JPH1088476A - Superfine short fiber for papermaking and its production - Google Patents

Superfine short fiber for papermaking and its production

Info

Publication number
JPH1088476A
JPH1088476A JP25733596A JP25733596A JPH1088476A JP H1088476 A JPH1088476 A JP H1088476A JP 25733596 A JP25733596 A JP 25733596A JP 25733596 A JP25733596 A JP 25733596A JP H1088476 A JPH1088476 A JP H1088476A
Authority
JP
Japan
Prior art keywords
fiber
alkali
polymer
single yarn
short fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25733596A
Other languages
Japanese (ja)
Other versions
JP3678511B2 (en
Inventor
Koichi Hoshijima
弘一 星島
Meiji Muraoka
明治 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP25733596A priority Critical patent/JP3678511B2/en
Publication of JPH1088476A publication Critical patent/JPH1088476A/en
Application granted granted Critical
Publication of JP3678511B2 publication Critical patent/JP3678511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide uniform superfine short fibers for papermaking having 1-10μm fiber diameter and 300-2000L/D, ratio of the length of the single fiber L over the diameter of the single fiber D, and a method for efficiently producing the same. SOLUTION: The superfine short fibers for papermaking are produced by putting composite short fibers, obtained by cutting the composite fibers consisting of an easily alkali-hydrolyzable polymer (polymer A) and at least one component or more of polymers (polymer B) being differently hydrolyzable from the easily alkali-hydrolyzable polymer into <=5mm length, in a bag of a non alkali hydrolyzable fiber, dipping the bag into an aqueous alkali solution having >=3 times weight of the composite short fiber and decomposing and removing the easily alkali-hydrolyzable polymer component (polymer A) by exposing in a mild flowing condition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、繊維の単糸直径が
1〜10μmで、単糸の直径 [D] と長さ [L]の比、
L/Dが300〜2000である均一な抄造用極細短繊
維およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to a fiber having a single yarn diameter of 1 to 10 μm and a ratio of a single yarn diameter [D] to a length [L];
The present invention relates to a uniform ultrafine short fiber for papermaking having an L / D of 300 to 2,000 and a method for producing the same.

【0002】[0002]

【従来技術】複合繊維から1成分を分解除去して極細繊
維の束を取り出す方法としては、例えば、複合繊維のト
ウに予めケン縮を付与し、有機溶剤で該複合繊維の海成
分を除去して極細繊維のトウを得る方法(特公昭54ー
28490号公報)、複合繊維を非アルカリ加水分解性
多孔性ボビンに巻着し、チーズ染色機などを用いて、ア
ルカリ液を循環させ、加水分解性樹脂を溶解除去して極
細繊維の束を得る方法(特開平4ー65577号公報)
などが知られている。
2. Description of the Related Art As a method of taking out a bundle of ultrafine fibers by decomposing and removing one component from a conjugate fiber, for example, a tow of the conjugate fiber is preliminarily shrinked, and a sea component of the conjugate fiber is removed with an organic solvent. (Japanese Patent Publication No. 54-28490), wrapping a composite fiber around a non-alkali hydrolyzable porous bobbin, circulating an alkaline solution using a cheese dyeing machine, etc. Of dissolving and removing conductive resin to obtain a bundle of ultrafine fibers (Japanese Patent Application Laid-Open No. 4-65577)
Etc. are known.

【0003】また、抄造用極細短繊維の製造方法とし
て、ポリエステル極細繊維発生型繊維の短繊維を水中分
散し、叩解処理することにより極細短繊維を得る方法
(特開平4ー100992号公報)、複合繊維をアルカ
リ性溶液で処理した後、叩解処理してポリエステル合成
パルプを得る方法(特開昭56ー165012号公
報)、溶融異方性芳香族ポリエステルを島成分とする海
島繊維から易アルカリ減量性ポリエステルを溶解及び/
又は分解除去して実質的に枝別れを有しないパルプ状物
を得る方法(特開平7ー331581号公報)などが知
られている。
[0003] As a method for producing ultrafine short fibers for papermaking, a method of obtaining ultrafine short fibers by dispersing short fibers of polyester ultrafine fiber-generating fibers in water and subjecting the fibers to beating treatment (Japanese Patent Application Laid-Open No. 4-100992); A method in which a conjugate fiber is treated with an alkaline solution and then beaten to obtain a polyester synthetic pulp (JP-A-56-165012). Dissolve polyester and / or
Alternatively, a method of obtaining a pulp-like substance having substantially no branching by decomposing and removing (JP-A-7-331581) is known.

【0004】[0004]

【発明が解決しようとする課題】抄造用極細短繊維の製
造方法は各種提案されてきたが、繊維直径10μm以下
の極細繊維は短繊維にカットする際に融着したり、極細
短繊維同士が絡み易い為に、スラリー塊を発生する。従
って、均一な分散をする事が出来る様な抄造用の極細短
繊維を得ることは非常に困難であり、今だ達成されてい
ない。例えば、前述の2件の特許文献に開示されている
ように、束状態の複合繊維から特定成分を溶解除去して
得られる極細繊維束を、カッター等で短繊維にカットす
る方法がある。この方法では、得られる極細繊維の束を
短繊維にカットする際、極細繊維の直径が細くなるとカ
ット結着が起こる。その結果、水に分散した場合、カッ
ト結着面が分散せずに短繊維塊を生じ、良好な極細短繊
維の抄造シートは得られない。
Various methods for producing ultrafine short fibers for papermaking have been proposed, but ultrafine fibers having a fiber diameter of 10 μm or less may be fused when cut into short fibers, or the ultrafine short fibers may be bonded to each other. Slurry clumps are generated because they are easily entangled. Therefore, it is very difficult to obtain ultrafine short fibers for papermaking that can be uniformly dispersed, and it has not been achieved yet. For example, as disclosed in the above-mentioned two patent documents, there is a method in which an ultrafine fiber bundle obtained by dissolving and removing a specific component from a conjugate fiber in a bundle state is cut into short fibers by a cutter or the like. In this method, when the obtained bundle of ultrafine fibers is cut into short fibers, cut binding occurs when the diameter of the ultrafine fibers is reduced. As a result, when dispersed in water, the cut binding surface does not disperse and short fiber clumps are formed, and a good ultrafine short fiber sheet cannot be obtained.

【0005】一方、前述の2件の特許文献に開示されて
いるように、予め短くカットした剥離型の複合短繊維を
水中に分散し、パルパー、ビーター、或いはリファイナ
ー等で叩解処理を施して極細短繊維を得る方法、及び線
状芳香族ポリエステルとアルカリ可溶な特殊な有機化合
物からなるアルカリ減量型複合繊維のカット糸を浸積法
でアルカリ処理し、次いで水中で同様に叩解処理して極
細短繊維を得る方法は、フィブリル化した状態のパルプ
物が得られる。そのため、フィブリル化物が原因で極細
短繊維の絡まりが発生する。また、パルプ状物であるの
で、得られる極細短繊維は様々な繊維径と繊維長の混在
するものである。これらの方法では、水に単糸が均一に
分散するような繊径及び繊維長が均一な抄造用極細短繊
維は得られない。
On the other hand, as disclosed in the above-mentioned two patent documents, release-type conjugate short fibers that have been cut short beforehand are dispersed in water, beaten with a pulper, beater, refiner, or the like, and subjected to ultrafine processing. A method for obtaining short fibers, and an alkali treatment of cut fibers of a weight-reduced conjugate fiber composed of a linear aromatic polyester and a special alkali-soluble organic compound by an immersion method, followed by a similar beating treatment in water to produce an ultrafine fiber. In the method for obtaining short fibers, a fibrillated pulp can be obtained. Therefore, entanglement of the ultrafine short fibers occurs due to the fibrillated product. Further, since it is a pulp-like material, the obtained ultrafine short fibers have various fiber diameters and fiber lengths. In these methods, it is not possible to obtain ultrafine short fibers for papermaking having a uniform fiber diameter and a uniform fiber length such that the single yarn is uniformly dispersed in water.

