は、送風機用羽根車1の形状となるキャビティ内に10
〜30%の空間部を残して射出し、射出後の溶融樹脂と
熱膨張性マイクロカプセルの余熱にによりキャビティ内
が完全に埋まるように未膨張のマイクロカプセルを膨張
させ、微細な中空球体が成形品中に均一に分散できるよ
うにした。この時、射出成形機のミキシング部の温度は
170℃〜180℃、可塑化時間は約50sec、射出
時間は約3Sec、冷却時間は60〜100sec、金
型温度は約50℃である。
The inventor studied various molding conditions and manufactured the impeller 1 for a blower of the present invention under the following molding conditions. As the compounding ratio of the materials, 90 parts by weight of polypropylene,
10 parts by weight of pellets containing 3 parts by weight of thermally expandable microcapsules were added and mixed. Also, for injection molding, 10 cavities are formed in the cavity of the shape of the impeller 1 for the blower.
Injecting leaving 30% of space part, expand the unexpanded microcapsule by the molten resin after injection and the residual heat of the thermally expandable microcapsule so that the cavity is completely filled, and form a fine hollow sphere It was made to be able to be evenly dispersed in the product. At this time, the temperature of the mixing section of the injection molding machine is 170 ° C. to 180 ° C., the plasticization time is about 50 sec, the injection time is about 3 sec, the cooling time is 60 to 100 sec, and the mold temperature is about 50 ° C.

【0022】上記成形条件で成形した送風機用羽根車1
は、 熱膨張性マイクロカプセルを含有しない場合に比べ
て約40%の重量低減をはかることができる。 外観上、ヒケ、反り等がなく、かつ各ブレードの重
量分布が均一な理想の翼形状を得ることができる。 マイクロバルーン(微細な中空球体)は内部が中空
であるから、内部の空間が防音効果を果し、騒音の低減
を図ることができる。 分散した熱膨張性マイクロカプセルは瞬時に個々に
膨張を終えるから、厚肉成形であるにもかかわらず、通
常の射出成形品とほぼ同じ成形サイクルタイムで成形が
可能である。
An impeller 1 for a blower molded under the above molding conditions.
Can reduce the weight by about 40% as compared with the case where no heat-expandable microcapsules are contained. It is possible to obtain an ideal wing shape in which there is no sink mark, warpage or the like in appearance and the weight distribution of each blade is uniform. Since the inside of the microballoon (fine hollow sphere) is hollow, the inside space has a soundproofing effect and noise can be reduced. Since the dispersed heat-expandable microcapsules are instantaneously expanded individually, molding can be performed with almost the same molding cycle time as a normal injection-molded product despite thick molding.

【0023】[0023]

【発明の効果】以上の説明により理解されるごとく本発
明は送風機用羽根車1を構成する羽根部2とハブ部3を
有機系マイクロバルーン(微細な中空球体)を含有した
熱可塑性樹脂材料で成形したものであるから、羽根部の
肉厚を理想の厚みに成形でき、軽量化生産性向上をはか
ることができ、その実用的効果は極めて大なるものであ
る。
As understood from the above description, in the present invention, the blade part 2 and the hub part 3 constituting the impeller 1 for the blower are made of a thermoplastic resin material containing organic microballoons (fine hollow spheres). Since it is formed, the thickness of the blade portion can be formed to an ideal thickness, the weight can be reduced and the productivity can be improved, and its practical effect is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の送風機用羽根車の外観斜視図。FIG. 1 is an external perspective view of an impeller for a blower according to the present invention.

【図2】 同羽根車の羽根部のA−A断面図。FIG. 2 is a sectional view taken along line AA of a blade portion of the impeller.

【図3】 同羽根車をモータのシャフトに取り付けた状
態を示す縦断面図。
FIG. 3 is a longitudinal sectional view showing a state where the impeller is attached to a motor shaft.

