JPH1089075A - Device and method for making pendulum piston to serve as energy preserving cycle - Google Patents

Device and method for making pendulum piston to serve as energy preserving cycle

Info

Publication number
JPH1089075A
JPH1089075A JP9088973A JP8897397A JPH1089075A JP H1089075 A JPH1089075 A JP H1089075A JP 9088973 A JP9088973 A JP 9088973A JP 8897397 A JP8897397 A JP 8897397A JP H1089075 A JPH1089075 A JP H1089075A
Authority
JP
Japan
Prior art keywords
reduced
piston
diameter
combustion chamber
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9088973A
Other languages
Japanese (ja)
Inventor
Hiroyasu Tanigawa
浩保 谷川
Kazunaga Tanigawa
和永 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9088973A priority Critical patent/JPH1089075A/en
Publication of JPH1089075A publication Critical patent/JPH1089075A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase a compression ratio and realize improvement of output in a device in which a crankshaft is rotated through a pendulum arm by the reciprocating motion of a double-end diameter enlarged piston, by arranging cams for retaining the intermediate part and one end of the pendulum arm on the double-end enlarged piston side and a main body side. SOLUTION: Two double-end diameter enlarged pistons are fitted to a pair of cylinders oppositely arranged, and the head parts of these double-end diameter enlarged pistons are formed into an appropriate recessed part, thereby a diameter enlarged combustion chamber is partitioned. Diameter contracted pistons are projected from the approximately centers of the appropriate recessed parts of these diameter enlarged pistons, so that a diameter contracted main combustion chamber can be partitioned, and combustion gas can be injected at a super high speed from the diameter contracted main combustion chamber when the isolation of the diameter enlarged pistons is released. Annular uneven parts 5... which are perpendicular to a piston moving direction are arranged in the peripheral surface of the diameter contracted piston, and also a noise reducing groove 11 slantly extended is arranged in the projected part at an end. Then, a pendulum arm is engaged with and retained in a pendulum hole 6 arranged in an approximately center between the double-end diameter enlarged pistons through a cam, and the swinging motion of the pendulum arm is transmitted to a crankshaft 25.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ピストンの往復運
動を回転動力に変換するエネルギ変換効率を高めるた
め、振り子運動クランク機構を採用すると共に、力学的
エネルギ保存の法則を利用して、死点後の所定期間に亘
って例えば5分の1等に縮径した縮径主燃焼室内隔離燃
焼として、死点近傍でのエネルギ使用量(ピストン行程
容積)を僅少として燃料の節減を図ると共に、大部分の
熱エネルギは保存貯金により大増大して(圧力上昇し
て)、隔離解除時(死点後クランク角度で30°乃至7
0°)に最高燃焼圧力に近づけることにより、死点後6
0°(以後クランク角度を省略する)前後のエネルギ変
換効率の絶好機前半前後(図1B参照)の回転動力を大
増大すると同時に、近似定容燃焼として公害の大低減を
図るエネルギ保存サイクルとする装置及び方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention employs a pendulum motion crank mechanism to increase the energy conversion efficiency of converting the reciprocating motion of a piston into rotational power, and utilizes the law of conservation of mechanical energy to achieve a dead center. For the subsequent predetermined period, the isolated combustion in the reduced-diameter main combustion chamber, for example, reduced to one fifth or the like, reduces the amount of energy used near the dead center (piston stroke volume) to save fuel and increase fuel consumption. The thermal energy of the part is greatly increased (by pressure increase) due to the savings, and when the isolation is released (30 ° to 7 ° crank angle after dead center)
0 °) and approaching the maximum combustion pressure, 6
An energy preservation cycle that substantially increases the rotational power of the energy conversion efficiency around 0 ° (hereinafter, crank angle is omitted) before and after the first half of the perfect aircraft (see FIG. 1B), and at the same time reduces the pollution as near constant volume combustion. Apparatus and method.

【0002】[0002]

【従来の技術】特願平7─79292(第1出願)の概
要は、通常の往復ピストンサイクルをエネルギ保存サイ
クルとする手段のうち、主として縮径主燃焼室内隔離燃
焼水噴射してエネルギ変換(低温の過熱水蒸気に大変
換)により拡径燃焼室を大幅に低温低圧の燃焼室として
断熱無冷却機関を提供するものです。特願平8─272
07(第2出願)の概要は、特別発明の逆振り子ピスト
ンサイクルを多種類のエネルギ保存サイクルとしたもの
です。特願平8─78414(優先権主張第3出願)の
概要は、通常の往復ピストンサイクルをエネルギ保存サ
イクルとするための主要部を説明したものです。特願平
8─122114(優先権主張第4出願)の概要は、通
常の往復ピストンサイクルをエネルギ保存サイクルとす
る方法及び装置を提供したものです。特願平8─172
752(優先権主張第5出願)の概要は、特別発明の振
り子ピストンをエネルギ保存サイクルとする方法及び装
置を提供したものです。従って、いずれも適宜に縮径さ
れた縮径主燃焼室内隔離燃焼により、死点乃至死点後3
0°付近の回転動力変換効率の最悪機には、熱エネルギ
は保存貯金により大増大(少量の燃料で圧力を大上昇さ
せる)して、回転動力変換効率の絶好機前半付近で大回
転力として、熱効率を大上昇すると共に、近似定容燃焼
及び隔離解除時燃焼により公害の大低減を図るもので
す。
2. Description of the Related Art An outline of Japanese Patent Application No. 7-79292 (first application) is that energy conversion is mainly performed by injecting isolated combustion water mainly in a reduced diameter main combustion chamber among means for making an ordinary reciprocating piston cycle an energy storage cycle. This is to provide an adiabatic non-cooled engine with a large-diameter combustion chamber as a low-temperature and low-pressure combustion chamber by large conversion to low-temperature superheated steam. Japanese Patent Application No. 8-272
The outline of 07 (second application) is a special invention of the inverted pendulum piston cycle with various types of energy conservation cycles. The outline of Japanese Patent Application No. 8-78414 (third application claiming priority) describes the main parts for making a normal reciprocating piston cycle an energy conservation cycle. The outline of Japanese Patent Application No. 8-122114 (Fourth priority application) provides a method and apparatus for making a normal reciprocating piston cycle an energy conservation cycle. Japanese Patent Application No. 8-172
The summary of 752 (Fifth Priority Application) provides a method and apparatus for using a special invention pendulum piston as an energy conservation cycle. Therefore, in each case, the isolated combustion in the reduced-diameter main combustion chamber whose diameter has been appropriately reduced causes the dead center or 3% after the dead center.
In the worst case of the rotational power conversion efficiency near 0 °, the thermal energy is greatly increased by saving the savings (the pressure is greatly increased with a small amount of fuel), and as the large rotational force near the first half of the ideal machine of the rotational power conversion efficiency, Along with greatly increasing the thermal efficiency, we aim to greatly reduce pollution by approximating constant volume combustion and combustion at the time of release of isolation.

【0003】[0003]

【発明が解決しようとする課題】上述の如く、エネルギ
保存サイクルとすると、熱効率を大上昇しながら公害の
大低減が可能なのに加えて、限りなく多くの構成が可能
なため、多くの構成を提供しておりますが、とくに振り
子ピストンクランク機構が構造簡単で小型軽量大出力に
出来るため、発明を継続するものです。即ち、往復ピス
トンクランク機構には、死点乃至死点後30°付近に動
力変換効率の非常に悪い部分があり、従来技術ではこの
部分で最大の熱エネルギ(圧縮圧力以上の熱エネルギ)
の略全部を消費するため、大部分の熱エネルギが摩擦損
失の増大等に使用されて、動力変換効率の絶好機には熱
エネルギが殆ど無くなり、熱効率が大低減するし、燃焼
の初期から燃焼室容積が急拡大するため、低圧低温の極
度の非定容燃焼となり、最悪の燃焼条件燃焼に急移行す
るため、未燃分低減燃焼にするとNOx増大燃焼とな
り、NOx低減燃焼にすると未燃分増大燃焼となって、
排気ガス公害が大増大して、熱効率が大低減して技術の
壁に衝突する通常の課題があります。
As described above, when the energy storage cycle is used, in addition to being able to greatly reduce pollution while greatly increasing thermal efficiency, an unlimited number of configurations are possible, so that many configurations are provided. We have continued our invention, especially because the pendulum piston crank mechanism has a simple structure and can be small, light and large. That is, the reciprocating piston crank mechanism has a very poor power conversion efficiency at the dead center or around 30 ° after the dead center. In the conventional technology, this portion has the maximum heat energy (heat energy higher than the compression pressure).
Because almost all of the heat is consumed, most of the heat energy is used to increase frictional loss, etc., and heat energy is almost completely eliminated in the prime mover of power conversion efficiency, and the heat efficiency is greatly reduced. Since the chamber volume suddenly increases, the combustion becomes extremely non-constant volume combustion at low pressure and low temperature, and the combustion suddenly shifts to the worst combustion condition combustion. Therefore, when the unburned combustion is reduced, the combustion becomes NOx increased. Increased combustion,
Exhaust gas pollution is greatly increased, thermal efficiency is greatly reduced, and there are the usual challenges of hitting technology barriers.

【0004】そこでこの発明は、エネルギ保存サイクル
とする装置及び方法として、図1・図2の如く死点に近
い部分に限定して、例えば5分の1に縮径した(以下5
分の1に縮径した例に統一して説明する)縮径主燃焼室
内隔離燃焼(図1A・図2A・図3A)として、死点近
傍でのエネルギ使用(ピストンの行程容積)を25分の
1等必要最小限として燃料の大節減を図り、大部分の熱
エネルギ例えば25分の24等の熱エネルギは保存貯金
により大増大(圧力大上昇)して、死点後の最適時に縮
径主燃焼室内隔離燃焼を解除して、例えば死点後60°
前後に最大熱エネルギ使用量又は最大軸受荷重を移動し
て、例外として超小型高速機関では図1Aの死点後30
°直前の隔離解除も有効として、死点後60°乃至90
°の絶好機前半(以下死点後60°乃至90°を絶好機
前半と称す)前後で熱エネルギを集中使用することで、
結果として同一圧縮比での熱効率と比出力を飛躍的に上
昇すると共に、圧縮比の大上昇を可能にして、通常の全
燃焼期間(40°乃至60°)を縮径主燃焼室内隔離燃
焼及び該隔離解除燃焼として、高温高圧の最良の燃焼条
件のままの近似定容燃焼長時間持続して、定容燃焼に大
接近(以下近似定容燃焼と称す)させて、完全燃焼短時
間終了させると共に、隔離解除時の最大圧力差による超
高速攪拌混合燃焼により更に完全燃焼短時間終了させ
て、未燃分を排出する可能性を皆無にすることで、NO
xの大低減に専念可能として公害の大低減を図る、エネ
ルギ保存サイクルとする装置及び方法を提供することを
主目的とします。
Accordingly, the present invention is directed to an apparatus and a method for performing an energy preservation cycle in which the diameter is reduced to, for example, one-fifth (hereinafter referred to as 5), limited to a portion near a dead center as shown in FIGS.
As an example of reduced combustion in the main combustion chamber with reduced diameter (FIG. 1A, FIG. 2A, and FIG. 3A), energy use near the dead center (stroke volume of the piston) is reduced to 25 minutes. As a necessary minimum, the fuel consumption is reduced as much as possible, and most of the heat energy, for example, 24/25, is greatly increased (large pressure increase) by the savings, and the diameter is reduced at the optimal time after the dead center. Release isolated combustion in the main combustion chamber, for example, 60 ° after dead center
Moving the maximum thermal energy usage or the maximum bearing load back and forth, except for a micro high-speed engine which is 30
° The release immediately before isolation is also effective, 60 ° to 90% after dead center
By using heat energy concentrated around the first half of the best opportunity (hereinafter 60 ° to 90 ° after dead center is called the first half of the best opportunity),
As a result, the thermal efficiency and specific output at the same compression ratio are dramatically increased, and the compression ratio can be greatly increased, so that the normal entire combustion period (40 ° to 60 °) can be performed by the isolated combustion in the reduced-diameter main combustion chamber. As the de-isolation combustion, the approximate constant volume combustion is maintained for a long time under the best combustion conditions of high temperature and high pressure, and the constant volume combustion is approached (hereinafter referred to as approximate constant volume combustion) to complete the short period of complete combustion. At the same time, ultra-high-speed agitation mixed combustion based on the maximum pressure difference at the time of release of isolation further completes the combustion for a short period of time, thereby eliminating the possibility of discharging unburned components.
The main object of the present invention is to provide an apparatus and a method for an energy conservation cycle that can concentrate on a large reduction of x and aim at a great reduction of pollution.

【0005】本発明の他の目的は、完全弾性衝突では衝
突の際に運動エネルギーが減少しないことが証明されて
おり、時計の振り子運動も運動エネルギの減少損失が非
常に少ないため、ピストンの往復運動を運動エネルギの
減少損失が最も少ないエネルギ保存サイクルとする装置
及び方法とすることである。本発明の他の目的は、通常
の全燃焼期間を最高燃焼圧力・最高燃焼温度の最良の燃
焼条件のままの燃焼期間及び/適宜に水噴射を追加した
過熱水蒸気質量にエネルギ変換した高圧中温長時間隔離
燃焼により及び/更に隔離解除時の大圧力差による燃焼
ガス超高速噴射攪拌燃焼により、石油・プロパン・水素
・天然ガス・メタノール等のあらゆる燃料を、サイクル
数・燃料点火方式・掃気方式を問わずに中温完全燃焼終
了させて、NOxと未燃分を同時に皆無に近づけるエネ
ルギ保存サイクルとする装置及び方法とすることであ
る。本発明の他の目的は、運動エネルギの減少損失を大
低減すると共に死点近傍では大部分の熱エネルギを保存
貯金により大増大して、絶好機前半前後に集中使用する
ことで熱効率70%前後の完全往復機関を含むエネルギ
保存サイクルとする装置及び方法とすることである。本
発明の他の目的は、振動が少なく、小型軽量大出力及び
超大型軽量大出力のエネルギ保存サイクルとする装置及
び方法とすることである。本発明の他の目的は、縮径主
燃焼室内希薄燃焼及び理論空燃比燃焼及び燃料過剰燃焼
及び比出力増大燃焼(超ショートストローク機関が可能
な燃焼)としたエネルギ保存サイクルとする装置及び方
法とすることである。
Another object of the present invention is that it has been proved that the kinetic energy does not decrease at the time of collision in a completely elastic collision, and the pendulum movement of the watch has a very small loss of kinetic energy. The object is to provide an apparatus and a method in which the exercise is an energy conservation cycle with the least loss of kinetic energy. Another object of the present invention is to provide a high-pressure medium-temperature length in which the normal whole combustion period is energy-converted into a combustion period under the best combustion conditions of the maximum combustion pressure and the maximum combustion temperature and / or a superheated steam mass to which water injection is appropriately added. All fuels such as petroleum, propane, hydrogen, natural gas, methanol, etc. can be cycled, fuel-ignited, and scavenged by super-high-speed injection and agitation combustion of combustion gas due to time-separated combustion and / or a large pressure difference at the time of separation release. Regardless of the present invention, an apparatus and a method for achieving an energy conservation cycle in which complete combustion at medium temperature is completed and NOx and unburned components are almost completely eliminated at the same time. Another object of the present invention is to greatly reduce the loss of kinetic energy and greatly increase most of the heat energy near the dead center by storing and saving, so that the thermal efficiency is around 70% by concentrated use around the first half of the perfect aircraft. And an energy conservation cycle including a complete reciprocating engine. It is another object of the present invention to provide an apparatus and a method for energy saving cycles of small vibration, small size, light weight, and large output and ultra-large, lightweight, large output. Another object of the present invention is to provide an apparatus and a method for an energy conservation cycle of lean combustion in a reduced diameter main combustion chamber, stoichiometric air-fuel ratio combustion, excess fuel combustion, and increased specific output combustion (combustion that can be performed by a super short stroke engine). It is to be.