【0006】前述の最後の特許文献に開示されているよ
うに、溶融異方性芳香族ポリエステルを島成分とする海
島繊維を短繊維にカットした後、易アルカリ減量性ポリ
エステル成分を浸積法で溶解及び/ 又は分解除去してパ
ルプ状物を得る方法では、実質的に枝分かれは無いもの
の、得られるパルプ状物はその単糸直径分布が0.1〜
4μmと非常に大きくなり、単糸直径が小さなものは絡
まってしまう。又、上記複合短繊維を浸漬法で直接アル
カリ減量加工した場合、発生した極細短繊維が激しく高
温のアルカリ水溶液中で攪拌される為、極細短繊維同士
が複雑に絡み合ってしまうなどの問題が発生する。従っ
て、この方法では均一な単糸の直径とL/Dを有し、均
一に水に分散する様な良好な抄造用極細短繊維は得られ
ない。
[0006] As disclosed in the above-mentioned last patent document, sea-island fibers containing melt-anisotropic aromatic polyester as island components are cut into short fibers, and then the alkali-reducible polyester components are immersed in a immersion method. In the method of dissolving and / or decomposing and removing to obtain a pulp-like product, the obtained pulp-like product has a single yarn diameter distribution of 0.1 to 0.1, although there is substantially no branching.
It is as large as 4 μm, and a single yarn having a small diameter is entangled. In addition, when the above-mentioned conjugate short fibers are directly subjected to alkali weight reduction processing by an immersion method, since the generated ultrafine short fibers are violently stirred in a high-temperature alkaline aqueous solution, problems such as complicated intertwining of the ultrafine short fibers occur. I do. Therefore, according to this method, it is not possible to obtain a fine ultrafine short fiber for papermaking having a uniform single yarn diameter and L / D and being uniformly dispersed in water.

【0007】[0007]

【課題を解決するための手段】本発明者らは鋭意研究を
重ねた結果、繊維の単糸直径が1〜10μmで、単糸の
直径 [D] と長さ [L] の比、L/Dが300〜200
0で、均一な抄造用極細短と、その簡便な製造方法を見
い出し、本発明を完成したものである。本発明は易アル
カリ加水分解性ポリマー(ポリマーA)と、該易アルカ
リ加水分解性ポリマーと加水分解性が異なる少なくとも
1成分以上のポリマー(ポリマーB)からなる複合短繊
維を非アルカリ加水分解性繊維製の袋に封入し、該袋及
び/又はアルカリ水溶液を流動状態に晒しながら、易ア
ルカリ加水分解性のポリマー成分を分解除去することに
よって得られる、繊維の単糸直径が1〜10μmで、単
糸の直径 [D] と長さ [L] の比、L/Dが300〜2
000である均一な抄造用極細短繊維を特徴とするもの
である。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that the single yarn diameter of the fiber is 1 to 10 μm, and the ratio of the diameter [D] of the single yarn to the length [L], L / D is 300-200
The present invention was found to be uniform and extremely thin for papermaking, and a simple method for producing the same. The present invention relates to a non-alkali hydrolyzable composite staple fiber comprising an alkali hydrolyzable polymer (polymer A) and at least one polymer (polymer B) having a different hydrolyzability from the alkali hydrolyzable polymer. A fiber having a single yarn diameter of 1 to 10 μm, obtained by decomposing and removing an alkali-hydrolysable polymer component while exposing the bag and / or the aqueous alkali solution to a fluidized state. The ratio of the diameter [D] to the length [L] of the yarn, L / D is 300-2
It is characterized by a uniform ultrafine short fiber for papermaking of 000.

【0008】又、易アルカリ加水分解性ポリマー(ポリ
マーA)と、該易アルカリ加水分解性ポリマーと加水分
解性が異なる少なくとも1成分以上のポリマー(ポリマ
ーB)からなる複合繊維を長さ5mm以下にカットして
得た複合短繊維を非アルカリ加水分解性繊維製の袋に封
入し、該複合短繊維の重量の3倍以上のアルカリ水溶液
に浸積し、該袋及び/又はアルカリ水溶液を流動状態に
晒しながら、易アルカリ加水分解性のポリマー成分(ポ
リマーA)を分解除去することを特徴とする、繊維の単
糸の直径が1〜10μmで、単糸の直径 [D] と長さ
[L] の比、L/Dが300〜2000である均一な抄
造用極細短繊維の製造方法、である。
A composite fiber comprising an alkali-hydrolysable polymer (polymer A) and at least one polymer (polymer B) having a different hydrolyzability from the alkali-hydrolysable polymer is reduced to a length of 5 mm or less. The cut composite staple fiber is sealed in a bag made of non-alkali hydrolyzable fiber, immersed in an alkaline aqueous solution having a weight of at least three times the weight of the composite staple fiber, and the bag and / or the alkaline aqueous solution is allowed to flow. A fiber having a diameter of 1 to 10 μm, a diameter [D] of the single yarn and a length of 1 to 10 μm, wherein the alkali component hydrolyzable polymer component (polymer A) is decomposed and removed while being exposed to water.
[L] and L / D of 300 to 2,000.

【0009】かかる製造方法によれば、穏和なアルカリ
減量条件の下、容易に複合短繊維から均一な繊維径とL
/Dを有する抄造用極細短繊維が得られるため、この極
細短繊維を水に分散させると、通常の攪拌で容易に均一
な繊維塊などの無いスラリーが得られる。従って、パル
プ状物を水に均一分散させるため、一般的に用いられる
パルパー、ビーター或いはリファイナーを必要とせず、
本発明の極細短繊維は繊維塊が製品欠点となる人工皮革
用の不織布シート及び電池セパレーターなどに好適に利
用できる。又、本発明の極細短繊維は均一な単糸の直径
とL/Dを有するため、得られる抄造シートを柱状流交
絡等の方法で不織布化することにより、均一な3次元交
絡処理が達成され、高強度の不織布を得る事ができるな
ど予期せぬ優れた効果を示すものである。
According to this production method, under a condition of mild alkali weight loss, a uniform fiber diameter and L
Since the ultrafine short fibers for papermaking having / D are obtained, when the ultrafine short fibers are dispersed in water, a slurry without a uniform fiber mass can be easily obtained by ordinary stirring. Therefore, in order to uniformly disperse the pulp-like material in water, there is no need for a commonly used pulper, beater or refiner,
The ultrafine short fiber of the present invention can be suitably used for a nonwoven fabric sheet for artificial leather, a battery separator, and the like in which a fiber mass is a product defect. Moreover, since the ultrafine short fibers of the present invention have a uniform single yarn diameter and L / D, uniform three-dimensional entanglement treatment can be achieved by forming the obtained sheet into a nonwoven fabric by a method such as columnar flow entanglement. And an unexpectedly excellent effect such that a high-strength nonwoven fabric can be obtained.

【0010】本発明の抄造用極細短繊維とは、実質的に
様々な繊維径及び繊維長が混在し、且つフィブリル化状
態のパルプ状短繊維とは全く異なるものであって、短繊
維同士の絡まりが非常に少なく、欠点となる繊維塊がほ
とんど発生しない極細短繊維のことである。本発明に用
いられる複合繊維は、易アルカリ加水分解性ポリマー
(ポリマーA)と、該易アルカリ加水分解性ポリマーと
加水分解性を異にする少なくとも1成分以上のポリマー
(ポリマーB)からなる複合繊維であり、繊維の断面形
態は積層型、分割型、楔型、芯鞘分割型、海島型の群か
ら選ばれた少なくとも1種類のものであれば良く、特に
限定されるものではないが、本発明の極細繊維となるポ
リマーBは複合繊維の長さ方向に連続しており、且つ繊
維径が均一であることが好ましい。
The ultrafine short fibers for papermaking of the present invention are substantially different from pulp-like short fibers in a fibrillated state in which substantially various fiber diameters and fiber lengths are mixed. It is an ultra-fine short fiber that has very little entanglement and hardly generates defective fiber lumps. The conjugate fiber used in the present invention is a conjugate fiber comprising an alkali-hydrolysable polymer (polymer A) and at least one polymer (polymer B) having a different hydrolyzability from the alkali-hydrolysable polymer. The cross-sectional form of the fiber may be at least one selected from the group consisting of a laminated type, a split type, a wedge type, a core-sheath split type, and a sea-island type, and is not particularly limited. It is preferable that the polymer B to be the ultrafine fiber of the present invention is continuous in the length direction of the conjugate fiber and has a uniform fiber diameter.

【0011】例えば、この様な易アルカリ加水分解性ポ
リマー(ポリマーA)を例示すると、アルコール成分が
平均分子量600〜6000のポリエチレングリコール
を共重合したブロックポリエーテルエステルや、酸成分
としてスルホイソフタル酸2モル%以上共重合したポリ
エステル、あるいは、これら両成分を組み合わせた共重
合ポリエステルである。特に、ポリエチレングリコール
を10重量%以上、好ましくは、15重量%以上共重合
したブロックポリエーテルエステルはそのアルカリ溶解
速度定数Kが極めて大きくなり、穏和な条件で易アルカ
リ加水分解性ポリマー(ポリマーA)を分解除去できる
ので好ましい。
For example, such an easily hydrolyzable polymer (Polymer A) is exemplified as a block polyether ester in which an alcohol component is copolymerized with polyethylene glycol having an average molecular weight of 600 to 6000, or sulfoisophthalic acid 2 as an acid component. It is a polyester copolymerized in an amount of at least mol% or a copolymerized polyester combining these two components. In particular, a block polyetherester obtained by copolymerizing polyethylene glycol in an amount of 10% by weight or more, preferably 15% by weight or more has an extremely large alkali dissolution rate constant K, and can be easily alkali-hydrolyzed under mild conditions (Polymer A). Is preferred because it can be decomposed and removed.