【符号の説明】[Explanation of symbols]

1.送風機用羽根車 2.羽根部 3.ハブ部
4.ボス部 5.ワッシャ 6.モータ 7.モータシャ
フト 8.ナット。
1. 1. Impeller for blower Blade part 3. Hub part
4. Boss part 5. Washer 6. Motor 7. Motor shaft 8. nut.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】熱膨張性マイクロカプセルを一旦ペレット
状に加工しこのペレットを熱可塑性樹脂に混合してなる
材料にて、送風機用羽根車1を構成する複数枚の羽根部
2及びハブ部3を射出成形するにあたり、射出成形機の
ミキシング工程にて熱膨張性マイクロカプセルの一部を
微細な中空球体に膨張させ、次いでキャビティ内に10
〜30%の空間部を残してこの材料を射出し、射出後の
液溶融樹脂と熱膨張性マイクロカプセルの余熱により前
記マイクロカプセルの未膨張分をキャビティ内が完全に
埋まるように膨張させ、成形品中に微細な中空球体を均
一に分散させるようにしたことを特長とする送風機用羽
根車の製造方法。
1. A plurality of blade portions 2 and a hub portion 3 constituting an impeller 1 for a blower made of a material obtained by processing a thermally expandable microcapsule into a pellet shape and mixing the pellet with a thermoplastic resin. In injection molding, a part of the heat-expandable microcapsules is expanded into fine hollow spheres in a mixing step of an injection molding machine, and then 10 μm is introduced into the cavity.
This material is injected leaving a space portion of about 30%, and the unexpanded portion of the microcapsule is expanded by the residual heat of the liquid molten resin after injection and the heat-expandable microcapsule so as to completely fill the cavity, and molded. A method for manufacturing an impeller for a blower, characterized in that fine hollow spheres are uniformly dispersed in a product.
JP8267852A 1996-09-17 1996-09-17 Manufacture of impeller for blower Pending JPH1089298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8267852A JPH1089298A (en) 1996-09-17 1996-09-17 Manufacture of impeller for blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8267852A JPH1089298A (en) 1996-09-17 1996-09-17 Manufacture of impeller for blower

Publications (1)

Publication Number Publication Date
JPH1089298A true JPH1089298A (en) 1998-04-07

Family

ID=17450535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8267852A Pending JPH1089298A (en) 1996-09-17 1996-09-17 Manufacture of impeller for blower

Country Status (1)

Country Link
JP (1) JPH1089298A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264173A (en) * 2001-03-08 2002-09-18 Fujitsu General Ltd Method for manufacturing synthetic resin molded article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264173A (en) * 2001-03-08 2002-09-18 Fujitsu General Ltd Method for manufacturing synthetic resin molded article
JP4506924B2 (en) * 2001-03-08 2010-07-21 株式会社富士通ゼネラル Manufacturing method of synthetic resin molding

Similar Documents

Publication Publication Date Title
US7294302B2 (en) Method for controlling thickness of skin layer of composite resin molded product
US4498667A (en) Process for coating ball cores
CN110862673B (en) Foaming thermoplastic elastomer material for 3D printing and preparation method thereof
CN100369732C (en) Method for rotational moulding of a workpiece comprising a thermoplastic foam layer
JP4506924B2 (en) Manufacturing method of synthetic resin molding
US6315931B1 (en) Method of producing a foamed granulate
EP0341310A1 (en) Injection molding method
JPH1089298A (en) Manufacture of impeller for blower
JP3754784B2 (en) Manufacturing method of impeller for blower
JPS61177216A (en) Manufacture of plastic foam
CN107685413B (en) A method of by low temperature microspheres expanded polypropylene plastics
JP5870095B2 (en) Process for producing improved foamed PVC and plastic material based on foamed PVC obtained therewith
JP2008142997A (en) Method for manufacturing injection-foamed article and molding obtained by the method
JP2001041196A (en) Impeller for blower
JPH1077995A (en) Impeller for blower
JP2001293742A (en) Method for manufacturing injection-molded article
JPS60264237A (en) Manufacture of blank for fiber reinforced plastic bolt material
JP3316171B2 (en) Thick axial flow fan molding method
CN108621395A (en) A kind of the foaming concentrate manufacturing process and tire manufacture craft of solid tire
JPH0292377A (en) Resin ball having countless independent small bubble in sphere, and manufacture of its resin ball
JP2565735B2 (en) Method for manufacturing resin molded product
JPS58147333A (en) Blow molding method for thermosetting resin
JP3020764B2 (en) Phenolic resin molding material for injection molding
JP2002332372A (en) Foamed resin molding and method for producing the same
JP2001170946A (en) Method for injecting resin composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050315