【0006】[0006]

【課題を解決するための手段】本発明は以上の課題に鑑
み、ピストン下降に伴って急激に燃焼室容積が増大して
温度低下する、従来技術の極度の非定容燃焼(図1D)
による公害増大燃焼を改良して、例えば死点近傍に限定
して5分の1に縮径した縮径主燃焼室内隔離燃焼(図1
A・図2A・図3A)として、後述するエネルギ保存サ
イクルにすると共に、副産物の定容燃焼に大接近した近
似定容燃焼として、通常の全燃焼期間(40°乃至60
°)を最高燃焼圧力最高燃焼温度の最良の燃焼条件のま
まの燃焼及び/それ以上の最大圧力差による隔離解除時
超高速燃焼ガス噴射攪拌混合燃焼として、燃焼そのもの
を大改良して未燃分の残留する要素を皆無に近づけなが
ら、該近似定容燃焼に相当する熱エネルギの使用量(縮
径ピストン の行程容積)として、例えば従来技術の容
積増大を1として25分の1の容積増大する近似定容燃
焼では、熱エネルギの使用量が25分の1で25分の2
4−漏洩量の熱エネルギは力学的エネルギ保存の法則及
び近似定容燃焼により、縮径主燃焼室に保存貯金されて
大増大(圧力大上昇)(図1A)するため、燃料燃焼質
量の大低減が可能になり、隔離解除時(図1B)に大増
大した25分の24の熱エネルギが絶好機前半前後に集
中高速噴射使用されるため、略最大圧力差で燃焼ガスの
超高速噴射攪拌混合燃焼により超最良の燃焼条件燃焼と
して及び/絶好機に軸受荷重が最大となるため超大回転
力として及び/縮径主燃焼室内燃料過剰燃焼及び理論空
燃比燃焼及び希薄燃焼を含めた大回転力公害大低減燃焼
及び/熱効率と軽量大比出力同時大上昇が可能なエネル
ギ保存サイクルとする装置及び方法とします。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention provides a conventional non-constant-volume combustion (FIG. 1D) in which the volume of the combustion chamber rapidly increases and the temperature decreases as the piston descends.
The isolated combustion in the reduced-diameter main combustion chamber whose diameter has been reduced to one-fifth by limiting the
A, FIG. 2A, and FIG. 3A), an energy conservation cycle described later is performed, and a normal full combustion period (40 ° to 60 ° C.) is performed as an approximate constant volume combustion that is very close to the constant volume combustion of by-products.
°) is the maximum combustion pressure, the combustion under the best combustion conditions of the maximum combustion temperature, and / or the super-high-speed combustion gas injection agitation mixed combustion at the time of isolation release by the maximum pressure difference more than that. As the amount of heat energy (stroke volume of the reduced diameter piston) corresponding to the approximate constant volume combustion is increased, for example, the volume is increased by a factor of 25 with the volume increase of the prior art being 1 while keeping the remaining elements close to zero. In approximate constant volume combustion, the amount of heat energy used is 1/25 and 2/25
4- The thermal energy of the leakage amount is stored and stored in the reduced-diameter main combustion chamber and greatly increased (large pressure increase) (FIG. 1A) due to the law of conservation of mechanical energy and the approximate constant volume combustion, so that the mass of fuel combustion increases. It is possible to reduce the heat energy, and when the isolation is released (FIG. 1B), the heat energy of 24/25, which is greatly increased, is used for concentrated high-speed injection before and after the first half of the ideal machine. Mixed combustion provides the best combustion conditions for combustion and / or super-high torque due to the maximum bearing load on the perfect machine and / or large rotational power pollution including excessive fuel combustion in the reduced diameter main combustion chamber and stoichiometric air-fuel ratio combustion and lean combustion An energy saving cycle and method that enables a large reduction in combustion and / or thermal efficiency and a large increase in lightweight and large specific output simultaneously.

【0007】又、残留ガスの多い縮径主燃焼室内隔離燃
焼によりNOxの低減燃焼としますが、燃焼室が次第に
大型になると燃焼温度も次第に上昇してNOx増大燃焼
となるため、適宜に水噴射装置を追加して、高温の燃焼
ガス温度を低温の過熱水蒸気質量容積にエネルギ変換し
て、拡径燃焼室を大幅に低温低圧の燃焼室兼無駄容積と
して及び/縮径主燃焼室内希薄燃焼及び理論空燃比燃焼
及び燃料過剰燃焼として及び/死点近傍の振動要素を大
低減して大幅に拡径軽量化可能な拡径燃焼室として及び
/大幅に低温低圧の拡径燃焼室により断熱無冷却機関を
可能にして及び/超ショートストローク機関を可能にし
て、選択幅の非常に広いエネルギ保存サイクルとする装
置及び方法とします。即ち、従来技術をエネルギ保存サ
イクルにすると懸案が略全部解決されるため、同一圧縮
比でも機械損失を大低減しながら圧縮比を大上昇した以
上の効果があるため、従来技術最高の熱効率55%を火
花点火機関で越える予想ですが、熱効率70%前後の完
全往復機関を得るためには、更に運動エネルギの減少損
失を10%前後低減して皆無に近づける必要があると予
想しております。即ち、完全弾性衝突では衝突の際に運
動エネルギが減少しないことが証明されており、時計の
振り子の往復運動も運動エネルギの減少損失が非常に少
ない往復運動として使用されております。従ってピスト
ンの往復運動を完全弾性衝突に近づけると共に、クラン
ク機構も振り子運動クランク機構に置換して、振り子ピ
ストンにより運動エネルギの減少損失を10%前後低減
して、振り子ピストンをエネルギ保存サイクルとする装
置及び方法により熱効率70%前後の完全往復機関を含
めることを予定するものです。
[0007] In addition, NOx reduction combustion is performed by isolated combustion in the reduced diameter main combustion chamber containing a large amount of residual gas. However, when the combustion chamber becomes gradually larger, the combustion temperature also gradually rises and NOx increase combustion occurs. The device is added to convert the high-temperature combustion gas temperature into the low-temperature superheated steam mass volume to convert the large-diameter combustion chamber into a low-temperature and low-pressure combustion chamber and a waste volume, and / or the lean combustion and the lean main combustion chamber. As stoichiometric air-fuel ratio combustion and excessive fuel combustion, and / or as a large-diameter combustion chamber that can greatly reduce the diameter and weight by greatly reducing vibration elements near the dead center, and / or adiabatic and non-cooling with a large-temperature, low-pressure large-diameter combustion chamber An apparatus and method for enabling an engine and / or enabling an ultra short stroke engine with a very wide choice of energy conservation cycles. That is, when the conventional technology is used as an energy storage cycle, almost all concerns are solved, and even if the compression ratio is the same, there is an effect of greatly increasing the compression ratio while greatly reducing the mechanical loss. It is anticipated that spark ignition engines will exceed this, but in order to obtain a complete reciprocating engine with a thermal efficiency of around 70%, it is necessary to further reduce the loss of kinetic energy by around 10% and make it almost zero. In other words, it has been proven that the kinetic energy does not decrease in the case of a perfect elastic collision, and the reciprocating motion of the pendulum of the watch is also used as a reciprocating motion with very little loss of kinetic energy. Therefore, the reciprocating motion of the piston is approximated to a completely elastic collision, and the crank mechanism is also replaced by a pendulum motion crank mechanism, whereby the kinetic energy reduction loss is reduced by about 10% by the pendulum piston, thereby making the pendulum piston an energy conservation cycle. It is planned to include a complete reciprocating engine with a thermal efficiency of around 70% depending on the method and method.

【0008】クランク機構には、死点乃至死点後30°
の動力変換効率の非常に悪い部分が(図1D)あり、従
来技術ではこの部分で最大(圧縮圧力以上)の熱エネル
ギの略全部を消費するため、大部分の熱エネルギが摩擦
損失の増大等に消費されて、絶好機には熱エネルギが殆
ど無くなり、回転力が大低減するし、ピストンの下降と
共に燃焼室容積が急激に増大するため、燃焼温度が急降
下して最悪の燃焼条件に急移行する極度の非定容燃焼と
なり、排気ガス公害が大増大して熱効率が大低下するた
め、本発明は、死点近傍での熱エネルギ使用量(ピスト
ン行程容積)は、必要最少限として燃料を節減して保存
貯金(図1A)により大増大して、動力変換効率の絶好
機前半前後に集中使用することで、最大軸受荷重を絶好
機に近づけて大回転力とする及び/熱効率及び軽量大比
出力を同時に大上昇して及び/近似定容燃焼及び隔離解
除時燃焼により未燃分の残留する可能性を皆無に近づけ
て及び/燃焼法の改良により残留ガスの大増大及びNO
xの大低減を可能にして及び/近似定容燃焼により縮径
主燃焼室内水噴射の追加を可能にして断熱無冷却機関を
可能にして/サイクル数・燃料点火方式・燃料の種類・
掃気方式を問わず公害大低減燃焼として/エネルギ損失
及び機械損失を大低減して圧縮比を大増大した以上の効
果(図1B)を発生させます。即ち、一方向空気流路を
具備することで、死点近傍に限定した例えば5分の1に
縮径した縮径主燃焼室内隔離燃焼として、略25分の2
4の熱エネルギは縮径主燃焼室に保存貯金により大増大
して、大部分の熱エネルギは略最大圧力差による、速度
形動圧大熱エネルギ+容積形熱エネルギとして両頭拡径
ピストンの頭部に噴射して、従来技術では熱エネルギが
殆ど残っていない絶好機前半(図1C)を含めて集中使
用することで、圧縮比を大増大した以上の大回転力を発
生させて、2酸化炭素の排出量の大低減を図ります。
The crank mechanism has a dead center or 30 ° after the dead center.
There is a part where the power conversion efficiency is very poor (FIG. 1D), and in the prior art, this part consumes substantially all of the maximum (greater than the compression pressure) heat energy, so that most of the heat energy is increased in friction loss and the like. The thermal machine consumes almost no heat energy, the rotational force is greatly reduced, and the volume of the combustion chamber increases sharply with the lowering of the piston, so the combustion temperature drops sharply and suddenly shifts to the worst combustion conditions. Since the combustion becomes extremely non-constant-volume and the exhaust gas pollution greatly increases and the thermal efficiency greatly decreases, the present invention reduces the amount of heat energy used near the dead center (piston stroke volume) by using fuel as a necessary minimum. The savings and savings (Fig. 1A) greatly increase the power conversion efficiency, and the concentrated use around the first half of the ideal machine brings the maximum bearing load close to that of the ideal machine to achieve a large rotational force and / or thermal efficiency and light weight ratio Output at the same time Large increases and NO in to and / approximate constant volume combustion and the isolation releases during combustion close the possibility of residual unburned nil and / combustion process residual gas by improving the
x, and / or the addition of water injection in the reduced diameter main combustion chamber through near constant volume combustion to enable an adiabatic non-cooled engine / cycle number, fuel ignition system, fuel type,
Regardless of the scavenging method, the effect (Fig. 1B) is greater than that of greatly reducing the combustion ratio by greatly reducing the energy loss and mechanical loss and greatly increasing the compression ratio. That is, by providing the one-way air flow path, the isolated combustion in the reduced-diameter main combustion chamber which is reduced to, for example, 1/5 limited to the vicinity of the dead center can be performed by about 2/25.
The heat energy of 4 greatly increases due to the savings in the reduced-diameter main combustion chamber, and most of the heat energy is almost equal to the maximum pressure difference. In the conventional technology, the concentrated energy is used including the first half of the ideal machine (FIG. 1C) in which heat energy hardly remains in the prior art, so that a large rotating force greater than the compression ratio is greatly increased to generate carbon dioxide. To greatly reduce the amount of waste.

【0009】以上で説明のように、改良箇所が死点近傍
の動力変換効率が非常に悪い部分に集中するため、解決
手段も殆ど類似で説明が微妙で多様となります。即ち、
振動は主として死点近傍で軸受荷重が急増大しても回転
動力に変換されないため増大しており及び/超大型軽量
大出力及び小型軽量大出力とするためには、高圧燃焼室
を小径に低圧燃焼室は大径にするのが良く及び/燃料過
剰燃焼及び理論空燃比燃焼及び希薄燃焼を同時に得るに
は、縮径主燃焼室が好ましく及び/熱効率を上昇させる
ためには、最大軸受荷重を死点近傍から絶好機前半側に
移動するのが良く及び/公害低減燃焼は、近似定容燃焼
と隔離解除時燃焼の2段燃焼を必須として及び/構造を
簡単にするには、振動を低減して大拡径により気筒数を
低減します。従って、いずれの場合も死点近傍に限定し
て、例えば5分の1に縮径した縮径主燃焼室内隔離燃焼
として、最大燃焼圧力の上昇による最大軸受荷重を25
分の1等に大低減して振動を大幅に抑制すると共に、大
幅に薄肉の縮径主燃焼室及び拡径燃焼室として超大型軽
量大出力等を可能にして、隔離解除時燃焼により略最大
圧力差で大増大した大部分の熱エネルギを集中噴射し
て、絶好機前半側に最大軸受荷重を移動して、熱効率を
大上昇すると共に、近似定容燃焼と隔離解除時燃焼によ
り公害の大低減を図ります。
As described above, since the improvements are concentrated on the portion near the dead center where the power conversion efficiency is extremely poor, the solution is almost similar and the description is delicate and diverse. That is,
Vibration is increased mainly because the bearing load is not converted to rotational power even in the vicinity of the dead center even if the bearing load suddenly increases./In order to achieve ultra-large, lightweight, large output and small, lightweight, large output, the high-pressure combustion chamber is reduced to a small-diameter, low-pressure combustion chamber. The diameter should preferably be large and / or the reduced-diameter main combustion chamber is preferred for simultaneously obtaining excess fuel combustion and stoichiometric air-fuel ratio combustion and lean combustion, and / or the maximum bearing load must be at the dead center to increase the thermal efficiency. It is better to move from the vicinity to the first half of the aircraft, and / or the pollution reduction combustion requires two-stage combustion of near constant volume combustion and combustion at the time of release from isolation, and / or reduces vibration to simplify the structure. The large diameter reduces the number of cylinders. Therefore, in any case, the maximum bearing load due to an increase in the maximum combustion pressure is limited to the vicinity of the dead center, for example, as isolated combustion in the reduced diameter main combustion chamber reduced in size to 1/5.
Vibration is greatly reduced by a large reduction to one-third, etc., and ultra-large, lightweight, large-output, etc. are enabled as a significantly thinned reduced-diameter main combustion chamber and expanded-diameter combustion chamber. Most of the thermal energy greatly increased due to the pressure difference is intensively injected, and the maximum bearing load is moved to the first half of the ideal machine, greatly increasing the thermal efficiency. We will try to reduce it.