【0012】易アルカリ加水分解性ポリマー(ポリマー
A)と、該易アルカリ加水分解性ポリマーと加水分解性
を異にする少なくとも1成分以上のポリマー(ポリマー
B)とのアルカリ分解速度比は、好ましくは1/100
0倍以上、さらに好ましくは1/1500倍以上であ
る。なお、アルカリ溶解速度定数とは、試料を濃度が2
重量%の水酸化ナトリウム水溶液で90℃で溶解処理し
て求めた溶解速度であり、ポリエステル繊維のアルカリ
溶解速度定数Kの算出については、橋本(繊維学会誌、
14、510.1958年)によって示されている。す
なわち、アルカリ処理に供するポリエステルフィラメン
トの処理前の繊維半径r0 (cm)、このフィラメント
が完全に溶解消失するまでの処理時間をt(秒)とする
と、K=r0 /t(cm/秒)で示される。
The alkali decomposition rate ratio between the alkali-hydrolysable polymer (polymer A) and at least one component (polymer B) having a different hydrolyzability from the alkali-hydrolysable polymer is preferably 1/100
It is 0 times or more, more preferably 1/1500 times or more. In addition, the alkali dissolution rate constant refers to a sample having a concentration of 2
It is a dissolution rate obtained by dissolving a 90% by weight aqueous solution of sodium hydroxide at 90 ° C. For calculating the alkali dissolution rate constant K of polyester fiber, see Hashimoto (Journal of the Textile Society of Japan,
14, 510.1958). That is, assuming that a fiber radius r 0 (cm) of a polyester filament to be subjected to an alkali treatment before treatment and a treatment time until the filament completely dissolves and disappears are t (seconds), K = r 0 / t (cm / second). ).

【0013】ポリマーBとしては、例えば、ポリエチレ
ンテレフタレート、ポリブチレンテレフタレート、ポリ
エチレンナフタレートなどのポリエステル類や、これら
のポリエステル類成分にイソフタル酸、アジピン酸、ド
デカン二酸、スルホイソフタル酸、シクロヘキサンジメ
タノールなどの酸成分や、ジエチレングリコール、プロ
ピレングリコール、ポリエチレングリコールなどのグリ
コール成分を共重合させた改質ポリエステル類、ナイロ
ン6、ナイロン6、6、ナイロン12、ポリーPーフェ
ニレンテレフタラミド、ポリーmーフェニレンイソフタ
ラミドなどのポリアミド類、ポリエチレン、ポリプロピ
レンなどのポリオレフィン類、ポリアクリロニトリルな
どのアクリル類等が挙げられる。
As the polymer B, for example, polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and the like, and isophthalic acid, adipic acid, dodecandioic acid, sulfoisophthalic acid, cyclohexane dimethanol, etc. Modified polyesters obtained by copolymerizing acid components of the above or glycol components such as diethylene glycol, propylene glycol and polyethylene glycol, nylon 6, nylon 6, 6, nylon 12, poly-P-phenylene terephthalamide, poly-m-phenylene iso Examples include polyamides such as phthalamide, polyolefins such as polyethylene and polypropylene, and acrylics such as polyacrylonitrile.

【0014】複合繊維から本発明の製造方法で易アルカ
リ加水分解性ポリマー(ポリマーA)を分解除去して得
られるポリマーBからなる抄造用極細短繊維としては、
繊維の単糸の直径が1〜10μmの範囲内、好ましくは
2〜9μmの範囲内、さらに好ましくは2〜7μmの範
囲内の極細短繊維であれば良い。1μm未満の場合に
は、極細短繊維同士の絡まりが発生し、水単糸分散性が
良好な抄造用極細短繊維は得られない。逆に、10μm
を越える様な場合は、得られる繊維は、極細繊維と言い
難く、直接紡糸法などの他の方法で紡糸する方法の方が
安価に入手可能である。
The ultrafine short fibers for papermaking comprising the polymer B obtained by decomposing and removing the alkali-hydrolysable polymer (polymer A) from the conjugate fiber by the production method of the present invention include:
It is sufficient if the diameter of the single yarn of the fiber is ultrafine short fiber within the range of 1 to 10 μm, preferably within the range of 2 to 9 μm, and more preferably within the range of 2 to 7 μm. If it is less than 1 μm, entanglement of the ultrafine short fibers occurs, and it is not possible to obtain ultrafine short fibers for papermaking having good water single yarn dispersibility. Conversely, 10 μm
In such a case, the obtained fiber is hardly referred to as an ultrafine fiber, and a method of spinning by another method such as a direct spinning method is available at a lower cost.

【0015】本発明に用いられる複合繊維は、易アルカ
リ加水分解性ポリマー(ポリマーA)と、該易アルカリ
加水分解性ポリマーと加水分解性を異にする少なくとも
1成分以上のポリマー(ポリマーB)からなる複合繊維
であればよいが、その太さは通常、単糸デニールの太さ
が0. 2d〜10dの範囲内、好ましくは0. 3d〜5
d程度のものである。単糸デニールが0. 2d未満の場
合には、安定的に複合繊維を紡糸することが困難にな
る。逆に、10dを越える場合には、易アルカリ加水分
解性ポリマー(ポリマーA)を分解除去して得られる極
細繊維の繊維径を細くする為、複合繊維中に多くの島成
分を作らなければならず、この様な複合繊維を紡糸する
ことは困難である。
The conjugate fiber used in the present invention comprises an alkali-hydrolyzable polymer (polymer A) and at least one polymer (polymer B) having a different hydrolyzability from the alkali-hydrolyzable polymer. The thickness of the single-fiber denier is usually in the range of 0.2 d to 10 d, preferably 0.3 d to 5 d.
It is about d. If the single yarn denier is less than 0.2 d, it will be difficult to stably spin the conjugate fiber. Conversely, if it exceeds 10d, many island components must be made in the conjugate fiber to reduce the fiber diameter of the ultrafine fiber obtained by decomposing and removing the alkali-hydrolysable polymer (polymer A). However, it is difficult to spin such a composite fiber.

【0016】複合繊維中の易アルカリ加水分解性ポリマ
ー(ポリマーA)の組成は、全繊維に対し、10〜60
重量%が好ましい。該割合が10重量%未満であると、
複合繊維の長さ方向に連続的な極細繊維の形態をつくる
ことが難しくなる。逆に、該割合が60重量%を越える
と、アルカリ減量処理の際、抽出された易アルカリ加水
分解性ポリマー(ポリマーA)の分解物が、頻繁に極細
短繊維表面で界面接着を起こすため、極細短繊維同士の
表面接着が発生し、水中への単糸の分散性が良好な抄造
用極細短繊維は得られない。また、紡糸時に糸曲がりが
起こりやすい、水分調整が難しい、毛羽立ちが起こりや
すい、延伸、巻き取りで糸切れが起こりやすい等の原因
で紡糸収率が著しく悪化する。他にも、該易アルカリ加
水分解性ポリマーと加水分解性を異にする少なくとも1
成分以上のポリマー(ポリマーB)がポリエステル類の
場合、紡糸時にエステル交換反応が起こりやすくなるた
め、アルカリ減量後に得られる極細短繊維の耐候性が低
下する等の問題が起こりやすくなる。
The composition of the alkali-hydrolysable polymer (polymer A) in the conjugate fiber is 10 to 60
% By weight is preferred. When the proportion is less than 10% by weight,
It becomes difficult to form a form of ultrafine fiber that is continuous in the length direction of the conjugate fiber. On the other hand, if the proportion exceeds 60% by weight, the decomposed product of the easily hydrolyzable polymer (polymer A) extracted during the alkali weight reduction treatment frequently causes interfacial adhesion on the surface of the ultrafine short fiber. Surface adhesion between the ultrafine short fibers occurs, and the ultrafine short fibers for papermaking having good dispersibility of the single yarn in water cannot be obtained. Further, the spinning yield is remarkably deteriorated due to the fact that the yarn is easily bent at the time of spinning, the water content is difficult to adjust, the fluff is likely to occur, and the yarn is easily broken at the time of stretching or winding. In addition, at least one polymer having a different hydrolyzability from the alkali-hydrolysable polymer is used.
When the polymer (Polymer B) is a polyester, the transesterification reaction is likely to occur during spinning, so that problems such as a decrease in the weather resistance of the ultrafine short fiber obtained after the alkali weight loss tends to occur.