【0010】[0010]

【発明の実施の形態】発明の実施の形態を実施例に基づ
き図面を参照して説明するが、実施例と既説明とその構
成が略同じ部分には、同一の名称又は符号を付してその
重複説明は省略し、特徴的な部分や説明不足部分は順次
説明する。又、発明の意図する所及び予想を具体的に明
快に説明するため数字で説明しますが数字に限定するも
のではありません。図3・図4を参照して、振動を低減
すると共に、振り子ピストンクランク機関を、エネルギ
保存サイクルとする装置及び方法の第1実施例を説明す
ると、この発明は、通常の全熱発生期間の全部を、高温
高圧の最良の燃焼条件燃焼(近似定容燃焼)として水噴
射の追加を可能にして及び/それ以上の大圧力差による
超高速噴射攪拌混合燃焼(隔離解除時燃焼)により、燃
料の種類及び燃料点火方式及びサイクル数及び掃気方式
を問わず、あらゆる燃料を急速に完全燃焼終了させる縮
径主燃焼室内隔離燃焼を採用するため、NOxの低減に
専念することで未燃分と同時に皆無に近づけるもので
す。従って、燃焼温度の低減が最大の課題となり、残留
ガスの増大及び大型燃焼室ではエネルギ変換手段(水噴
射装置)の追加により燃焼温度を低減して、NOxと未
燃分を同時に皆無に近づけると共に断熱無冷却機関も可
能にします。両頭拡径ピストンの対向往復運動を噛み合
い同期手段1兼機械式過給機2により同期させて、更に
振動を低減して両頭拡径ピストンの外径を5m以上に挑
戦するのが好ましく、2サイクルとして左右交互に爆発
する完全弾性衝突にすると更に好ましく、更に、通常の
ピストン棒を振り子腕に置換して、振り子ピストンクラ
ンク機構により時計の振り子運動に大接近させて、運動
エネルギの減少損失を10%前後低減するのが更に好ま
しい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings based on embodiments, and portions having substantially the same structures as those of the embodiments will be denoted by the same names or symbols. The overlapping description will be omitted, and the characteristic portions and the portions that are insufficiently described will be sequentially described. In addition, the invention will be described in numerical form to specifically and clearly explain the intended purpose and anticipation, but is not limited to numerical figures. Referring to FIGS. 3 and 4, a first embodiment of an apparatus and a method for reducing vibration and using a pendulum piston crank engine as an energy conservation cycle will be described. All are fueled by ultra-high-speed injection-stirred mixed combustion (combustion on de-isolation) with the addition of water injection as the best combustion conditions at high temperature and pressure (approx. Constant volume combustion) and / or with a greater pressure difference. Regardless of the type of fuel, fuel ignition method, cycle number and scavenging method, the isolated combustion in the reduced-diameter main combustion chamber is used to complete the complete combustion of all fuels rapidly. It is almost nothing. Therefore, reduction of the combustion temperature is the biggest problem, and the combustion temperature is reduced by increasing the residual gas and adding an energy conversion means (water injection device) in a large combustion chamber, so that NOx and unburned components are simultaneously reduced to almost zero. Adiabatic uncooled engines are also possible. It is preferable that the opposed reciprocating motion of the double-ended piston is synchronized by the meshing synchronizing means 1 and the mechanical supercharger 2 to further reduce the vibration so as to challenge the outer diameter of the double-ended piston to 5 m or more, preferably two cycles. It is more preferable to make a completely elastic collision that explodes alternately on the left and right. Further, the normal piston rod is replaced with a pendulum arm, and the pendulum piston crank mechanism makes the pendulum motion of the watch very close to reduce the loss of kinetic energy by 10%. % Is more preferable.

【0011】図3・図4では対向に設けたシリンダ内
の、内死点3・3と外死点3・3との間で対向往復運動
する2つの両頭拡径ピストン(図3は内死点位置)を設
けて、その両側頭部を適宜の凹部4・4・4・4(図3
は皿状の凹部)とすることで、隔離解除時に縮径主燃焼
室から略最大圧力差で超高速噴射される、速度形動圧大
熱エネルギ+容積形熱エネルギを有効利用すると共にシ
リンダの熱負荷を低減する構成にして、縮径主燃焼室内
隔離燃焼期間を長さによって選定すると共に、漏洩量を
選択可能にする縮径ピストンを、適宜の凹部4・4・4
・4の略中央より突出させて、その外周面に両頭拡径ピ
ストンの運動方向に直交する環状の凹凸5を多段に設け
て、その先端の凸部を幅広として後端を適宜に残して外
周に運動方向に斜めに延びる騒音低減溝11を設けて、
噴射燃焼ガスの噴射方向を制定すると共に、騒音の低減
を図り、両頭拡径ピストンの円筒部略中央には、振り子
腕を挿入れる振り子穴6・6及びピストン側カム7・7
を半円軌道8・8と共に対向に設けて、両頭拡径ピスト
ンの往復運動により振り子腕が上下左右に揺動して、振
り子腕の揺動によりピストン側カム7・7が回転自在に
半円軌道8・8上を揺動可能にして、図4の如く、高圧
燃焼ガスを噴射すると共に冷却損失を大低減するため、
縮径ピストン及び適宜の凹部4を耐熱耐蝕材9及び断熱
材10で形成させて、夫夫のシリンダにはシリンダヘッ
ドを設けて、その拡径燃焼室側を適宜の凹部4と略同形
に適宜の凸部14を突出させて、その略中央には、例え
ば拡径燃焼室の5分の1等に縮径された縮径主燃焼室を
夫夫具備して、その内部を耐熱耐蝕材9及び断熱材10
により形成させて耐熱耐蝕断熱構造とします。
In FIGS. 3 and 4, two double-headed enlarged pistons which reciprocate between inner dead center 3.3 and outer dead center 3.3 in cylinders provided opposite each other (FIG. Point positions), and the heads on both sides are appropriately recessed.
Is a dish-shaped recess), and when the isolation is released, ultra-high-speed injection is performed from the reduced-diameter main combustion chamber at substantially the maximum pressure difference. In order to reduce the thermal load, the isolated combustion period is selected according to the length of the reduced-diameter main combustion chamber, and the reduced-diameter piston that allows the amount of leakage to be selected is provided with an appropriate concave portion.
・ Protruding from the approximate center of 4 and providing in multiple stages annular irregularities 5 perpendicular to the direction of movement of the double-headed piston on the outer peripheral surface, making the convex portion at the front end wider and leaving the rear end appropriately A noise reduction groove 11 that extends obliquely in the direction of motion,
In addition to establishing the injection direction of the injected combustion gas and reducing noise, the pendulum holes 6.6 for inserting a pendulum arm and the piston cams 7.7 are provided substantially at the center of the cylindrical portion of the double-ended piston.
The pendulum arm swings up and down and right and left by the reciprocating motion of the double-headed enlarged piston, and the swing of the pendulum arm causes the piston cams 7 and 7 to rotate freely. As shown in FIG. 4, high-pressure combustion gas is injected and cooling loss is greatly reduced,
A reduced-diameter piston and an appropriate concave portion 4 are formed of a heat-resistant and corrosion-resistant material 9 and a heat-insulating material 10, and a cylinder head is provided in each cylinder, and the enlarged-diameter combustion chamber side is formed to have substantially the same shape as the appropriate concave portion 4. Is provided with a reduced-diameter main combustion chamber whose diameter is reduced to, for example, one-fifth of the expanded-diameter combustion chamber. And heat insulating material 10
To form a heat-resistant, corrosion-resistant and heat-insulating structure.

【0012】中央の縮径主燃焼室はそれぞれを連通させ
ることで構造簡単・小型軽量として、燃料点火方式を圧
縮点火方式とする場合は、夫夫の縮径主燃焼室に燃料の
種類に合わせて燃料噴射装置18を適宜に具備して、図
にないグロー熱面等を通常の如く追加し、火花点火方式
とするときは、夫夫の縮径主燃焼室に燃料の種類に合わ
せて適宜に燃料噴射装置18及び図にない点火栓等を具
備し、縮径主燃焼室が次第に大きくなると、同一燃焼期
間(同一クランク角度)の燃焼燃料質量及び燃焼時間が
次第に増大して、高温燃焼となるため残留ガスの増大及
び隔離燃焼期間の短縮では、NOxの低減が次第に困難
になるため、縮径主燃焼室内に高圧高温の水を噴射する
エネルギ変換手段の水噴射装置19を夫夫適宜に追加し
て、その水を加熱する手段として、更に図7乃至図10
に示す任意の排気部熱交換手段41及び縮径部熱交換手
段42及び燃焼部熱交換手段43のうち少なくとも1手
段以上を選択可能にして、NOxの生成を大抑制すると
共に/拡径燃焼室を大幅に低温低圧の燃焼室として断熱
無冷却機関を可能にすると共に/近似定容燃焼及び隔離
解除時燃焼により未燃分の残留する可能性を排除して公
害の大低減を図ります。例えば両頭拡径ピストンの5分
の1に縮径された縮径ピストンは、行程容積が25分の
1に縮少されるため、熱エネルギの使用量が25分の1
となり、漏洩のない場合は、25分の24の熱エネルギ
が縮径主燃焼室に保存貯金されて大増大するため、燃料
を大節減しながら熱エネルギは大増大して(図1A)、
水噴射を追加した断熱無冷却機関を可能にして、隔離燃
焼解除により絶好機前半側に最大軸受荷重を移動(図1
B)して大回転力を発生し、近似定容燃焼及び隔離解除
時燃焼により公害の大低減を可能にして、その2段燃焼
により略最大圧力差の燃焼ガスを超高速噴射攪拌混合燃
焼(図1B)させて、未燃分の残留する可能性を略皆無
にします。
The central reduced-diameter main combustion chamber is made simpler and smaller and lighter by communicating with each other. When the compression ignition method is used as the fuel ignition system, each of the reduced-diameter main combustion chambers is adapted to the type of fuel. When the fuel injection device 18 is appropriately provided to add a glow hot surface or the like not shown in the drawing as usual and the spark ignition system is used, each of the reduced diameter main combustion chambers is appropriately provided in accordance with the type of fuel. Is provided with a fuel injection device 18 and an ignition plug (not shown), and when the diameter-reduced main combustion chamber is gradually increased, the combustion fuel mass and combustion time during the same combustion period (same crank angle) are gradually increased, and high-temperature combustion is performed. Therefore, it becomes increasingly difficult to reduce NOx by increasing the residual gas and shortening the isolated combustion period. Therefore, the water injection device 19 of the energy conversion means for injecting high pressure and high temperature water into the reduced diameter main combustion chamber is appropriately adjusted. Add and heat that water As that means, further 7-10
At least one of the exhaust heat exchange means 41, the reduced diameter heat exchange means 42, and the combustion heat exchange means 43 can be selected to greatly suppress the generation of NOx / The adiabatic non-cooled engine is made possible as a low-temperature, low-pressure combustion chamber, and the possibility of unburned fuel remaining due to near constant-volume combustion and combustion at the time of de-isolation is eliminated to greatly reduce pollution. For example, a reduced-diameter piston whose diameter is reduced to one-fifth of a double-headed expanded piston has a stroke volume reduced to one-fifth, so that the amount of heat energy used is reduced to one-fifth.
When there is no leakage, 24/25 thermal energy is stored and stored in the reduced-diameter main combustion chamber and greatly increased, so that the thermal energy greatly increases while saving fuel greatly (FIG. 1A).
Enables an adiabatic uncooled engine with water injection, and moves the maximum bearing load to the first half of the perfect aircraft by releasing isolated combustion (Fig. 1
B) to generate a large rotational force, to enable a great reduction of pollution by approximation constant volume combustion and combustion at the time of isolation release, and to perform super high speed injection mixing combustion of combustion gas having substantially the maximum pressure difference by the two-stage combustion (Fig. 1B) to make it almost impossible for unburned fuel to remain.

【0013】即ち、従来技術では図1Dの如く動力変換
効率が最悪の死点近傍(死点乃至死点後30°)で、最
大(圧縮圧力以上)の熱エネルギの略全部を消費(使用
量だけ減少)するため、大部分の熱エネルギが摩擦損失
の増大等に消費されて、絶好機に熱エネルギが僅少とな
って、熱効率の大低減となるため、死点後30°までは
縮径主燃焼室内隔離燃焼を通常とし、例外として小型高
速機関の30°前隔離燃焼解除を可能として、死点近傍
での熱エネルギの使用量を必要最少とするのが好まし
い。従って、縮径ピストンの突出長さを加減して隔離燃
焼期間を選定しますが、隔離解除時に略最大圧力差で完
全燃焼終了ガスを主として噴射攪拌燃焼/又は未燃焼ガ
スを超高速噴射攪拌燃焼させて完全燃焼終了させます
が、縮径主燃焼室内理論空燃比燃焼又は燃料過剰燃焼又
は主として希薄燃焼の極限を可能にすると共に、死点近
傍に限定して圧縮圧力以外の燃焼最大軸受荷重を、例え
ば従来技術の25分の1等に大低減して、最大軸受荷重
を絶好機前半側に移動して振動エネルギを大低減します
が、隔離解除時の騒音を低減しながら、高速噴射攪拌完
全燃焼終了させる手段を必要とします。従って図4の如
く縮径ピストンの外周面には、両頭拡径ピストンの運動
方向に直交する環状の凹凸5を多数設けて、その先端の
凸部を幅広として、その元部を適宜に残してその外周面
に、両頭拡径ピストンの運動方向に対して斜めに延びる
複数の騒音低減溝11を設けて、騒音を低減すると共
に、高速噴射ガスの噴流を制定して攪拌混合燃焼を促進
し、両頭拡径ピストンに効果的に噴射して回転力の増大
を図ります。縮径主燃焼室内隔離燃焼としてエネルギ保
存サイクルとするために必須の構成は、縮径主燃焼室と
拡径燃焼室を連通して、縮径主燃焼室に向かう流れだけ
を可能にするリード弁を含む適宜の逆止弁20を設けた
一方向空気流路21を、シリンダヘッドに少なくとも1
組以上設けることです。この一方向空気流路21により
圧縮動力の増大を最少にして圧縮比の上昇を可能にする
と共に、エネルギ保存サイクルとして、例えば5分の1
に縮径された縮径主燃焼室内隔離燃焼として、近似定容
燃焼及び隔離解除時燃焼の2段燃焼により、公害及び摩
擦損失を大低減すると共に、保存貯金により燃料を節約
しながら最高燃焼圧力を大上昇(熱エネルギを大増大)
して最大軸受荷重を絶好機前半側(図1B)に移動し
て、大部分の熱エネルギを大回転動力に変換して、熱効
率の大上昇及び公害の大低減を図ります。
That is, in the prior art, as shown in FIG. 1D, near the dead point where the power conversion efficiency is the worst (dead point to 30 ° after the dead point), almost all of the maximum (not less than the compression pressure) heat energy is consumed (consumption amount). ), Most of the heat energy is consumed due to an increase in friction loss, etc., and the heat energy is reduced to a perfect opportunity, resulting in a large decrease in thermal efficiency. It is preferable that the isolated combustion in the main combustion chamber is normal, and the exception is that the small-sized high-speed engine can be released from the isolated combustion before 30 °, and the amount of heat energy used near the dead center is minimized. Therefore, the isolated combustion period is selected by adjusting the projecting length of the reduced diameter piston, but when the isolation is released, the complete combustion complete gas is mainly injected and agitated combustion at the substantially maximum pressure difference, or the unburned gas is super-high-speed injected and agitated combustion. Complete combustion is completed, but the limit of the stoichiometric air-fuel ratio combustion or excessive fuel combustion or mainly lean combustion can be achieved in the reduced diameter main combustion chamber, and the combustion maximum bearing load other than the compression pressure is limited to near the dead center. For example, it greatly reduces the vibration energy by moving the maximum bearing load to the first half of the ideal machine by greatly reducing it to 1/25 of that of the conventional technology. Requires means to complete combustion. Therefore, as shown in FIG. 4, on the outer peripheral surface of the diameter-reducing piston, a number of annular irregularities 5 perpendicular to the direction of movement of the double-headed diameter-expanding piston are provided, the projection at the tip is widened, and the base part is appropriately left. On its outer peripheral surface, a plurality of noise reduction grooves 11 extending obliquely with respect to the direction of movement of the double-headed enlarged piston are provided to reduce noise and establish a jet of high-speed injection gas to promote agitated mixed combustion, Efficient injection to double-headed pistons to increase torque. The essential configuration for the energy conservation cycle as isolated combustion in the reduced diameter main combustion chamber is a reed valve that allows communication only between the reduced diameter main combustion chamber and the expanded diameter combustion chamber to allow only flow toward the reduced diameter main combustion chamber. A one-way air flow path 21 provided with a suitable check valve 20 including at least one
It is to establish more than a pair. The one-way air flow path 21 minimizes the increase in compression power and allows the compression ratio to be increased.
As the isolated combustion in the reduced diameter main combustion chamber, the two-stage combustion of approximately constant volume combustion and combustion at the time of release of isolation greatly reduces pollution and friction loss. (Heat energy greatly increased)
Then, the maximum bearing load is moved to the first half of the ideal machine (Fig. 1B), and most of the heat energy is converted to large rotational power, thereby greatly increasing the thermal efficiency and greatly reducing pollution.

【0014】図3・図4・図5の如く両頭拡径ピストン
を夫夫収容して左右に夫夫拡径燃焼室を構成させたシリ
ンダの円筒部略中央には、夫夫の両頭拡径ピストンの往
復運動により振り子腕が振り子運動して、夫夫の下端に
枢支したクランク軸25を回転させて動力を得るため、
シリンダ穴22・22を貫通して、夫夫の拡径燃焼室か
ら排気する排気出口23を夫夫に適宜に設けて、夫夫の
拡径燃焼室を掃気する掃気入口24を夫夫に適宜に設け
て、例えば縮径主燃焼室の5倍に拡径した拡径燃焼室を
構成させます。即ち、拡径燃焼室は縮径主燃焼室内隔離
燃焼により水噴射装置19の追加も可能なため、死点近
傍の最大軸受荷重を25分の1等に低減した、大幅に低
振動及び低温・低圧のため、従来技術より大拡径及び断
熱無冷却及び大幅に薄肉軽量大出力が可能になります。
両頭拡径ピストンの対向往復運動により振り子運動をす
る振り子腕が、上下にも往復動容易に振り子腕の下端に
クランク軸25・25を枢支して、その振り子腕の中間
を、半円軌道8・8を移動しながら回転自在に支持され
たピストン側カム7・7の間に夫夫挿入れて、その振り
子腕の上端も、半円軌道8・8を移動しながら回転自在
に支持された本体側カム26・26の間に夫夫挿入れ
て、両頭拡径ピストンの対向往復運動により夫夫の振り
子腕が左右上下に揺動して、クランク軸25・25を回
転させて動力を伝達します。両頭拡径ピストンの対向往
復運動を同期させる噛み合い同期手段1兼機械式過給機
2を、先の出願に記載の機械式過給機31及び同期手段
32を含めて適宜に構成させて、クランク軸25・25
に固着し、図7乃至図10の如くその空気出口27を掃
気入口24に連絡し、その空気入口28は通常のターボ
過給機29の出口を介してその空気入口28に連絡し、
ターボ過給機29は通常の如く排気出口23に連絡して
排気により運転し、機械式過給機2を使用しないとき
は、ターボ過給機により直接拡径燃焼室を掃気入口24
より掃気します。
As shown in FIG. 3, FIG. 4, and FIG. The reciprocating motion of the piston causes the pendulum arm to perform a pendulum motion, and to rotate the crankshaft 25 pivotally supported at the lower ends of the husband and wife to obtain power,
An exhaust outlet 23 for exhausting from the expanded combustion chamber through each of the cylinder holes 22 is appropriately provided for each of them, and a scavenging inlet 24 for scavenging the expanded combustion chamber for each is appropriately provided for each. To form a large-diameter combustion chamber that is, for example, five times larger than the diameter-reduced main combustion chamber. That is, since the water-injection device 19 can be added to the expanded combustion chamber by isolated combustion in the reduced-diameter main combustion chamber, the maximum bearing load in the vicinity of the dead center is reduced to 1/25, etc. Because of the low pressure, large diameter expansion, adiabatic non-cooling, and significantly thinner, lighter weight and larger output are possible compared to the conventional technology.
The pendulum arm that makes a pendulum motion by the opposed reciprocating motion of the double-headed enlarged piston easily reciprocates up and down, and pivots the crankshafts 25 at the lower end of the pendulum arm. The upper end of the pendulum arm is rotatably supported while moving along the semicircular track 8.8, while being inserted between the piston-side cams 7.7 rotatably supported while moving 8.8. Are inserted between the main body side cams 26, 26, and the pendulum arms of each husband swing right and left and up and down by opposing reciprocating motion of the double-headed enlarged pistons, thereby rotating the crankshafts 25 and 25 to generate power. Convey The meshing synchronizing means 1 and the mechanical supercharger 2 for synchronizing the opposing reciprocating motions of the double-ended pistons are appropriately configured including the mechanical supercharger 31 and the synchronizing means 32 described in the earlier application, and Shaft 25
7 to 10, the air outlet 27 communicates with the scavenging inlet 24, and the air inlet 28 communicates with the air inlet 28 through the outlet of a conventional turbocharger 29,
The turbocharger 29 is connected to the exhaust outlet 23 and operated by exhaust gas as usual. When the mechanical supercharger 2 is not used, the turbocharger directly scavenges the enlarged combustion chamber by the scavenging inlet 24.
More scavenging.

【0015】出力の小さい場合や、出来るだけ簡単に構
成する場合等には、図2の第2実施例にしてもよい。即
ち、超大型の縮径主燃焼室内隔離燃焼では、振動を極限
まで低減して、大出力の極限及び低振動の極限を極める
ため、対向ピストンを同期させますが、エネルギ保存サ
イクルでは死点近傍に限定して最大軸受荷重等を例えば
25分の1等に大低減するため死点近傍で振動に変換さ
れる熱エネルギが従来技術の25分の1等と少ないため
振動も少なくなる予定で、絶好機前半側に近づいてから
隔離燃焼解除するため、従来技術の振動エネルギを回転
動力に変換して大回転力とするものです。従って、図2
の第2実施例としても振動を大低減して大回転力が得ら
れるため実用化可能と予想しております。又、第1実施
例の両頭拡径ビストンが1箇となるため図にない動弁機
構及び吸気弁を設けて4サイクル機関とすることが可能
です。図2は運動エネルギの減少損失の低減(完全弾性
衝突及び振り子運動として)及び比出力の増大及びシリ
ンダの熱負荷を低減した2サイクルユニフロー掃気振り
子ピストンエネルギ保存サイクル機関としたもので、従
って、排気出口23を排気弁30及び掃気入口24に置
換したものです。他の相違点は図5のクランク軸25が
1本になるため、噛み合い同期手段1が不用になり、任
意の機械式過給機2として及び/又は、ターボ過給機2
9との2段過給方式とする及び/又は、いずれか1つの
過給機を使用した上記2サイクル機関とするのが好まし
い。
When the output is small or when the configuration is as simple as possible, the second embodiment shown in FIG. 2 may be used. In other words, in the isolated combustion of the super-large reduced-diameter main combustion chamber, the opposed pistons are synchronized to reduce the vibration to the limit and to maximize the limit of the high output and the low vibration. The thermal energy that is converted to vibration near the dead center is as small as 1/25 of the prior art so as to reduce the maximum bearing load etc. to, for example, 1/25. In order to release the isolated combustion when approaching the first half of the perfect aircraft, the conventional technology converts vibration energy into rotational power to produce large rotational force. Therefore, FIG.
It is anticipated that the second embodiment of the present invention can be put to practical use because vibration can be greatly reduced and a large rotating force can be obtained. In addition, since the double-ended diameter piston is one in the first embodiment, a four-cycle engine can be provided by providing a valve operating mechanism and an intake valve not shown. FIG. 2 shows a two-cycle uniflow scavenging pendulum piston energy conservation cycle engine with reduced kinetic energy, reduced loss (as fully elastic impact and pendulum motion), increased specific power and reduced thermal load on the cylinder, and therefore exhaust. Outlet 23 is replaced with exhaust valve 30 and scavenging inlet 24. Another difference is that the single crankshaft 25 in FIG. 5 eliminates the need for the meshing synchronizing means 1 and as an optional mechanical supercharger 2 and / or a turbocharger 2
9, and / or the two-cycle engine using any one of the superchargers.

【0016】図5乃至図10は、特願平8−17275
2(優先権主張第5出願)の図5乃至図10をそのまま
引用したものです。例えば図3の、夫夫の両頭拡径ピス
トンの対向往復運動を同期させる噛み合い同期手段1兼
機械式過給機2は、2つの歯車を噛み合わせて夫夫のク
ランク軸25を回転させる(噛み合い送風機を含む)こ
とで、図5の如く噛み合い同期手段1兼機械式過給機2
を構成させて、通常の如く(図7乃至図10参照)空気
入口28から空気出口27より送出しますが、噛み合い
同期手段1兼機械式過給機2を機械式過給機2として使
用しない場合は、噛み合い同期手段1として使用し、図
2の如く、噛み合い同期手段1が不用の場合は、図にな
いはずみ車を通常の如く設けて使用します。又、従来技
術ではクランク軸25に1気筒(1燃焼室)を連結しま
すが、振り子ピストンクランク機構では2気筒(2拡径
燃焼室)を連結するため、多気筒機関とする場合は、ク
ランク軸1本の図2では、2気筒・4気筒・6気筒と2
気筒刻みに多気筒とし、クランク軸2本の図3では、4
気筒・8気筒・12気筒と4気筒刻みで多気筒機関とし
ます。図6の逆止弁20は縮径主燃焼室と拡径燃焼室を
連通して、縮径主燃焼室に向かう流れのみ可能にする一
方向空気流路21を構成させるためのもので、シリンダ
ヘッドに一方向空気流路21を形成できればリード弁を
含めて逆止弁20の構成を問いませんが、拡径燃焼室側
から挿入れ固着すると、逆止弁20の熱負荷を低減して
縮径主燃焼室の無駄容積を拡大できるため、超希薄燃焼
2サイクル機関を主流とするために好ましい。従って図
6の逆止弁20を、その弁座36に弁体37を弁バネ3
8により押圧付勢した状態で一方向空気流路21に拡径
燃焼室側から挿入れ固着して、一方向空気流路21を形
成させます。又、一方向空気流路21より噴射する空気
流により乱れを形成させて、噴射燃料の燃焼を促進させ
る斜め空気流路39は、縮径ピストンにより閉鎖されな
い近傍の耐熱耐蝕材9又はその部位に設けるのが好まし
い。
FIGS. 5 to 10 show Japanese Patent Application No. 8-17275.
5 (fifth priority claim application) Figures 5 to 10 are directly quoted. For example, in FIG. 3, the meshing synchronizing means 1 and the mechanical supercharger 2 for synchronizing the opposing reciprocating motions of the respective double-headed enlarged pistons rotate the respective crankshafts 25 by meshing the two gears (meshing). Including the blower), as shown in FIG.
And the air is sent from the air inlet 28 to the air outlet 27 as usual (see FIGS. 7 to 10), but the meshing synchronization means 1 and the mechanical supercharger 2 are not used as the mechanical supercharger 2. In this case, use it as the meshing synchronization means 1. As shown in Fig. 2, when the meshing synchronization means 1 is unnecessary, use a flywheel not shown in the figure as usual. In the prior art, one cylinder (one combustion chamber) is connected to the crankshaft 25. However, in the pendulum piston crank mechanism, two cylinders (two expanded combustion chambers) are connected. In FIG. 2 with one shaft, two cylinders, four cylinders, six cylinders and two cylinders
In FIG. 3 with two crankshafts, four cylinders are used for each cylinder.
A multi-cylinder engine will be used in units of cylinders, eight cylinders, twelve cylinders and four cylinders. The check valve 20 shown in FIG. 6 is used to form a one-way air flow path 21 which connects the reduced-diameter main combustion chamber and the expanded-diameter combustion chamber and allows only a flow toward the reduced-diameter main combustion chamber. The configuration of the check valve 20 including the reed valve is not limited as long as the one-way air flow path 21 can be formed in the head. However, when the check valve 20 is inserted and fixed from the expanded combustion chamber side, the heat load of the check valve 20 is reduced. Since the dead volume of the reduced-diameter main combustion chamber can be increased, it is preferable to use an ultra-lean combustion two-cycle engine as a mainstream. Therefore, the check valve 20 shown in FIG.
While being pressed and urged by 8, the one-way air flow path 21 is inserted and fixed from the side of the expanded diameter combustion chamber to form the one-way air flow path 21. In addition, the oblique air flow path 39 for generating turbulence by the air flow injected from the one-way air flow path 21 to promote the combustion of the injected fuel is provided in the vicinity of the heat-resistant and corrosion-resistant material 9 or its part which is not closed by the reduced-diameter piston. It is preferred to provide.