【0017】上記記載複合繊維を、ロータリーカッタ
ー、ギロチンカッター、カッターなどのカッター類を使
用して、繊維長1.0mm〜5.0mm、さらに好まし
くは2.0mm〜3.0mmの複合短繊維にカットす
る。カット長が1.0mm未満の場合には、易アルカリ
加水分解性ポリマー(ポリマーA)のアルカリ減量加工
の際、複合短繊維及び/極細短繊維が非アルカリ加水分
解性繊維から成る袋から抜け出してしまう。また、得ら
れた極細短繊維を抄造シートにした際、極細短繊維間の
絡まりが少なく十分な強度が得られなくなる。逆に、カ
ット長が5.0mmを越える場合には、アルカリ減量後
に得られる極細短繊維が絡まりやすく、水中への単糸の
分散性が悪化する。
The above-mentioned conjugate fiber is converted to a conjugate short fiber having a fiber length of 1.0 mm to 5.0 mm, more preferably 2.0 mm to 3.0 mm, using a cutter such as a rotary cutter, a guillotine cutter and a cutter. Cut it. When the cut length is less than 1.0 mm, the composite short fibers and / or ultra-fine short fibers fall out of the bag made of the non-alkali hydrolyzable fiber during the alkali weight reduction processing of the alkali-hydrolyzable polymer (polymer A). I will. Further, when the obtained ultrafine short fibers are formed into a sheet, the entanglement between the ultrafine short fibers is so small that sufficient strength cannot be obtained. On the other hand, if the cut length exceeds 5.0 mm, the ultrafine short fibers obtained after the alkali weight reduction tends to become entangled, and the dispersibility of the single yarn in water deteriorates.

【0018】引き続き、複合短繊維を非アルカリ加水分
解性袋に封入する。ここで言う非アルカリ加水分解性袋
とは、ポリアミド繊維、又はポリオレフィン繊維、又は
アクリル繊維等の非アルカリ加水分解性繊維から製造さ
れた袋のことである。非アルカリ加水分解性繊維は織
物、編物の形態をとったものであれば良い。織物の場合
は、その織り組織は後述の開口率を満足するものであれ
ば、平織、斜文織、朱子織の中から自由に選択すること
ができる。編物の場合は、その編組織は後述の開口率を
満足するものであれば、平編、トリコット等から自由に
選択することができる。
Subsequently, the conjugate short fibers are sealed in a non-alkali hydrolyzable bag. The non-alkali hydrolysable bag referred to here is a bag made of non-alkali hydrolyzable fibers such as polyamide fiber, polyolefin fiber, or acrylic fiber. The non-alkali hydrolyzable fiber may be in the form of a woven or knitted fabric. In the case of a woven fabric, its woven structure can be freely selected from plain weave, oblique weave, and satin weave as long as it satisfies the opening ratio described below. In the case of a knit, the knit structure can be freely selected from a flat knit, a tricot and the like as long as the knitting structure satisfies the opening ratio described later.

【0019】本発明で使用する非アルカリ加水分解性袋
は、その開口率(単位面積当たりの開口部分の面積のこ
と)が5%〜20%、好ましくは5%〜15%の範囲の
ものである。開口率が5%未満の場合は、複合短繊維に
接触するアルカリ液量の置換が充分行われず不均一にな
り、減量時間が長くなって経済的でない。逆に、開口率
が20%を越える場合は、易アルカリ加水分解性ポリマ
ー(ポリマーA)のアルカリ減量加工の際、複合短繊維
及び/極細短繊維が非アルカリ加水分解性繊維から成る
袋から抜け出してしまう。
The non-alkali hydrolyzable bag used in the present invention has an opening ratio (an area of an opening portion per unit area) of 5% to 20%, preferably 5% to 15%. is there. When the opening ratio is less than 5%, the replacement of the amount of the alkali solution in contact with the conjugate short fibers is not sufficiently performed, resulting in non-uniformity. Conversely, if the opening ratio exceeds 20%, the composite short fibers and / or ultra-fine short fibers fall out of the bag made of non-alkali hydrolyzable fibers during alkali weight reduction processing of the alkali-hydrolyzable polymer (polymer A). Would.

【0020】複合短繊維を非アルカリ加水分解性袋に封
入せずアルカリ減量する方法について種々検討した結
果、反応器を循環するアルカリ水溶液の流れのため、減
量加工途中で極細短繊維の絡まりが発生することが見出
された。特に、浴比が小さな条件下で回転する反応器を
使用した場合には、反応器の器壁部分で減量途中の極細
短繊維が擦られ、強固に絡まりあった繭玉状態の繊維塊
ができる。この繭玉状態の繊維塊にパルパー、リファイ
ナー、ビーター等の叩解処理を行っても、繊維塊中の極
細短繊維の絡まりが解けないため、良好な水中への単糸
の分散性は得られない。
As a result of various studies on a method of reducing alkali without enclosing the conjugate short fibers in a non-alkali hydrolysable bag, entanglement of ultra-fine short fibers occurred during the weight reduction processing due to the flow of the aqueous alkali solution circulating in the reactor. Was found to work. In particular, when a reactor that rotates under the condition of a small bath ratio is used, the ultrafine short fibers during the weight reduction are rubbed in the vessel wall portion of the reactor, and a tightly entangled cocoon-shaped fiber mass is formed. Even if the fiber mass in the cocoon state is beaten with a pulper, a refiner, a beater, or the like, the entanglement of the ultrafine short fibers in the fiber mass cannot be unwound, so that good dispersibility of the single yarn in water cannot be obtained.

【0021】本発明では、非アルカリ加水分解性袋に前
記複合短繊維を封入し、複合短繊維から易アルカリ加水
分解性ポリマー(ポリマーA)を分解除去することが必
要である。すなわち、非アルカリ加水分解性袋に前記複
合短繊維を封入することで、アルカリ減量中、複合短繊
維及び極細短繊維の動きが一定の拘束を受け、極細短繊
維間の絡まりが抑制される為、水中に分散した際に繊維
塊が発生しない。従って、非アルカリ加水分解性袋に複
合短繊維を封入しても、該袋を激しく流動させた場合、
袋の封入効果が無くなり、極細短繊維が絡まり易く、繊
維塊が生じる可能性がある。そのため、アルカリ水溶液
の流動(反応機の回転による液循環、循環ポンプによる
強制液循環など) も穏和な条件で行うことが好ましい。
In the present invention, it is necessary to enclose the composite staple fiber in a non-alkali hydrolyzable bag and to decompose and remove the alkali hydrolyzable polymer (polymer A) from the composite staple fiber. That is, by enclosing the composite staple fiber in a non-alkali hydrolysable bag, during alkali weight loss, the movement of the composite staple fiber and the ultrafine staple fiber is restricted to a certain extent, and entanglement between the ultrafine staple fibers is suppressed No fiber lump is generated when dispersed in water. Therefore, even if the composite short fibers are encapsulated in the non-alkali hydrolyzable bag, if the bag is made to flow violently,
The effect of enclosing the bag is lost, the ultrafine short fibers are easily entangled, and there is a possibility that a fiber mass is generated. Therefore, it is preferable that the flow of the alkaline aqueous solution (liquid circulation by rotation of the reactor, forced liquid circulation by a circulation pump, etc.) is also performed under mild conditions.

【0022】即ち、袋内の繊維が穏和に動くと共に、穏
和にアルカリ水溶液が置換される様な流動状態を実現す
ることが好ましい。以上の理由から複合短繊維のアルカ
リ減量加工の際には、繊維塊を防ぐ目的で非アルカリ加
水分解性袋に複合短繊維を封入する方法が有効であるこ
とを見出した。本発明の抄造用極細短繊維の製造設備
は、アルカリ水溶液、複合短繊維を封入した非アルカリ
加水分解性袋に於いて、該袋及び/又はアルカリ水溶液
を流動状態に晒すことができる設備でなければならな
い。流動状態に晒すことが出来る設備としては、回転ド
ラム染色機(図1に示唆)、ミルナー染色機、回転機構
を有する回転オートクレイブ染色機、地球釜、チーズ染
色機などが挙げられる。その中でも好ましい設備は回転
ドラム染色機、ミルナー染色機、回転オートクレイブ染
色機である。さらに好ましい設備は回転ドラム染色機で
ある。
That is, it is preferable to realize a fluid state in which the fibers in the bag move gently and the alkaline aqueous solution is gently replaced. For the reasons described above, it has been found that a method of enclosing composite short fibers in a non-alkali hydrolysable bag is effective in the case of alkali weight reduction processing of composite short fibers in order to prevent fiber lump. The facility for producing ultrafine short fibers for papermaking of the present invention must be a facility capable of exposing the bag and / or the aqueous alkali solution to a fluidized state in a non-alkali hydrolysable bag enclosing an alkaline aqueous solution and composite short fibers. Must. Examples of equipment that can be exposed to the fluidized state include a rotating drum dyeing machine (indicated in FIG. 1), a miller dyeing machine, a rotating autoclave dyeing machine having a rotating mechanism, an earth pot, and a cheese dyeing machine. Among them, preferred equipment is a rotating drum dyeing machine, a Milner dyeing machine, and a rotating autoclave dyeing machine. Further preferred equipment is a rotary drum dyeing machine.