【0017】縮径主燃焼室内隔離燃焼にすると、ピスト
ンサイクルを近似定容燃焼及び隔離解除時燃焼の2段燃
焼により、未燃分の残留する可能性が殆ど無いエネルギ
保存サイクルとして、多種多様のエネルギ保存サイクル
が可能ですが、近似定容燃焼にすると希薄燃焼の極限に
しても、大型燃焼室では保存貯金により最高燃焼圧力が
大上昇して、残留ガスを極限まで増大して隔離燃焼期間
を極限まで短縮しても、NOx増大燃焼となるため、縮
径主燃焼室内に水噴射装置19を追加したエネルギ保存
サイクルとして、各種の中温隔離燃焼を可能にします。
図7乃至図10を参照して、各種中温隔離燃焼を説明
すると、図7のA型エネルギ保存サイクルとする装置及
び方法では、上述の如く未燃分を排出する可能性が少な
いため、燃料の節減(縮径主燃焼室内超希薄燃焼)及び
残留ガスの増大によりNOxの低減に専念して、公害の
大低減を図り、縮径主燃焼室隔離解除時燃焼により更に
未燃分を皆無にして、拡径ピストンの頭部に速度形動圧
大熱エネルギ+静圧熱エネルギとして噴射して、拡径燃
焼室で大回転動力に変換して、大出力を発生させて排気
出口23より排出し、その排気によりターボ過給機29
を運転して吸入空気を加圧し、排気を排気部より排気し
ます。加圧された空気はそのまま空気出口27より拡径
燃焼室を掃気しても良く、更に空気入口28を介して機
械式過給気により加圧して、拡径燃焼室の掃気入口24
に超高過給を選択可能として、一方向空気流路21及び
縮径ピストンを活用した縮径主燃焼室内隔離燃焼に移行
します。
When the isolated combustion is performed in the reduced-diameter main combustion chamber, the piston cycle is subjected to two-stage combustion of approximately constant-volume combustion and combustion at the time of release of the isolation. An energy conservation cycle is possible, but even with the limit of lean combustion when using near constant volume combustion, the maximum combustion pressure in large combustion chambers rises significantly due to storage savings, increasing residual gas to the limit and increasing the isolated combustion period. Even if it is shortened to the limit, NOx increase combustion will occur, so an energy conservation cycle in which a water injection device 19 is added to the reduced-diameter main combustion chamber enables various medium-temperature isolated combustion.
Referring to FIGS. 7 to 10, various types of intermediate-temperature isolation combustion will be described. In the apparatus and method of the A-type energy storage cycle shown in FIG. Dedicated to reducing NOx by saving (ultra-lean combustion in the reduced diameter main combustion chamber) and increasing residual gas, greatly reducing pollution, and further eliminating unburned parts by burning when the reduced diameter main combustion chamber is released. Injecting into the head of the expanding piston as speed type dynamic pressure large thermal energy + static pressure thermal energy, converting it into large rotating power in the expanding combustion chamber, generating a large output and discharging from the exhaust outlet 23, The turbocharger 29
Is operated to pressurize the intake air and exhaust air from the exhaust section. The pressurized air may be directly scavenged in the expanded combustion chamber from the air outlet 27, and further pressurized by mechanical supercharging through the air inlet 28, and the scavenging inlet 24 of the expanded combustion chamber is increased.
The super-high-charge can be selected at the same time, and it shifts to the isolated combustion in the reduced-diameter main combustion chamber using the one-way air flow path 21 and the reduced-diameter piston.

【0018】図8のB型エネルギ保存サイクルとする装
置は、次第に燃焼室が大型になるとNOxの増大燃焼に
移行するため、A型エネルギ保存サイクルに水噴射装置
19を追加して、高温の燃焼ガス温度を低温の過熱水蒸
気質量容積にエネルギ変換して、保存貯金により最高燃
焼圧力が大幅に上昇しても、希薄燃焼及び残留ガスの増
大にエネルギ変換手段(水噴射装置)を追加して、中温
高圧縮径主燃焼室内隔離燃焼によりNOxの生成を皆無
に近づけるものです。従って、図4に示すように水噴射
装置19を適宜に追加して及び/又は燃料噴射装置18
と水噴射装置19を適宜に合体して、任意の排気部熱交
換手段41で加熱された高圧高温水を、コントロール装
置40により制御される夫夫の水噴射装置19より噴射
するエネルギ変換手段の追加により、最高燃焼圧力を大
幅に上昇可能な中温高圧隔離燃焼として、NOxの生成
を皆無に近づけます。図9のC型エネルギ保存サイクル
とする装置は、B型エネルギ保存サイクルに縮径部熱交
換手段42を追加して、さらに高温に加熱された大量の
高圧高温水を、コントロール装置40により夫夫の水噴
射装置19より噴射して、エネルギ変換量の増大によ
り、縮径主燃焼室内理論空燃比及び燃料過剰及び希薄燃
焼を、最高燃焼圧力を大幅に上昇可能な、中温高圧隔離
燃焼としてNOxの生成を皆無に近づけると共に、断熱
無冷却機関を提供可能にします。図10のD型エネルギ
保存サイクルとする装置は、C型エネルギ保存サイクル
に燃焼部熱交換手段43を追加して、更に高温に加熱さ
れた大量の高圧高温水を噴射可能にすることでエネルギ
変換量の大増大を可能にして、コントロール装置40に
より制御される夫夫の水噴射装置19より噴射して、最
高燃焼圧力を大幅に上昇可能な中温高圧隔離燃焼として
NOxの生成を皆無にします。
In the apparatus having the B-type energy storage cycle shown in FIG. 8, when the size of the combustion chamber gradually increases, the combustion shifts to NOx increase combustion. Energy conversion of gas temperature to low temperature superheated steam mass volume, and even if the maximum combustion pressure rises significantly due to storage savings, energy conversion means (water injection device) is added to the lean combustion and increase of residual gas, NOx generation is almost eliminated by isolated combustion at the middle temperature and high compression diameter main combustion chamber. Therefore, as shown in FIG. 4, the water injection device 19 is appropriately added and / or the fuel injection device 18 is added.
And the water injection device 19 are appropriately combined, and the high-pressure high-temperature water heated by an arbitrary exhaust heat exchange device 41 is injected from the respective water injection devices 19 controlled by the control device 40. With the addition, the maximum combustion pressure can be significantly increased to achieve a medium-temperature, high-pressure isolation combustion, and NOx generation is almost eliminated. In the apparatus having the C-type energy storage cycle shown in FIG. 9, a large-diameter high-pressure high-temperature water further heated to a high temperature is added to the control apparatus 40 by adding a reduced-diameter heat exchange means 42 to the B-type energy storage cycle. Injection from the water injection device 19 increases the amount of energy conversion to reduce the stoichiometric air-fuel ratio in the diameter-reduced main combustion chamber and the excess and lean combustion, and to increase the maximum combustion pressure. It makes it possible to provide an adiabatic non-cooled engine while making the generation almost zero. The apparatus having the D-type energy storage cycle shown in FIG. 10 is capable of injecting a large amount of high-pressure high-temperature water heated to a higher temperature by adding the combustion part heat exchange means 43 to the C-type energy storage cycle. The amount can be greatly increased and injected from each of the water injection devices 19 controlled by the control device 40 to eliminate the generation of NOx as a medium-temperature high-pressure isolated combustion that can greatly increase the maximum combustion pressure.

【0019】[0019]

【発明の効果】本発明は、以上説明したように多くの効
果を奏しますが、特に従来技術では、動力変換効率の最
も悪い死点乃至死点後30°までに最大熱エネルギ(圧
縮圧力以上の熱エネルギ)の略全部(図1D)を消費
(使用分が減少)するため、回転動力に変換する効率が
非常に悪いのに加えて、摩擦損失の大増大により熱効率
が大低減しておりましたが、エネルギ保存サイクルとす
ることで死点乃至死点後30°までの熱エネルギ使用量
を、例えば25分の1等に大低減することにより、機械
損失及び燃料燃焼質量を大低減しながら、保存貯金によ
り熱エネルギを大増大(燃焼圧力を大上昇)して、25
分の24等の熱エネルギを適宜に漏洩させながら、縮径
主燃焼室内隔離燃焼解除することで、従来技術で圧縮比
を大増大した以上の大効果をエネルギ保存サイクルによ
り発生させて、大回転力により熱効率を大上昇させる効
果があり、又、従来技術では、死点乃至死点後30°ま
でに最大熱エネルギの略全部を消費するため、燃焼室容
積が急拡大して低圧低温の最悪の燃焼条件に急移行し
て、燃焼が急速に悪化する極度の非定容燃焼のため、公
害の低減が非常に困難でしたが、エネルギ保存サイクル
の副産物の近似定容燃焼及び隔離解除時燃焼の2段燃焼
により残留ガスの大増大を可能にして及び/エネルギ変
換手段や熱交換手段の適宜追加により断熱無冷却機関を
可能にして、あらゆる大きさの縮径主燃焼室内隔離燃焼
により、燃料の種類及び点火方式及びサイクル数及び掃
気方式を問わずに、熱効率を大上昇してNOxと未燃分
を同時に皆無に近づける大きな効果があります。
As described above, the present invention has many effects. Particularly, in the prior art, the maximum heat energy (not less than the compression pressure) is obtained in the dead center where power conversion efficiency is the worst or 30 ° after the dead center. Heat energy (Fig. 1D) is consumed (the amount used is reduced), so that the efficiency of conversion to rotational power is extremely low, and the thermal efficiency is greatly reduced due to a large increase in friction loss. However, by using an energy conservation cycle, the amount of heat energy used from the dead center to 30 ° after the dead center is greatly reduced, for example, by a factor of 25, thereby greatly reducing the mechanical loss and the fuel combustion mass. While saving heat, the heat energy is greatly increased (combustion pressure is greatly increased).
By releasing the isolated combustion in the reduced-diameter main combustion chamber while appropriately leaking heat energy such as 24 / 25th, a large effect greater than the compression ratio greatly increased by the conventional technology is generated by the energy storage cycle, and the large rotational force is obtained. In the prior art, since almost all of the maximum heat energy is consumed from the dead center to 30 ° after the dead center, the volume of the combustion chamber is rapidly expanded, and the worst case of low pressure and low temperature is achieved. It was extremely difficult to reduce pollution due to extreme non-constant volume combustion, in which combustion rapidly deteriorated due to rapid transition to combustion conditions. The two-stage combustion makes it possible to greatly increase the residual gas and / or enables the adiabatic non-cooled engine by appropriately adding energy conversion means and heat exchange means. type Fine ignition system and the number of cycles and regardless of the scavenging system, there is a large effect that the thermal efficiency large rises and at the same time nothing to bring the NOx and unburned.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のエネルギ保存サイクルのクランク角度
に対する燃焼室圧力の変化を従来技術と比較説明するた
めの概略グラフである。
FIG. 1 is a schematic graph for comparing a change in combustion chamber pressure with respect to a crank angle in an energy storage cycle according to the present invention with a conventional technique.

【図2】本発明の両頭拡径ピストンの往復運動をエネル
ギ保存サイクルとすると共に完全弾性衝突及び振り子運
動を説明する第2実施例の一部断面図。
FIG. 2 is a partial cross-sectional view of a second embodiment illustrating reciprocating motion of the double-ended piston of the present invention as an energy conservation cycle and explaining complete elastic collision and pendulum motion.

【図3】本発明の振動を極限まで低減すると共に振り子
ピストンをエネルギ保存サイクルとする第1実施例の一
部断面図。
FIG. 3 is a partial cross-sectional view of the first embodiment of the present invention in which vibration is reduced to the utmost and the pendulum piston has an energy conservation cycle.

【図4】本発明の縮径主燃焼室及び両頭拡径ピストンの
実施例を説明する一部断面図。
FIG. 4 is a partial cross-sectional view illustrating an embodiment of a reduced-diameter main combustion chamber and a double-ended expanded piston according to the present invention.

【図5】本発明の噛み合い同期手段及びクランク軸を説
明する一部断面図。
FIG. 5 is a partial cross-sectional view illustrating the meshing synchronization means and the crankshaft according to the present invention.

【図6】本発明の実施の形態に係る逆止弁の断面図。FIG. 6 is a cross-sectional view of the check valve according to the embodiment of the present invention.

【図7】本発明をA型エネルギ保存サイクルとする方法
の概略図。
FIG. 7 is a schematic diagram of a method for making the present invention an A-type energy storage cycle.

【図8】本発明をB型エネルギ保存サイクルとする方法
の概略図。
FIG. 8 is a schematic diagram of a method for making the present invention a B-type energy storage cycle.

【図9】本発明をC型エネルギ保存サイクルとする方法
の概略図。
FIG. 9 is a schematic diagram of a method for making the present invention a C-type energy storage cycle.

【図10】本発明をD型エネルギ保存サイクルとする方
法の概略図。
FIG. 10 is a schematic diagram of a method for making the present invention a D-type energy storage cycle.

【符号の説明】[Explanation of symbols]

1:噛み合い同期手段 2:機械式過給機 3:死
点 4:凹部 5:環状の凹凸 6:振り子穴
7:ピストン側カム 8:半円軌道 9:耐熱耐
蝕材 10:断熱材 11:騒音低減溝 12:
振り子側カム 13:平行軌道 14:凸部 18:燃料噴射装置
19:水噴射装置 20:逆止弁 21:一方向空気流路 22:シリ
ンダ穴 23:排気出口 24:掃気入口 2
5:クランク軸 26:本体側カム 27:空気出
口 28:空気入口 29:ターボ過給機 3
0:排気弁 36:弁座 37:弁体 38:弁
バネ 39:斜め空気流路 40:コントロール装
置 41:排気部熱交換手段 42:縮径部熱交換
手段 43:燃焼部熱交換手段
1: meshing synchronization means 2: mechanical supercharger 3: dead center 4: concave portion 5: annular unevenness 6: pendulum hole
7: piston side cam 8: semi-circular track 9: heat and corrosion resistant material 10: heat insulating material 11: noise reduction groove 12:
Pendulum side cam 13: Parallel track 14: Convex portion 18: Fuel injection device 19: Water injection device 20: Check valve 21: One-way air flow path 22: Cylinder hole 23: Exhaust outlet 24: Scavenging inlet 2
5: Crankshaft 26: Body side cam 27: Air outlet 28: Air inlet 29: Turbocharger 3
0: exhaust valve 36: valve seat 37: valve body 38: valve spring 39: oblique air flow path 40: control device 41: exhaust section heat exchange means 42: reduced diameter section heat exchange means 43: combustion section heat exchange means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02B 75/28 F02B 75/32 A 75/32 F02D 15/04 H F02D 15/04 F02F 3/00 E F02F 3/00 3/28 Z 3/28 F02B 37/00 301H ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI F02B 75/28 F02B 75/32 A 75/32 F02D 15/04 H F02D 15/04 F02F 3/00 E F02F 3/00 3 / 28 Z 3/28 F02B 37/00 301H

Claims (63)