【0023】ここで言う非アルカリ加水分解性袋及び/
又はアルカリ水溶液を流動状態に晒す第1の方法は、非
アルカリ加水分解性袋を固定し、アルカリ水溶液を流動
させる方法であり、例えば、チーズ染色機又はドラム染
色機、ミルナー染色機の染色槽に複合短繊維を封入した
非アルカリ加水分解性の袋とアルカリ水溶液を入れ、該
袋は動かさずにアルカリ水溶液のみを液流循環させて加
水分解を行う方法である。更に、第2の方法は、非アル
カリ加水分解性袋とアルカリ水溶液を反応槽内で共に流
動させる方法であり、例えば、回転オートクレイブ染色
機及び地球釜の反応槽に入れた非アルカリ加水分解性袋
とアルカリ水溶液とを反応槽の回転により流動させる方
法であり、又は回転ドラム染色機、ミルナー染色機でア
ルカリ水溶液を循環させるか又は循環させずに非アルカ
リ加水分解性袋をドラム槽を回転させることにより、該
袋とアルカリ液を流動させる方法が考えられる。非アル
カリ加水分解性袋及びアルカリ水溶液のいずれか一方の
みを流動する第1の方法よりも、両方が流動している第
2の方法がより好ましい。
The non-alkali hydrolysable bag and / or
Alternatively, the first method of exposing the alkaline aqueous solution to a fluid state is a method in which a non-alkali hydrolyzable bag is fixed and the alkaline aqueous solution is caused to flow, for example, in a cheese dyeing machine or a drum dyeing machine or a dyeing tank of a Milner dyeing machine. This is a method in which a non-alkali hydrolysable bag in which conjugate short fibers are sealed and an aqueous alkali solution are charged, and the bag is not moved, and only the aqueous alkali solution is circulated in a liquid stream to carry out hydrolysis. Further, the second method is a method in which a non-alkali hydrolyzable bag and an alkaline aqueous solution are caused to flow together in a reaction vessel. For example, a non-alkali hydrolyzable bag placed in a reaction vessel of a rotary autoclave dyeing machine and an earth pot is used. A method in which a bag and an alkaline aqueous solution are caused to flow by rotation of a reaction tank, or a non-alkali hydrolysable bag is rotated by rotating a non-alkali hydrolysable bag with or without circulating an alkaline aqueous solution with a rotating drum dyeing machine or a Milner dyeing machine. Thus, a method of flowing the bag and the alkaline solution can be considered. The second method, in which both the non-alkali hydrolysable bag and the alkaline aqueous solution flow, is more preferable than the first method, in which only one of them flows.

【0024】更に、流動状態に晒す条件について説明す
る。先ずアルカリ水溶液を循環する場合は、アルカリ液
の流動状態の強弱はアルカリ液総量と循環流量によって
決められる。反応槽内のアルカリ水溶液の全量が置換さ
れる時間をアルカリ液総量を単位時間当たりの循環流量
で割って求めると、該アルカリ液全量の置換時間が、1
0秒以上、好ましくは30秒以上、さらに好ましくは6
0秒以上の様な流動状態が好ましい。置換時間が10秒
未満のような、激しい循環を行うと、反応槽内部で非ア
ルカリ加水分解性袋が踊った様な状態になり、得られる
極細短繊維の絡まりの原因になり易いので好ましくな
い。
Further, conditions for exposing to a fluid state will be described. First, when the alkaline aqueous solution is circulated, the strength of the flowing state of the alkaline solution is determined by the total amount of the alkaline solution and the circulation flow rate. When the time during which the total amount of the alkaline aqueous solution in the reaction tank is replaced is obtained by dividing the total amount of the alkaline solution by the circulating flow rate per unit time, the replacement time of the total amount of the alkaline solution is 1
0 seconds or more, preferably 30 seconds or more, more preferably 6 seconds or more.
A fluid state such as 0 seconds or more is preferable. If the vigorous circulation is performed such that the replacement time is less than 10 seconds, the non-alkali hydrolysable bag will be in a dance-like state inside the reaction tank, which is likely to cause entanglement of the obtained ultrafine short fibers, which is not preferable. .

【0025】次に反応槽の回転により非アルカリ加水分
解性袋及びアルカリ液を流動状態に晒す条件について述
べる。回転方向は同じ方向にのみ回転しても良いが、正
逆に反転しても良い。又、連続回転でも間歇回転でも可
能であるが、極細繊維の絡みを抑制する為に穏和な流動
条件をとる場合は、間歇的に反応槽を回転する方がより
好ましい。その際、回転時間が全反応時間の50%以
下、好ましくは30%以下、さらに好ましくは20%以
下の間歇回転が本発明の流動状態を穏和に設定できるの
で好ましい。又、間歇回転の間隔は適宜選択することが
でき、周期的でも非周期的でも良い。次に、反応槽の回
転の速度(周速)は、周速0〜50m/分の範囲内が好
ましい。より好ましくは周速1〜40m/分の範囲内
で、更に好ましくは2〜30m/分の範囲内である。5
0m/分以上の激しい回転を行うと、反応層内部の非ア
ルカリ加水分解性袋が踊った状態になり、極細短繊維同
士が絡み易くなり好ましくない。
Next, conditions for exposing the non-alkali hydrolyzable bag and the alkali solution to a fluid state by rotating the reaction tank will be described. The rotation direction may be rotated only in the same direction, but may be reversed. In addition, although continuous rotation or intermittent rotation is possible, it is more preferable to rotate the reaction tank intermittently when mild flow conditions are taken in order to suppress entanglement of the ultrafine fibers. At that time, intermittent rotation of 50% or less, preferably 30% or less, more preferably 20% or less of the total reaction time is preferable because the flow state of the present invention can be set mildly. Further, the interval of the intermittent rotation can be appropriately selected, and may be periodic or non-periodic. Next, the rotation speed (peripheral speed) of the reaction tank is preferably in the range of 0 to 50 m / min. More preferably, the peripheral speed is in the range of 1 to 40 m / min, and still more preferably in the range of 2 to 30 m / min. 5
When the vigorous rotation of 0 m / min or more is performed, the non-alkali hydrolyzable bag inside the reaction layer is in a danced state, and the ultrafine short fibers are easily entangled with each other, which is not preferable.

【0026】本発明における流動状態の条件は以上の様
なアルカリ水溶液の循環条件と、反応槽の回転条件を適
宜組み合わせることにより選択することが可能である
が、本発明の好ましい態様としては、例えば、チーズ染
色機、ミルナー染色機、回転ドラム染色機で非アルカリ
加水分解性袋を固定し、アルカリ水溶液を循環する方法
で流動状態に晒す場合は、アルカリ水溶液全量の置換時
間は20秒以上に循環流量等を設定すればよい。又、更
に好ましい態様として、回転ドラム染色機、ミルナー染
色機で非アルカリ加水分解性袋とアルカリ水溶液を反応
槽にいれ反応槽を回転することで流動状態に晒す場合
は、回転速度(周速)を1〜50m/分の範囲に設定す
ることができる。その際、連続的に回転するよりは、全
反応時間の50%以下の間歇回転条件を取ることがより
好ましい態様である。更に、好ましい態様として、前記
回転ドラム染色機、ミルナー染色機で反応槽を回転させ
ながら、且つアルカリ水溶液を循環させることで流動状
態に晒す場合は、アルカリ水溶液の置換時間を20秒以
上に循環流量を設定し、反応槽の回転速度(周速)を1
〜50m/分で全反応時間の50%以下の間歇回転を選
択することができる。
The condition of the fluidized state in the present invention can be selected by appropriately combining the above-described conditions for circulating an aqueous alkali solution and the conditions for rotating the reaction tank. Preferred embodiments of the present invention include, for example, When fixing the non-alkali hydrolysable bag with a cheese dyeing machine, a Milner dyeing machine, or a rotating drum dyeing machine and exposing it to a fluidized state by circulating an alkaline aqueous solution, the replacement time of the entire alkaline aqueous solution is circulated for 20 seconds or more. The flow rate and the like may be set. As a further preferred embodiment, when a non-alkali hydrolysable bag and an alkaline aqueous solution are put into a reaction tank by a rotary drum dyeing machine or a Milner dyeing machine and the reaction tank is rotated to be exposed to a fluidized state, the rotation speed (peripheral speed) Can be set in the range of 1 to 50 m / min. In this case, it is more preferable to take an intermittent rotation condition of 50% or less of the total reaction time, rather than to rotate continuously. Further, as a preferred embodiment, when exposing to a fluidized state by rotating the reaction tank with the rotary drum dyeing machine or the Milner dyeing machine and circulating the alkaline aqueous solution, the replacement time of the alkaline aqueous solution is set to 20 seconds or more. And set the rotation speed (peripheral speed) of the reaction tank to 1.
Intermittent rotation of 50% or less of the total reaction time at で 50 m / min can be selected.