【特許請求の範囲】[Claims] 【請求項1】 シリンダ内の左死点と右死点との間で往
復運動する両頭拡径ピストンの左右略中央より適宜に縮
径した縮径ピストンを突出し、シリンダの左右には夫夫
シリンダヘッドを設けて、それぞれ前記縮径ピストンを
収容して隔離燃焼可能に最適に縮径した縮径主燃焼室を
形成させて、夫夫の縮径主燃焼室隔離燃焼及び隔離解除
により両頭拡径ピストンが往復運動して、振り子腕に振
り子運動させて、その振り子運動によりクランク軸を回
転させて回転動力を得るエネルギ保存サイクルとする装
置において、両頭拡径ピストンの内部及び本体側には、
振り子腕の中間及び一端をそれぞれ挿入れ維持するピス
トン側カム及び本体側カムを、半円軌道上に夫夫対向に
設けて振り子腕の中間及び一端を夫夫挿入れ維持して、
両頭拡径ピストンの往復運動により振り子腕の下端に回
転自在に枢支されたクランク軸(25)が回転して動力
を伝達可能とし、縮径主燃焼室と拡径燃焼室を連通し、
該縮径主燃焼室に向かう流れだけを可能にする逆止弁
(20)を設けた一方向空気流路を、夫夫に少なくとも
一組以上有するエネルギ保存サイクルとする装置。
1. A diameter-reduced piston whose diameter has been appropriately reduced is projected from substantially the center of the left and right enlarged pistons reciprocating between a left dead center and a right dead center in a cylinder. A head is provided to form a reduced-diameter main combustion chamber that accommodates the reduced-diameter piston and that is optimally reduced in diameter so that isolated combustion can be performed. In a device in which the piston reciprocates, makes the pendulum move to the pendulum arm, and rotates the crankshaft by the pendulum movement to obtain a rotational power, the inside of the double-head enlarged piston and the main body side have:
A piston-side cam and a body-side cam for inserting and maintaining the middle and one end of the pendulum arm, respectively, are provided on a semicircular orbit so as to face each other, and the middle and one end of the pendulum arm are inserted and maintained, respectively.
The crankshaft (25) rotatably supported by the lower end of the pendulum arm is rotated by the reciprocating motion of the double-headed enlarged piston to enable transmission of power, allowing the reduced-diameter main combustion chamber to communicate with the increased-diameter combustion chamber,
A device having an energy conservation cycle having at least one or more sets of one-way air flow paths each provided with a check valve (20) allowing only a flow toward the reduced diameter main combustion chamber.
【請求項2】 対向に設けたシリンダ内の外死点と内死
点との間で対向往復運動する2つの両頭拡径ピストンの
夫夫の左右略中央より適宜に縮径した縮径ピストンを突
出させて、対向に設けた夫夫のシリンダにはシリンダヘ
ッドを設けて、夫夫前記縮径ピストンを収容して隔離燃
焼可能に最適に縮径した縮径主燃焼室を形成させて、夫
夫の縮径主燃焼室内隔離燃焼及び隔離解除により両頭拡
径ピストンが対向往復運動して、夫夫の振り子腕に振り
子運動させて、その振り子運動により夫夫のクランク軸
(25)を回転させて動力を得る、エネルギ保存サイク
ルとする装置において、前記両頭拡径ピストンの内部及
び本体側には、夫夫振り子腕の中間及び一端を挿入れ維
持するピストン側カム(7)及び本体側カム(26)
を、夫夫半円軌道上に夫夫対向に設けて夫夫振り子腕の
中間及び一端を夫夫挿入れ維持して、両頭拡径ピストン
の対向往復運動により、夫夫の振り子腕の下端に回転自
在に枢支されたクランク軸(25)が回転して動力を伝
達可能とし、夫夫の縮径主燃焼室と拡径燃焼室を連通
し、該縮径主燃焼室に向かう流れだけを可能にする逆止
弁(20)を設けた一方向空気流路(21)を、夫夫に
少なくとも1組以上有するエネルギ保存サイクルとする
装置。
2. A reduced-diameter piston whose diameter is appropriately reduced from a substantially right and left center of each of two double-headed enlarged pistons reciprocating between an outer dead center and an inner dead center in a cylinder provided opposite to each other. A cylinder head is provided in each of the cylinders provided so as to be opposed to each other to form a reduced-diameter main combustion chamber which accommodates the reduced-diameter piston and is optimally reduced in diameter so as to be capable of isolated combustion. The double-headed enlarged pistons reciprocate in opposite directions by the isolated combustion and release of the husband in the reduced diameter main combustion chamber, causing the respective pendulum arms to perform a pendulum motion, and rotating the respective crankshafts (25) by the pendulum motion. In the energy storage cycle, the piston-side cam (7) and the body-side cam (7) for inserting and maintaining the middle and one end of the pendulum arm, respectively, inside and on the body side of the double-headed piston. 26)
Are placed on the semicircular orbit of the husband and wife, and the middle and one end of the husband and wife's pendulum arms are inserted and maintained, and the opposite reciprocating motion of the double-headed piston expands the lower end of the husband's pendulum arm. A rotatably supported crankshaft (25) rotates to transmit power, communicates with the reduced-diameter main combustion chamber and the expanded-diameter combustion chamber, and controls only the flow toward the reduced-diameter main combustion chamber. Apparatus for an energy conservation cycle having at least one or more sets of one-way air passages (21) provided with a check valve (20) enabling the same.
【請求項3】 前記縮径ピストンは、その外周面に前記
両頭拡径ピストンの運動方向に直交する環状の凹凸を適
宜に設けたことを特徴とする請求項1又は請求項2に記
載のエネルギ保存サイクルとする装置。
3. The energy according to claim 1, wherein the reduced-diameter piston is provided with annular irregularities perpendicular to the direction of movement of the double-head enlarged piston on an outer peripheral surface thereof. A device with a storage cycle.
【請求項4】 前記縮径ピストンは、その外周面に前記
両頭拡径ピストンの運動方向に直交する環状の凹凸を多
数設けて、その先端の凸部を幅広として外周面に、その
凸部の下部を適宜に残して前記両頭拡径ピストンの運動
方向に対して斜めに延びる複数の騒音低減溝(11)を
有する請求項1又は請求項2に記載のエネルギ保存サイ
クルとする装置。
4. The diameter-reducing piston is provided with a large number of annular irregularities on the outer peripheral surface thereof orthogonal to the direction of movement of the double-headed diameter-expanding piston. 3. The energy saving cycle device according to claim 1, further comprising a plurality of noise reduction grooves (11) extending obliquely to the direction of movement of the double-ended piston, while appropriately leaving a lower portion.
【請求項5】 前記縮径主燃焼室に燃料を噴射する燃料
噴射装置(18)を夫夫に有し、該噴射燃料が前記一方
向空気流路を通って流入する空気と前記縮径主燃焼室内
で乱れを形成する請求項1乃至請求項4のいずれか1項
に記載のエネルギ保存サイクルとする装置。
5. A fuel injection device (18) for injecting fuel into the reduced diameter main combustion chamber, wherein the injected fuel and air flowing through the one-way air flow path are connected to the reduced diameter main combustion chamber. 5. The device according to claim 1, wherein the turbulence is formed in the combustion chamber.
【請求項6】 前記縮径ピストンは、前記縮径主燃焼室
内に挿入れ維持されて、死点後の所定期間に亘って前記
縮径主燃焼室内隔離燃焼の隔離期間を形成した請求項1
乃至請求項5のいずれか1項に記載のエネルギ保存サイ
クルとする装置。
6. The reduced-diameter piston is inserted and maintained in the reduced-diameter main combustion chamber to form an isolation period of the isolated combustion in the reduced-diameter main combustion chamber over a predetermined period after a dead center.
An energy storage cycle device according to any one of claims 5 to 5.
【請求項7】 前記縮径主燃焼室内に水を噴射する水噴
射装置(19)を夫夫に有し、該水を加熱するための熱
交換手段(41)(42)(43)のうち少なくとも1
手段以上を有する請求項1乃至請求項6のいずれか1項
に記載のエネルギ保存サイクルとする装置。
7. A water injection device (19) for injecting water into the reduced-diameter main combustion chamber, wherein each of the heat exchange means (41), (42), and (43) heats the water. At least one
Apparatus as claimed in any one of claims 1 to 6 comprising means or more.
【請求項8】 前記逆止弁(20)を具備した一方向空
気流路を少なくとも1組以上設けて、該逆止弁を拡径燃
焼室側から挿入れ固着した請求項1乃至請求項7のいず
れか1項に記載のエネルギ保存サイクルとする装置。
8. A one-way air flow path provided with the check valve (20) is provided at least one set, and the check valve is inserted and fixed from the expanded combustion chamber side. An apparatus having an energy conservation cycle according to any one of the preceding claims.
【請求項9】 前記縮径主燃焼室及び前記縮径ピストン
及び前記両頭拡径ピストンの頭部を、耐熱耐蝕材及び断
熱材により耐熱耐蝕断熱構造とした請求項1乃至請求項
8のいずれか1項に記載のエネルギ保存サイクルとする
装置。
9. The heat-resistant, corrosion-resistant, heat-insulating structure made of a heat-resistant, corrosion-resistant material and a heat-insulating material for a head of the reduced-diameter main combustion chamber, the reduced-diameter piston, and the double-ended double-diameter piston. An apparatus having the energy storage cycle according to claim 1.
【請求項10】 前記縮径主燃焼室の耐熱耐蝕材(9)
に一方向空気流路(21)の斜め空気流路(39)を設
けた請求項1乃至請求項9のいずれか1項に記載のエネ
ルギ保存サイクルとする装置。
10. A heat-resistant and corrosion-resistant material (9) for said reduced-diameter main combustion chamber.
10. The apparatus according to claim 1, further comprising an oblique air passage (39) of a one-way air passage (21).
【請求項11】 前記両頭拡径ピストンの縮径ピストン
突出部を皿状の凹部(4)とした請求項1乃至請求項1
0のいずれか1項に記載のエネルギ保存サイクルとする
装置。
11. The double-headed enlarged-diameter piston having a reduced-diameter piston protruding portion formed as a dish-shaped recess (4).
0. An apparatus having an energy storage cycle according to any one of 0.
【請求項12】 前記両頭拡径ピストンの縮径ピストン
突出部を適宜の凹部(4)として、対応するシリンダヘ
ッドを適宜の凸部とした請求項1乃至請求項11のいず
れか1項に記載のエネルギ保存サイクルとする装置。
12. The cylinder head according to claim 1, wherein the reduced-diameter piston projecting portion of the double-ended piston is an appropriate concave portion, and the corresponding cylinder head is an appropriate convex portion. Energy conservation cycle device.
【請求項13】 前記両頭拡径ピストンの縮径ピストン
突出部を平面部として、対応するシリンダヘッドを平面
部とした請求項1乃至請求項10のいずれか1項に記載
のエネルギ保存サイクルとする装置。
13. The energy storage cycle according to claim 1, wherein the reduced-diameter piston projecting portion of the double-ended piston is a flat portion, and the corresponding cylinder head is a flat portion. apparatus.
【請求項14】 前記縮径主燃焼室の耐熱耐蝕材(9)
及び断熱材(10)を貫通する火花点火用の点火栓を設
けた請求項1乃至請求項13のいずれか1項に記載のエ
ネルギ保存サイクルとする装置。
14. A heat-resistant and corrosion-resistant material (9) for the reduced-diameter main combustion chamber.
14. The device according to claim 1, further comprising a spark plug for spark ignition penetrating the heat insulating material (10).
【請求項15】 前記縮径主燃焼室の耐熱耐蝕材(9)
及び断熱材(10)を貫通してグロー熱面を設けて圧縮
点火する請求項1乃至請求項13のいずれか1項に記載
のエネルギ保存サイクルとする装置。
15. A heat and corrosion resistant material (9) for said reduced diameter main combustion chamber.
14. An apparatus according to any one of the preceding claims, wherein a compression glow is provided by providing a glow hot surface through the heat insulator (10).
【請求項16】 前記縮径主燃焼室の耐熱耐蝕材(9)
及び断熱材(10)を貫通して燃料噴射装置(18)を
設けて燃料を噴射する請求項1乃至請求項15のいずれ
か1項に記載のエネルギ保存サイクルとする装置。
16. A heat-resistant and corrosion-resistant material (9) for said reduced-diameter main combustion chamber.
16. The device according to any one of claims 1 to 15, wherein the fuel is injected by providing a fuel injection device (18) through the heat insulating material (10).
【請求項17】 前記燃料噴射装置(18)を両頭拡径
ピストンの運動方向に対向して縮径主燃焼室に設けて燃
料を噴射する請求項1乃至請求項16のいずれか1項に
記載のエネルギ保存サイクルとする装置。
17. The fuel injection device according to claim 1, wherein the fuel injection device is provided in the reduced-diameter main combustion chamber so as to face the direction of movement of the double-headed piston and inject fuel. Energy conservation cycle device.
【請求項18】 前記水噴射装置(19)を、両頭拡径
ピストンの運動方向に対向して縮径主燃焼室に設けて水
を噴射する請求項1乃至請求項17のいずれか1項に記
載のエネルギ保存サイクルとする装置。
18. The water injection device according to claim 1, wherein the water injection device (19) is provided in the reduced diameter main combustion chamber so as to face the movement direction of the double-headed enlarged piston to inject water. An apparatus having an energy conservation cycle as described.
【請求項19】 前記両頭拡径ピストンの内部には、振
り子腕の中間部を挿入れ維持するピストン側カム(7)
を半円軌道(8)と共に対向に設けて振り子腕を挿入れ
維持し、本体側上部にも振り子腕の一端を挿入れ維持す
る本体側カム(26)を半円軌道と共に対向に設けて振
り子腕を挿入れ維持して、分割可能な振り子腕の下端に
回転自在に枢支したクランク軸(25)が、両頭拡径ピ
ストンの往復運動により回転して動力を伝達可能にした
請求項1乃至請求項18のいずれか1項に記載のエネル
ギ保存サイクルとする装置。
19. A piston-side cam (7) for inserting and maintaining an intermediate portion of a pendulum arm inside the double-head enlarged piston.
Are provided opposite to the semicircular track (8) to insert and maintain the pendulum arm, and a main body side cam (26) for inserting and maintaining one end of the pendulum arm is also provided at the upper part of the main body to oppose the pendulum arm. The crankshaft (25) rotatably supported at the lower end of the splittable pendulum arm while inserting and maintaining the arm is rotatable by a reciprocating motion of the double-headed piston to transmit power. Apparatus with an energy conservation cycle according to any one of claims 18 to 19.
【請求項20】 前記両頭拡径ピストンの内部には、振
り子腕の中間部の振り子側カム(12)を挿入れ維持す
るピストン側平行軌道(13)を対向に設けて振り子側
カムを挿入れ維持し、本体側上部にも振り子腕の一端を
挿入れ維持する本体側カム(26)を半円軌道(8)と
共に対向に設けて振り子腕を挿入れ維持して、分解可能
な振り子腕の下端に回転自在に枢支したクランク軸が両
頭拡径ピストンの往復運動により回転して動力を伝達可
能にした請求項1乃至請求項18のいずれか1項に記載
のエネルギ保存サイクルとする装置。
20. A piston-side parallel track (13) for inserting and maintaining a pendulum-side cam (12) at an intermediate portion of a pendulum arm is provided inside the double-headed enlarged piston, and the pendulum-side cam is inserted. A main body side cam (26) for maintaining and inserting one end of the pendulum arm also at the upper part of the main body side is provided opposite to the semicircular track (8) so that the pendulum arm is inserted and maintained. 19. The energy storage cycle apparatus according to claim 1, wherein a crankshaft rotatably supported at a lower end is rotated by a reciprocating motion of a double-headed piston to transmit power.
【請求項21】 前記両頭拡径ピストンの対向往復運動
を同期させる噛み合い同期手段(1)を、夫夫のクラン
ク軸(25)の端部に設けて両頭拡径ピストンの対向往
復運動を同期させる請求項2乃至請求項20のいずれか
1項に記載のエネルギ保存サイクルとする装置。
21. An interlocking synchronizing means (1) for synchronizing the opposed reciprocating motion of the double-headed enlarged piston is provided at the end of each crankshaft (25) to synchronize the opposed reciprocating motion of the double-headed enlarged piston. An apparatus as an energy storage cycle according to any one of claims 2 to 20.
【請求項22】 前記両頭拡径ピストンの対向往復運動
を同期させる噛み合い同期手段(1)兼機械式過給機
(2)を、夫夫のクランク軸(25)の端部に設けて両
頭拡径ピストンの対向往復運動を同期させる請求項2乃
至請求項20のいずれか1項に記載のエネルギ保存サイ
クルとする装置。
22. A double-head widening piston (25) is provided at the end of each crankshaft (25) with an interlocking synchronizing means (1) and a mechanical supercharger (2) for synchronizing opposing reciprocating movements of the double-head widening piston. 21. The apparatus according to any one of claims 2 to 20, wherein the opposed reciprocating motion of the radial piston is synchronized.
【請求項23】 前記クランク軸の端部に機械式過給機
を設けた請求項1乃至請求項20のいずれか1項に記載
のエネルギ保存サイクルとする装置。
23. The energy storage cycle apparatus according to claim 1, further comprising a mechanical supercharger provided at an end of the crankshaft.
【請求項24】 前記クランク軸(25)を回転させる
ため、拡径燃焼室を含む気筒数を、2気筒刻みで2気筒
・4気筒・6気筒と増加して多気筒機関とする請求項1
乃至請求項23のいずれか1項に記載のエネルギ保存サ
イクルとする装置。
24. A multi-cylinder engine in which the number of cylinders including an expanded combustion chamber is increased in increments of two cylinders to two, four, and six cylinders in order to rotate the crankshaft (25).
An energy storage cycle apparatus according to any one of claims 23 to 23.
【請求項25】 前記クランク軸(25)を回転させる
ため、拡径燃焼室を含む気筒数を、4気筒刻みで4気筒
・8気筒・12気筒と増加して多気筒機関とする請求項
2乃至請求項23のいずれか1項に記載のエネルギ保存
サイクルとする装置。
25. A multi-cylinder engine in which the number of cylinders including the expanded combustion chamber is increased to four, eight and twelve cylinders in four-cylinder increments in order to rotate the crankshaft (25). An energy storage cycle apparatus according to any one of claims 23 to 23.
【請求項26】 前記適宜に縮径された縮径主燃焼室内
隔離燃焼を、燃料過剰燃焼とした請求項1乃至請求項2
5のいずれか1項に記載のエネルギ保存サイクルとする
装置。
26. The fuel cell system according to claim 1, wherein the isolated combustion in the reduced-diameter main combustion chamber, which is appropriately reduced in diameter, is defined as excessive fuel combustion.
An energy storage cycle according to any one of claims 5 to 10.
【請求項27】 前記適宜に縮径された縮径主燃焼室内
隔離燃焼を、燃料希薄燃焼とした請求項1乃至請求項2
5のいずれか1項に記載のエネルギ保存サイクルとする
装置。
27. The isolated combustion in the reduced-diameter main combustion chamber appropriately reduced in diameter is a fuel-lean combustion.
An energy storage cycle according to any one of claims 5 to 10.
【請求項28】 前記燃料は、主としてガソリンである
請求項1乃至請求項27のいずれか1項に記載のエネル
ギ保存サイクルとする装置。
28. The apparatus according to claim 1, wherein the fuel is mainly gasoline.
【請求項29】 前記燃料は、主として軽油である請求
項1乃至請求項27のいずれか1項に記載のエネルギ保
存サイクルとする装置。
29. The apparatus according to claim 1, wherein the fuel is mainly light oil.
【請求項30】 前記燃料は、主として重油である請求
項1乃至請求項27のいずれか1項に記載のエネルギ保
存サイクルとする装置。
30. The apparatus according to claim 1, wherein the fuel is mainly heavy oil.
【請求項31】 前記燃料は、主としてプロパンである
請求項1乃至請求項27のいずれか1項に記載のエネル
ギ保存サイクルとする装置。
31. An apparatus according to any one of claims 1 to 27, wherein the fuel is mainly propane.
【請求項32】 前記燃料は、主として水素である請求
項1乃至請求項27のいずれか1項に記載のエネルギ保
存サイクルとする装置。
32. The apparatus according to any one of claims 1 to 27, wherein the fuel is mainly hydrogen.
【請求項33】 前記燃料は、主として天然ガスである
請求項1乃至請求項27のいずれか1項に記載のエネル
ギ保存サイクルとする装置。
33. The apparatus according to claim 1, wherein the fuel is mainly natural gas.
【請求項34】 前記燃料は、主としてメタノールであ
る請求項1乃至請求項27のいずれか1項に記載のエネ
ルギ保存サイクルとする装置。
34. The apparatus according to any one of claims 1 to 27, wherein the fuel is mainly methanol.
【請求項35】 圧縮過程・加熱過程・膨張過程・排気
過程からなる往復ピストンサイクルであって、該加熱過
程において、両頭拡径ピストンの左右の死点後の所定期
間に亘って、適宜に縮径された縮径主燃焼室内隔離燃焼
させることで、最適量の熱エネルギを隔離燃焼解除時ま
で保存して、速度形熱エネルギ等として両頭拡径ピスト
ンに噴射して、両頭拡径ピストンの往復運動により振り
子腕の下端に軸支されたクランク軸が回転して絶好機前
半付近の大回転力とするエネルギ保存サイクルとする方
法。
35. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaust step, wherein in the heating step, the piston is appropriately contracted for a predetermined period after the left and right dead points of the double-headed piston. By performing isolated combustion in the reduced diameter main combustion chamber, the optimal amount of heat energy is stored until the isolated combustion is released, and injected into the double-headed enlarged piston as speed-type thermal energy, etc. A method in which a motion causes a crankshaft, which is pivotally supported at the lower end of a pendulum arm, to rotate to produce a large rotational force near the first half of an ideal machine, thereby providing an energy conservation cycle.
【請求項36】 圧縮過程・加熱過程・膨張過程・排気
過程からなる往復ピストンサイクルであって、該加熱過
程において、対向に設けた夫夫の両頭拡径ピストンの内
死点後及び外死点後の所定期間に亘って、縮径された縮
径主燃焼室内隔離燃焼させることで、最適量の熱エネル
ギを隔離燃焼解除時まで保存して、速度形熱エネルギ等
として両頭拡径ピストンに噴射して、両頭拡径ピストン
の対向往復運動により振り子腕の下端に軸支された夫夫
のクランク軸が回転して絶好機前半付近の大回転力とす
るエネルギ保存サイクルとする方法。
36. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaust step, wherein in the heating step, after the inner dead center and the outer dead center of each of the opposed double-head enlarged pistons. By performing isolated combustion in the reduced-diameter main combustion chamber for a predetermined period thereafter, an optimal amount of thermal energy is stored until the isolated combustion is released, and injected into the double-headed piston as velocity-type thermal energy or the like. Then, each of the two head-expanding pistons reciprocates to rotate their respective crankshafts, which are pivotally supported at the lower ends of the pendulum arms, to generate an energy saving cycle in the vicinity of the first half of the ideal machine.
【請求項37】 前記縮径主燃焼室内隔離燃焼させるた
め、該縮径主燃焼室と拡径燃焼室とを連通して、該縮径
主燃焼室に向かう流れだけを可能にする逆止弁(20)
を設けた一方向空気流路(21)を少なくとも1組以上
設けて請求項35又は請求項36に記載のエネルギ保存
サイクルとする方法。
37. A non-return valve communicating with the reduced-diameter main combustion chamber and the expanded-diameter combustion chamber to allow only the flow toward the reduced-diameter main combustion chamber to perform isolated combustion in the reduced-diameter main combustion chamber. (20)
37. The method of claim 35 or claim 36, wherein at least one or more sets of one-way air passages (21) provided with are provided.
【請求項38】 前記縮径主燃焼室内隔離燃焼を解除す
る時期を、夫夫のピストンの死点後クランク角度で30
°前後から60°前後として、速度形熱エネルギを両頭
拡径ピストンに噴射する請求項35乃至請求項37のい
ずれか1項に記載のエネルギ保存サイクルとする方法。
38. The timing for releasing the isolated combustion in the reduced-diameter main combustion chamber is set at 30 crank angles after the dead center of each piston.
38. The method according to any one of claims 35 to 37, wherein the velocity-type thermal energy is injected into the double-headed enlarged piston from about 0 ° to about 60 °.
【請求項39】 前記縮径主燃焼室内隔離燃焼を解除す
る時期を、夫夫のピストンの死点後クランク角度で40
°前後から70°前後として、速度形熱エネルギを両頭
拡径ピストンに噴射する請求項35乃至請求項37のい
ずれか1項に記載のエネルギ保存サイクルとする方法。
39. The timing at which the isolated combustion in the reduced diameter main combustion chamber is released is set at 40 degrees of the crank angle after the dead center of each piston.
38. The method as claimed in any one of claims 35 to 37, wherein the velocity type thermal energy is injected into the double-ended piston with the angle between about 90 ° and about 70 °.
【請求項40】 前記縮径された縮径主燃焼室内隔離燃
焼させることで、定容燃焼に大接近させる近似定容燃焼
とした請求項35乃至請求項39のいずれか1項に記載
のエネルギ保存サイクルとする方法。
40. The energy according to any one of claims 35 to 39, wherein by performing isolated combustion in said reduced diameter main combustion chamber, approximate constant volume combustion is brought close to constant volume combustion. How to make a save cycle.
【請求項41】 前記縮径された縮径主燃焼室内隔離燃
焼を燃料過剰燃焼とした請求項35乃至請求項40のい
ずれか1項に記載のエネルギ保存サイクルとする方法。
41. The method according to any one of claims 35 to 40, wherein the isolated combustion in the reduced diameter reduced main combustion chamber is an excess fuel combustion.
【請求項42】 前記縮径された縮径主燃焼室内隔離燃
焼を理論空燃比燃焼とした請求項35乃至請求項40の
いずれか1項に記載のエネルギ保存サイクルとする方
法。
42. The method according to any one of claims 35 to 40, wherein the isolated combustion in the reduced diameter main combustion chamber is stoichiometric air-fuel ratio combustion.
【請求項43】 前記縮径された縮径主燃焼室内隔離燃
焼を希薄燃焼とした請求項35乃至請求項40のいずれ
か1項に記載のエネルギ保存サイクルとする方法。
43. The method according to claim 35, wherein the isolated combustion in the reduced diameter main combustion chamber is a lean burn.
【請求項44】 前記近似定容燃焼を、残留ガスの多い
縮径主燃焼室内隔離燃焼により中温高圧燃焼として、夫
夫の死点後の所定期間に亘って持続してNOxと未燃分
を同時に皆無に近づける請求項35乃至請求項43のい
ずれか1項に記載のエネルギ保存サイクルとする方法。
44. The approximate constant-volume combustion is performed by isolating combustion in a reduced-diameter main combustion chamber containing a large amount of residual gas, so that NOx and unburned components are continuously maintained for a predetermined period after the dead center of each of them. 44. The method as set forth in any one of claims 35 to 43, wherein the energy storage cycle is almost zero at the same time.
【請求項45】 前記近似定容燃焼を、残留ガスの多い
縮径主燃焼室内隔離燃焼により中温高圧燃焼とするた
め、該縮径主燃焼室内水噴射するエネルギ変換手段を追
加して、夫夫の死点後の所定期間に亘って持続してNO
xと未燃分を同時に皆無に近づける請求項35乃至請求
項44のいずれか1項に記載のエネルギ保存サイクルと
する方法。
45. An energy conversion means for injecting water into the reduced-diameter main combustion chamber to add the constant-constant combustion to medium-temperature and high-pressure combustion by isolating combustion in the reduced-diameter main combustion chamber containing a large amount of residual gas. NO for a predetermined period after the dead center
45. The method as set forth in any one of claims 35 to 44, wherein x and unburned components are simultaneously made almost zero.
【請求項46】 前記速度形熱エネルギの噴射を受ける
両頭拡径ピストンの頭部を皿状の凹部(4)として、対
応するシリンダヘッドを皿状の凸部(14)とした請求
項35乃至請求項45のいずれか1項に記載のエネルギ
保存サイクルとする方法。
46. The head of the double-ended piston receiving the injection of the velocity-type thermal energy is formed as a dish-shaped recess (4), and the corresponding cylinder head is formed as a dish-shaped projection (14). 46. A method according to any one of the preceding claims, wherein the energy conservation cycle is performed.
【請求項47】 前記速度形熱エネルギの噴射を受ける
両頭拡径ピストンの頭部を平面部として、対応するシリ
ンダヘッドも平面部とした請求項35乃至請求項46の
いずれか1項に記載のエネルギ保存サイクルとする方
法。
47. The method according to claim 35, wherein the head of the double-headed enlarged diameter piston receiving the injection of the velocity type thermal energy is a flat portion, and the corresponding cylinder head is also a flat portion. A method that uses an energy conservation cycle.
【請求項48】 前記速度形熱エネルギの噴射を受ける
両頭拡径ピストンの頭部を任意の凹部(4)として、対
応するシリンダヘッドを任意の凸部(14)とした請求
項35乃至請求項47のいずれか1項に記載のエネルギ
保存サイクルとする方法。
48. The head of the double-headed enlarged piston receiving the injection of the velocity-type thermal energy is an arbitrary concave part (4), and the corresponding cylinder head is an arbitrary convex part (14). 48. A method according to any one of claims 47 to 47, wherein the energy conservation cycle.
【請求項49】 前記縮径ピストンを前記両頭拡径ピス
トンの頭部略中央より縮径主燃焼室の縮径に応じて突設
して、その外周面に前記両頭拡径ピストンの運動方向に
直交する環状の凹凸を多数設けて、高圧燃焼ガスを多段
に減圧して漏洩量を選定する請求項35乃至請求項48
のいずれか1項に記載のエネルギ保存サイクルとする方
法。
49. The reduced-diameter piston is projected from substantially the center of the head of the double-head enlarged piston in accordance with the reduced diameter of the reduced-diameter main combustion chamber, and has an outer peripheral surface in the movement direction of the double-head enlarged piston. 50. A leakage amount is selected by providing a large number of orthogonal annular irregularities to reduce the pressure of the high-pressure combustion gas in multiple stages.
A method as an energy conservation cycle according to any one of the preceding claims.
【請求項50】 前記縮径ピストンの外周面に、前記両
頭拡径ピストンの運動方向に直交する環状の凹凸を多段
に設けて、その先端の凸部を幅広として外周面に、該凸
部の下部を適宜に残して、前記両頭拡径ピストンの運動
方向に対して斜めに延びる複数の騒音低減溝(11)を
設けた請求項35乃至請求項49のいずれか1項に記載
のエネルギ保存サイクルとする方法。
50. On the outer peripheral surface of the reduced-diameter piston, multi-stage annular irregularities perpendicular to the direction of movement of the double-headed enlarged piston are provided. 50. The energy storage cycle according to any one of claims 35 to 49, wherein a plurality of noise reduction grooves (11) extending obliquely to the direction of movement of the double-headed enlarged piston are provided while appropriately leaving a lower portion. And how.
【請求項51】 前記縮径主燃焼室内隔離燃焼を最適時
に解除して、夫夫の死点後の絶好機前半付近の出力増大
を図る請求項35乃至請求項50のいずれか1項に記載
のエネルギ保存サイクルとする方法。
51. The apparatus according to claim 35, wherein the isolated combustion in the reduced diameter main combustion chamber is canceled at an optimum time to increase the output in the vicinity of the first half of the ideal machine after the dead center of each husband and wife. Energy conservation cycle.
【請求項52】 前記縮径主燃焼室に向かう流れだけを
可能にする逆止弁を、拡径燃焼室側から挿入れ固着して
一方向空気流路を形成させた請求項35乃至請求項51
のいずれか1項に記載のエネルギ保存サイクルとする方
法。
52. A one-way air flow path formed by inserting and fixing a check valve that allows only the flow toward the reduced-diameter main combustion chamber from the enlarged-diameter combustion chamber side. 51
A method as an energy conservation cycle according to any one of the preceding claims.
【請求項53】 前記縮径主燃焼室を縮径することで、
高圧の縮径主燃焼室を小径薄肉軽量化すると共に、拡径
燃焼室は大幅に低圧燃焼室として、大径薄肉軽量化した
請求項35乃至請求項52のいずれか1項に記載のエネ
ルギ保存サイクルとする方法。
53. By reducing the diameter of the reduced-diameter main combustion chamber,
53. The energy storage device according to any one of claims 35 to 52, wherein the high-pressure reduced-diameter main combustion chamber has a small diameter, thin wall, and light weight, and the expanded diameter combustion chamber has a large diameter, thin wall, and light weight as a substantially low-pressure combustion chamber. How to make a cycle.
【請求項54】 前記縮径主燃焼室を縮径することで、
夫夫の死点付近での振動エネルギを大低減した請求項3
5乃請求項53のいずれか1項に記載のエネルギ保存サ
イクルとする方法。
54. By reducing the diameter of the reduced-diameter main combustion chamber,
The vibration energy near the dead center of the husband and wife is greatly reduced.
54. A method as in any one of claims 53.
【請求項55】 前記縮径主燃焼室内隔離燃焼に、該縮
径主燃焼室内水噴射するエネルギ変換手段を追加して、
拡径燃焼室を低温低圧燃焼室として、断熱無冷却機関を
可能にした請求項35乃至請求項54のいずれか1項に
記載のエネルギ保存サイクルとする方法。
55. An energy conversion means for injecting water into the reduced-diameter main combustion chamber is added to the isolated combustion in the reduced-diameter main combustion chamber,
55. The method according to any one of claims 35 to 54, wherein the expanded combustion chamber is a low-temperature low-pressure combustion chamber to enable an adiabatic non-cooled engine.
【請求項56】 前記縮径主燃焼室内隔離燃焼により、
最良の燃焼条件のままの近似定容燃焼期間を大延長した
請求項35乃至請求項55のいずれか1項に記載のエネ
ルギ保存サイクルとする方法。
56. The isolated combustion in the reduced-diameter main combustion chamber,
56. The method according to any one of claims 35 to 55, wherein the approximate constant volume combustion period under the best combustion conditions is greatly extended.
【請求項57】 前記縮径主燃焼室内隔離燃焼により、
最良の燃焼条件のままの近似定容燃焼期間を延長すると
共に、隔離燃焼解除時に大圧力差による超高速攪拌混合
燃焼とした請求項35乃至請求項56のいずれか1項に
記載のエネルギ保存サイクルとする方法。
57. The isolated combustion in the reduced diameter main combustion chamber,
57. The energy storage cycle according to any one of claims 35 to 56, wherein the approximate constant-volume combustion period under the best combustion conditions is extended, and ultra-high-speed agitated mixed combustion is performed by a large pressure difference when the isolated combustion is released. And how.
【請求項58】 前記縮径主燃焼室内隔離燃焼により、
近似定容燃焼及び超高速攪拌混合燃焼として、完全燃焼
終了期間を短縮確実にすることで、両頭拡径ピストンを
大拡径して超ショートストローク機関により比出力を大
増大させる請求項35乃至請求項57のいずれか1項に
記載のエネルギ保存サイクルとする方法。
58. The isolated combustion in the reduced-diameter main combustion chamber,
35. Claims 35 to 35, wherein the constant-combustion combustion and the ultra-high-speed agitated mixed combustion shorten the complete combustion termination period, thereby increasing the diameter of the double-headed piston and greatly increasing the specific output by the ultra-short stroke engine. 58. A method as in any one of paragraph 57 to the energy conservation cycle.
【請求項59】 前記両頭拡径ピストンの内部には、振
り子腕の中間部を挿入れ維持するピストン側カム(7)
を半円軌道(8)と共に対向に設けて振り子腕を挿入れ
維持して、両頭拡径ピストンの往復運動により振り子腕
の下端に枢支されたクランク軸(25)が回転して動力
を伝達可能にした請求項35乃至請求項58のいずれか
1項に記載のエネルギ保存サイクルとする方法。
59. A piston-side cam (7) for inserting and maintaining an intermediate portion of a pendulum arm inside the double-headed enlarged piston.
The pendulum arm is inserted and maintained in opposition to the semicircular orbit (8), and the crankshaft (25) pivotally supported at the lower end of the pendulum arm is rotated by the reciprocating motion of the double-headed enlarged piston to transmit power. 59. A method as claimed in any one of claims 35 to 58, wherein the method comprises an energy conservation cycle.
【請求項60】 前記両頭拡径ピストンの内部には、振
り子腕の振り子側カム(12)を挿入れ維持する平行軌
道(13)を対向に設けて振り子腕を挿入れ維持して、
両頭拡径ピストンの往復運動により振り子腕の下端に枢
支されたクランク軸(25)が回転して動力を伝達可能
にした請求項35乃至請求項59のいずれか1項に記載
のエネルギ保存サイクルとする方法。
60. A parallel orbit (13) for inserting and maintaining a pendulum-side cam (12) of a pendulum arm is provided in the inside of the double-headed enlarged piston so as to face the pendulum arm, and the pendulum arm is inserted and maintained.
60. The energy storage cycle according to any one of claims 35 to 59, wherein the reciprocating motion of the double-headed piston rotates the crankshaft (25) pivotally supported at the lower end of the pendulum arm to transmit power. And how.
【請求項61】 前記両頭拡径ピストンの対向往復運動
を同期させる噛み合い同期手段(1)で、夫夫のクラン
ク軸(25)を結合した請求項35乃至請求項60のい
ずれか1項に記載のエネルギ保存サイクルとする方法。
61. Each of the crankshafts (25) is coupled to each other by a meshing synchronizing means (1) for synchronizing opposing reciprocating motions of the double-headed enlarged piston. Energy conservation cycle.
【請求項62】 前記両頭拡径ピストンの対向往復運動
を同期させる噛み合い同期手段兼機械式過給機で、夫夫
のクランク軸を結合した請求項35乃至請求項60のい
ずれか1項に記載のエネルギ保存サイクルとする方法。
62. The crankshaft according to any one of claims 35 to 60, wherein each of the crankshafts is connected by a meshing synchronizing means and a mechanical supercharger for synchronizing the opposed reciprocating motions of the double-head enlarged piston. Energy conservation cycle.
【請求項63】 前記クランク軸に機械式過給機を設け
た請求項36乃至請求項60のいずれか1項に記載のエ
ネルギ保存サイクルとする方法。
63. The method according to claim 36, wherein a mechanical supercharger is provided on the crankshaft.
JP9088973A 1996-07-26 1997-04-08 Device and method for making pendulum piston to serve as energy preserving cycle Pending JPH1089075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9088973A JPH1089075A (en) 1996-07-26 1997-04-08 Device and method for making pendulum piston to serve as energy preserving cycle