【0027】アルカリ水溶液としては、水酸化ナトリウ
ム、水酸化カリウム、リン酸三ナトリウム等の強アルカ
リ水溶液が挙げられる。より好ましくは水酸化ナトリウ
ムの水溶液である。アルカリ水溶液の濃度は、アルカリ
減量処理の温度、時間によっても異なるが、易アルカリ
加水分解性ポリマー(ポリマーA)の溶解性、該易アル
カリ加水分解性ポリマーと加水分解性を異にする少なく
とも1成分以上のポリマー(ポリマーB)の浸食性を考
慮して、1〜10重量%、さらに好ましくは2〜5重量
%の範囲で選択することが可能である。また、炭酸ナト
リウム、ケイ酸ナトリウム、リン酸二水素ナトリウム等
の弱アルカリ物質を併用することも可能である。
Examples of the aqueous alkaline solution include strong alkaline aqueous solutions such as sodium hydroxide, potassium hydroxide, and trisodium phosphate. More preferably, it is an aqueous solution of sodium hydroxide. The concentration of the aqueous alkali solution varies depending on the temperature and time of the alkali weight reduction treatment, but at least one component that differs in the solubility of the easily hydrolyzable polymer (polymer A) and the hydrolyzability from the easily hydrolyzable polymer. In consideration of the erodibility of the polymer (Polymer B), it can be selected in the range of 1 to 10% by weight, more preferably 2 to 5% by weight. It is also possible to use a weak alkaline substance such as sodium carbonate, sodium silicate, sodium dihydrogen phosphate and the like in combination.

【0028】他にも複合繊維のアルカリ浸透性を増す目
的で、アニオン界面活性剤(例えば、第一工業製薬
(株)製「シリケロールCAP」:商品名など)を添加
することは効果的である。アルカリ水溶液の処理温度
は、70〜130℃の範囲内である。得られる極細短繊
維の傷みを考慮し、さらに好ましくは80〜110℃の
範囲内である。水溶液の処理温度が70℃未満では、ア
ルカリ減量加工に要する時間が長くなり、また、温度が
100℃を越える場合は、耐圧機構のオートクレイブ設
備が必用になる。アルカリ減量時間は20分〜120分
である。得られる極細短繊維の傷み、加工のコストメリ
ットを考慮すると、さらに好ましくは20分〜90分で
ある。アルカリ減量時間が20分未満になると、アルカ
リ減量が不完全な部分が残る。逆に、アルカリ減量時間
が120分を越えると、得られた極細短繊維の傷みが激
しくなる。
In addition, it is effective to add an anionic surfactant (for example, "Silicerol CAP" (trade name) manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) for the purpose of increasing the alkali permeability of the conjugate fiber. . The treatment temperature of the alkaline aqueous solution is in the range of 70 to 130 ° C. Considering the damage of the obtained ultrafine short fibers, the temperature is more preferably in the range of 80 to 110 ° C. If the treatment temperature of the aqueous solution is lower than 70 ° C., the time required for the alkali weight reduction processing becomes longer, and if the temperature exceeds 100 ° C., an autoclave equipment having a pressure-resistant mechanism is required. The alkali weight loss time is 20 minutes to 120 minutes. In consideration of the damage of the obtained ultrafine short fibers and the cost merit of processing, it is more preferably 20 minutes to 90 minutes. When the alkali weight loss time is less than 20 minutes, a part where the alkali weight loss is incomplete remains. Conversely, if the alkali weight loss time exceeds 120 minutes, the resulting ultrafine short fibers become severely damaged.

【0029】複合短繊維とアルカリ水溶液の浴比は、重
量比で3倍以上、好ましくは5倍以上、さらに好ましく
は10倍以上である。また、反応層内部のアルカリ水溶
液は、ポンプを使用して強制的に吸引、圧入循環するの
がより好ましい。浴比が3倍未満になると、複合短繊維
表面に接触するアルカリ水溶液の量が減るため、均一に
アルカリ減量処理ができない。また、浴比が20倍以上
になると、加工に使用するアルカリ水溶液の液量が多く
なってしまうため、その排水処理等考慮すると加工のコ
ストメリットが薄すれてしまう。本発明の極細短繊維の
製造方法は、従来の浸漬法によるアルカリ減量処理に比
較して浴比が非常に小さくても、部分的な減量斑を生じ
ることが無く均一な減量が達成されることに特徴があ
る。しかしながら、複合繊維に対するアルカリ濃度、温
度等が不適正で絶対的に減量不十分な場合は、本発明の
目的とする均一で繊維塊の発生しない抄造用極細短繊維
は得られない。
The bath ratio between the conjugate short fibers and the aqueous alkali solution is at least 3 times, preferably at least 5 times, more preferably at least 10 times by weight. Further, it is more preferable that the alkaline aqueous solution inside the reaction layer is forcibly sucked and press-circulated using a pump. When the bath ratio is less than three times, the amount of the alkaline aqueous solution that comes into contact with the surface of the composite staple fiber decreases, so that the alkali reduction treatment cannot be performed uniformly. Further, when the bath ratio is 20 times or more, the amount of the alkaline aqueous solution used for the processing increases, so that the cost merit of the processing is diminished in consideration of the wastewater treatment or the like. In the method for producing ultrafine short fibers of the present invention, even when the bath ratio is extremely small as compared with the alkali weight reduction treatment by the conventional immersion method, uniform weight loss is achieved without causing partial weight loss spots. There is a feature. However, if the alkali concentration, temperature, etc., of the conjugate fiber are inappropriate and the weight is absolutely insufficient, the ultrafine short fiber for papermaking which is the object of the present invention and which does not generate fiber clumps cannot be obtained.

【0030】上記方法でアルカリ減量して得られた極細
短繊維は、酢酸、シュウ酸などの有機酸を使用して酸中
和処理を施した後、湯洗、又は水洗、その後脱水処理を
行うのがより好ましい。また、乾燥処理を行っても良い
が、得られる極細短繊維の単糸の分散性は若干低下す
る。得られた極細短繊維の単糸の分散性評価は、常温
下、水分を含んだ極細短繊維(乾燥重量で80重量%相
当)、20重量%のポリアミド系熱融着繊維(2d×1
0mm、ユニチカ(株)製「ユニメルトUL60」芯
部:ナイロン6、鞘部:共重合ナイロン、芯/鞘=2/
1)を水中に分散させ、1%濃度のスラリー液を調整
し、攪拌羽根で均一攪拌を施し、傾斜型長網抄造機で、
目付30g/m2 、幅0.35m×長さ1.0mの抄造
シートとして採取した。引き続き、抄造シート中の熱融
着糸の鞘部分(共重合ナイロン)を融着するため熱処理
(160℃)を行い、単糸の分散性評価用サンプルを作
成した。
The ultra-short fibers obtained by reducing the alkali by the above method are subjected to an acid neutralization treatment using an organic acid such as acetic acid or oxalic acid, followed by washing with hot water or water, followed by dehydration treatment. Is more preferred. In addition, although a drying treatment may be performed, the dispersibility of the single yarn of the obtained ultrafine short fiber is slightly reduced. Evaluation of the dispersibility of the single yarns of the obtained ultrafine short fibers was performed at room temperature at room temperature by using ultrafine short fibers containing water (corresponding to 80% by dry weight) and 20% by weight of polyamide heat-fused fibers (2d × 1).
0 mm, "Unimelt UL60" manufactured by Unitika Ltd. Core part: nylon 6, sheath part: copolymerized nylon, core / sheath = 2 /
1) is dispersed in water, a 1% concentration slurry liquid is prepared, and the mixture is uniformly stirred with a stirring blade.
The sheet was collected as a sheet having a basis weight of 30 g / m 2 and a width of 0.35 m × length of 1.0 m. Subsequently, a heat treatment (160 ° C.) was performed to fuse the sheath portion (copolymerized nylon) of the heat-fused yarn in the papermaking sheet, thereby preparing a single yarn dispersibility evaluation sample.