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-229188 1996-05-28
JP22918896 1996-07-26
JP9088973A JPH1089075A (en) 1996-07-26 1997-04-08 Device and method for making pendulum piston to serve as energy preserving cycle

Publications (1)

Publication Number Publication Date
JPH1089075A true JPH1089075A (en) 1998-04-07

Family

ID=26430292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9088973A Pending JPH1089075A (en) 1996-07-26 1997-04-08 Device and method for making pendulum piston to serve as energy preserving cycle

Country Status (1)

Country Link
JP (1) JPH1089075A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102376A3 (en) * 2002-05-31 2004-06-17 Tomislav Petrovic Inertial mechanism enabling transformation of an oscillatory motion into a one-way circular motion
JP2007512470A (en) * 2003-11-26 2007-05-17 シェパード,グレイドン,オーブリー Reciprocating engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102376A3 (en) * 2002-05-31 2004-06-17 Tomislav Petrovic Inertial mechanism enabling transformation of an oscillatory motion into a one-way circular motion
JP2007512470A (en) * 2003-11-26 2007-05-17 シェパード,グレイドン,オーブリー Reciprocating engine
US7810458B2 (en) 2003-11-26 2010-10-12 Graydon Aubrey Shepherd Reciprocating sleeve engine
US7980208B2 (en) 2003-11-26 2011-07-19 Graydon Aubrey Shepherd Reciprocating engine

Similar Documents

Publication Publication Date Title
JP4245799B2 (en) Cantilever crankshaft Stirling cycle machine
US5228415A (en) Engines featuring modified dwell
JP3016485B2 (en) Reciprocating 2-cycle internal combustion engine without crank
US4996953A (en) Two plus two stroke opposed piston heat engine
WO1997045629A1 (en) Energy conservation cycle engine
KR20030053596A (en) Piston compressed turbine engine and its control method
US6668809B2 (en) Stationary regenerator, regenerated, reciprocating engine
US7137366B2 (en) Two-cycle swash plate internal combustion engine
US7677210B2 (en) Rotating barrel type internal combustion engine
JPH1089075A (en) Device and method for making pendulum piston to serve as energy preserving cycle
JPH1047001A (en) Method for using pendulum piston as energy conservation cycle and device therefor
JPH1089074A (en) Energy preserving cycle internal combustion engine
US7469665B2 (en) Two-cycle swash plate internal combustion engine
JPH1047062A (en) Various kinds of energy preservation cycle internal combustion engines
JPH1089001A (en) Energy conservation cycle engine
JPH1047075A (en) D-type/e-type energy preservation cycle internal combustion engine
US20240052777A1 (en) Cleaner, More Efficient Engines
JPH1047063A (en) F-type/g-type energy preservation cycle internal combustion engine
JPH09242558A (en) Internal combustion engine having diameter-contracted combustion chamber
US20090101089A1 (en) Two-cycle swash plate internal combustion engine
JPH1082321A (en) Method and device for utilizing energy conservation cycle internal combustion engine
RU2435975C2 (en) Menshov internal combustion engine
CN114060144A (en) Internal combustion engine
US5638776A (en) Internal combustion engine
JPH0828274A (en) Combustion chamber and combustion method for contracted combustion chamber type internal combustion engine