【0031】単糸の分散性は、1).前述の評価サンプ
ル表面の収束糸、結着糸に着目した目視判定と、2).
電子顕微鏡写真観察よる極細短繊維の単糸の直径のバラ
ツキ、単糸1本1本のばらけ具合の評価によって行っ
た。得られた極細短繊維の繊維塊評価は、常温下、水分
を含んだ極細短繊維(100重量%)を水中に分散さ
せ、1%濃度のスラリー液を調整し、攪拌羽根で均一攪
拌し、傾斜型長網抄造機で、目付30g/m2 、幅0.
35m×長さ4.7mの抄造シートとして採取した。抄
造シートに存在する直径が2mm以上の繊維塊数を数え
て、1m2 当たりに存在する繊維塊数に換算した値を繊
維塊評価値とした。
The dispersibility of the single yarn is as follows. Visual judgment focusing on the converging yarn and the binding yarn on the evaluation sample surface, and 2).
The evaluation was made by observing the variation of the diameter of the single yarn of the ultra-fine short fiber and the degree of dispersion of each single yarn by observation with an electron microscope photograph. Evaluation of the fiber mass of the obtained ultra-short fibers was conducted by dispersing ultra-short fibers containing water (100% by weight) in water at room temperature, preparing a 1% -concentration slurry solution, and uniformly stirring with a stirring blade. An inclined type fourdrinier machine with a basis weight of 30 g / m 2 and a width of 0.
It was collected as a 35 m × 4.7 m length papermaking sheet. The number of fiber lumps having a diameter of 2 mm or more present in the papermaking sheet was counted, and the value converted to the number of fiber lumps per 1 m 2 was defined as a fiber lump evaluation value.

【0032】本発明方法によって製造された抄造用極細
短繊維は、電子顕微鏡を使用して単糸分散性を評価した
結果、極細短繊維の単糸の直径、その断面形態が均一に
揃ったおり、極細短繊維の収束したもの、結着したもの
は存在していないことを確認した。また、直径2mm以
上の繊維塊を数えた結果、繊維塊が実質的に発生してい
ないことを確認した。最後に、本発明方法によって得ら
れる抄造用極細短繊維の特徴をまとめると、 1)単糸の直径が1〜10μmの範囲内、好ましくは2
〜9μmの範囲内、さらに好ましくは2〜7μmの範囲
内で、且つ 2)単糸の直径 [D] と長さ [L] の比、L/Dが30
0〜2000の範囲内、好ましくは300〜1500の
範囲内のものであり、且つ 3)良好な単糸の水中への分散性を有し、且つ 4)直径2mm以上の繊維塊が1.5個/m2 以下、好
ましくは1.0個/m2、更に好ましくは0.5個/m
2 の範囲内に収まる、実質的に繊維塊のない均一な抄造
用極細短繊維である。
The ultrafine short fibers for papermaking produced by the method of the present invention were evaluated for single yarn dispersibility using an electron microscope. As a result, the diameter of the single yarn of the ultrafine short fibers and the cross-sectional shape thereof were uniform. It was confirmed that there was no converged or bound ultra-fine short fiber. In addition, as a result of counting fiber lumps having a diameter of 2 mm or more, it was confirmed that fiber lumps were not substantially generated. Finally, the characteristics of the ultrafine short fibers for papermaking obtained by the method of the present invention are summarized as follows: 1) The diameter of the single yarn is in the range of 1 to 10 μm, preferably 2
2) The ratio of the diameter [D] to the length [L] of the single yarn, L / D is 30.
In the range of 0 to 2000, preferably in the range of 300 to 1500, and 3) has good dispersibility of single yarn in water, and 4) the fiber mass having a diameter of 2 mm or more is 1.5 Pcs / m 2 or less, preferably 1.0 pcs / m 2 , more preferably 0.5 pcs / m 2
The ultrafine short fibers for papermaking, which are substantially free of fiber clumps, fall within the range of 2 .

【0033】ここで言う均一なとは、単糸の直径及び繊
維長のバラツキが小さく、Rの値で表現すれば、50%
以下、好ましくは30%以下であることを意味する。即
ち、本発明の抄造用極細短繊維は、その単糸の直径や繊
維長がまちまちなパルプ状物とは明らかに異なるもので
ある。本発明の製造方法で得られる抄造用極細短繊維
は、単独で抄造しても単糸の分散性が良好であるが、各
種有機合成繊維、天然繊維、ガラス繊維、無機繊維など
と混抄して使用することも可能である。その際、必要で
有れば一般的なパルパー、ビーター、リファイナー等の
叩解処理を行ってもよい.具体的な用途としては高機能
産業用製紙分野、例えば、極細糸による集塵性を生か
し、業務用、家庭用ワイパー、極細糸の細さによるカバ
ー性を生かし、医療、衛生材料分野、液体、気体フィル
ター、スピーカーコーン、パッキング材、ブランケット
ワイパー、その強い交絡強度、均一極細短繊維から得ら
れる平滑性を生かし、電池セパレーター、合皮基布材、
コーティング基布材、銀面基布材などがあげられる。
The term “uniform” as used herein means that the variation in the diameter and fiber length of a single yarn is small, and when expressed by the value of R, 50%
Or less, preferably 30% or less. That is, the ultrafine short fiber for papermaking of the present invention is clearly different from a pulp-like material in which the diameter and the fiber length of the single yarn vary. The ultrafine short fibers for papermaking obtained by the production method of the present invention have good single yarn dispersibility even when made alone, but are mixed with various organic synthetic fibers, natural fibers, glass fibers, inorganic fibers and the like. It is also possible to use. At that time, if necessary, a general pulper, beater, refiner or the like may be beaten. Specific applications include the field of high-performance industrial papermaking, for example, taking advantage of the dust-collecting properties of extra-fine yarns, commercial and household wipers, taking advantage of the covering properties of extra-fine yarns, medical applications, sanitary materials, liquids, Utilizing gas filters, speaker cones, packing materials, blanket wipers, strong confounding strength, and smoothness obtained from uniform ultra-fine short fibers, battery separators, synthetic leather base fabrics,
Coating base material, grain surface base material and the like can be mentioned.

【0034】また、人工皮革分野では、例えば、紳士、
婦人衣料、紳士、婦人靴、鞄、衣料装飾品、ゴルフ手
袋、家具、カーシートなど様々な分野で使用することが
可能である。例えば、本製造方法で得られた極細短繊維
を抄造、柱状流処理し、ポリウレタンを付与して人工皮
革の分野で使用すれば、極細の単糸が均一に分散するこ
とから、不織布強度に優れ、表面立毛のバラケが良く、
立毛密度に優れ、優美なライティング効果を有するヌバ
ック、スエード表面が得られる。また、繊維塊による製
品欠点も発生しないものである。
In the field of artificial leather, for example,
It can be used in various fields such as women's clothing, gentlemen, women's shoes, bags, clothing accessories, golf gloves, furniture, car seats, and the like. For example, if the ultrafine short fiber obtained by the present production method is subjected to papermaking, columnar flow treatment, polyurethane application and used in the field of artificial leather, since the ultrafine single yarn is uniformly dispersed, the strength of the nonwoven fabric is excellent. , Surface nap is good,
A nubuck or suede surface with excellent nap density and an elegant lighting effect can be obtained. In addition, the product defect due to the fiber mass does not occur.

【0035】[0035]

【実施の態様】以下、実施例により本発明をより具体的
に説明するが、本発明はこれらにより何等限定されるも
のではない。 〔織物、編物の開口率の測定方法〕マイクロスコープ
(MORITEX製、SCOPEMAN MS803)
で織物、編物の拡大写真を測定倍率50倍で撮影し、写
真全体重量(A1 )を測定し、写真中に繊維が写ってい
る部分をカッターナイフで切り抜いて残った部分の重量
(A2 )を求め、全体重量(A1 )で割り返し百分率表
示した値を開口率とする。 [開口率(%)] =(A2 /A1 )×100
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. [Method of measuring aperture ratio of woven or knitted fabric] Microscope (manufactured by MORITEX, SCOPEMAN MS803)
A magnified photograph of the woven or knitted fabric is taken at a measuring magnification of 50 times, the total weight of the photograph (A 1 ) is measured, and the portion of the photograph where the fiber is shown is cut out with a cutter knife, and the weight of the remaining portion (A 2) ) Is determined, and the value expressed as a percentage by dividing by the total weight (A 1 ) is defined as the aperture ratio. [Aperture ratio (%)] = (A 2 / A 1 ) × 100

【0036】〔加工浴比の計算方法〕複合短繊維の絶乾
重量(A1 )とアルカリ水溶液の重量(A2 )から以下
の式に従って求められる値を浴比とする。 浴比=A2 /A1 〔極細短繊維の減量率の測定方法〕易アルカリ加水分解
性ポリマー(ポリマーA)をアルカリ水溶液で分解除去
する前の絶乾重量(W1 )と、分解除去後の絶乾重量
(W2 )から以下の式に従って求められる値を減量率
(%)とする。 減量率(%)=〔1ー(W2 /W1 )〕×100
[Calculation method of processing bath ratio] The value obtained from the absolute dry weight (A 1 ) of the composite staple fiber and the weight (A 2 ) of the alkaline aqueous solution according to the following equation is defined as the bath ratio. The easy alkaline hydrolysis polymer [Measurement method of weight loss of the ultrafine short fibers] bath ratio = A 2 / A 1 absolute dry weight before (polymer A) to decompose and remove an alkaline aqueous solution (W 1), after the decomposition removal The value obtained from the absolute dry weight (W 2 ) according to the following formula is defined as a weight loss rate (%). Weight loss rate (%) = [1− (W 2 / W 1 )] × 100

【0037】〔極細短繊維の単糸の分散性の評価〕評価
抄造シートの収束糸、結着糸に着目し、目視判定を行っ
た。 ○ 単糸が均一に分散している。 △ 所々に収束糸、結着糸が存在する。 × 収束糸、結着糸が多発している。 〔極細短繊維の単糸の直径測定〕走査型電子顕微鏡(日
立(株)製、S−570、測定倍率:1000倍〜30
00倍)でランダムに抽出した繊維の単糸の直径を10
点読みとり、その平均値を単糸の直径とした。
[Evaluation of Dispersibility of Single Yarn of Ultra-Fine Short Fiber] A visual judgment was made by focusing on the converging yarn and the binding yarn of the evaluation sheet. ○ Single yarns are uniformly dispersed. △ Converging yarns and binding yarns are present in some places. × Convergent yarns and binding yarns frequently occur. [Measurement of diameter of single yarn of ultra-fine short fiber] Scanning electron microscope (S-570, manufactured by Hitachi, Ltd., measurement magnification: 1000 to 30)
00), the diameter of the single yarn of the fiber randomly extracted is 10
The points were read and the average value was taken as the diameter of the single yarn.

【0038】(実施例1)ポリエチレングリコールを1
5重量%共重合したブロックエーテルエステル(以後、
共重合エステルと省略する)を海成分とし、ポリエチレ
ンテレフタレートを37本の島成分とする3.0d/f
の海島繊維(共重合ポリエステル分解除去後、0.05
d/fになる、海/島=35重量%/65重量%)のフ
ィラメント糸を約6000dまでリワインドした後、ロ
ータリーカッターを使用して繊維長3mmの海島短繊維
にカットした。
Example 1 Polyethylene glycol was added to 1
5% by weight copolymerized block ether ester (hereinafter referred to as
3.0 d / f, where the copolymer component is a sea component and polyethylene terephthalate is 37 island components.
Sea-island fiber (0.05% after copolyester decomposition removal)
d / f, sea / island = 35% by weight / 65% by weight) was rewound to about 6000d, and then cut into 3mm sea-island short fibers using a rotary cutter.

【0039】得られた海島短繊維をポリプロピレン繊維
からなる染色袋(75d/24fのポリプロピレン繊維
を使用して、開口率が15%になる様設計したトリコッ
ト編物からなる染色袋である)へ2kgずつ12袋封入
し、該袋と4.5重量%の水酸化ナトリウム水溶液13
0(リットル)、及び130(cc)のアニオン界面活
性剤(第一工業製薬(株)製「シリケロールCAP」:
商品名)をドラム染色機のドラム槽に入れた。
2 kg each of the obtained sea-island staple fiber was dyed into a polypropylene bag (a 75d / 24f polypropylene fiber, a tricot knitted fabric designed to have an opening ratio of 15%). 12 bags are sealed, and the bag and a 4.5% by weight aqueous solution of sodium hydroxide 13
0 (liter) and 130 (cc) of an anionic surfactant (“Silicerol CAP” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.):
(Trade name) was placed in a drum tank of a drum dyeing machine.

【0040】反応槽内のアルカリ水溶液が約4分間で1
回置換される様、循環ポンプでアルカリ水溶液を液循環
させながら、ドラム槽部分を穏和な回転条件、周速10
(m/分)の間歇回転(回転10秒、停止60秒の繰り
返し)で回転させ、海島短繊維を封入した袋とアルカリ
水溶液を穏和な流動状態にした。アリカリ減量処理温度
90℃、処理時間40分間の条件で共重合ポリエステル
成分を分解除去し、引き続き湯洗を3回繰り返し、最後
に遠心脱水を行った。得られた極細ポリエステル短繊維
の単糸の直径はほぼ均一であり、極細ポリエステル短繊
維が収束した様な部分は無く、単糸の分散は良好であっ
た。繊維塊評価の結果、繊維塊は全く無い非常に良好な
レベルであった。
The aqueous alkali solution in the reaction tank is reduced to 1 in about 4 minutes.
So that the drum tank portion is gently rotated at a peripheral speed of 10
(M / min) by intermittent rotation (repeating 10 seconds of rotation and 60 seconds of stop) to bring the bag containing the sea-island short fibers and the alkaline aqueous solution into a mild fluid state. The copolymerized polyester component was decomposed and removed under the conditions of an alkali weight reduction treatment temperature of 90 ° C. and a treatment time of 40 minutes, followed by repeating hot water washing three times, and finally performing centrifugal dehydration. The diameter of the single yarn of the obtained ultrafine polyester short fiber was substantially uniform, there was no portion where the ultrafine polyester short fiber converged, and the dispersion of the single yarn was good. The result of the fiber lump evaluation was a very good level without any fiber lump.

【0041】 [浴比] 5.4 [減量率] 35.5(%) [単糸の分散性評価] ○ [単糸の直径] 2.20(μm) [L/D] 1363 [繊維塊数] 0.0(個/m2 [Bath ratio] 5.4 [Weight loss rate] 35.5 (%) [Evaluation of dispersibility of single yarn] ○ [Diameter of single yarn] 2.20 (μm) [L / D] 1363 [Fiber lump] Number] 0.0 (pieces / m 2 )

【0042】(実施例2)実施例1と同様に複合短繊維
を封入した染色袋を準備し、回転ドラム染色機のドラム
槽を回転させず、他の条件は全て実施例1と同様な流動
状態で共重合ポリエステル成分を分解除去した。得られ
た極細ポリエステル短繊維の単糸の直径はほぼ均一であ
り、単糸の分散もほぼ均一であった。繊維塊評価の結
果、繊維塊数は実用的に問題がない良好なレベルであっ
た。
(Example 2) A dyeing bag containing conjugate short fibers was prepared in the same manner as in Example 1, the drum tank of the rotary drum dyeing machine was not rotated, and all other conditions were the same as in Example 1. In this state, the copolymerized polyester component was decomposed and removed. The diameter of the single yarn of the obtained ultrafine polyester short fiber was substantially uniform, and the dispersion of the single yarn was also substantially uniform. As a result of the evaluation of the fiber lump, the number of the fiber lump was at a satisfactory level without any practical problem.

【0043】 [浴比] 5.4 [減量率] 35.1(%) [単糸の分散性評価] ○ [単糸の直径] 2.24(μm) [L/D] 1338 [繊維塊数] 0.4(個/m2 [Bath ratio] 5.4 [Weight loss rate] 35.1 (%) [Evaluation of dispersibility of single yarn] ○ [Diameter of single yarn] 2.24 (μm) [L / D] 1338 [Fiber lump] Number] 0.4 (pieces / m 2 )

【0044】(実施例3)実施例1と同様に複合短繊維
を封入した染色袋を準備し、回転ドラム染色機のドラム
槽を穏和な回転条件、周速10m/分で連続回転させな
がら、アルカリ水溶液の循環ポンプによる液循環を止
め、他の条件は全て実施例1と同様な流動状態で共重合
ポリエステル成分を分解除去した。得られた極細ポリエ
ステル短繊維の単糸の直径の長さはほぼ均一であり、単
糸の分散もほぼ均一であった。繊維塊評価の結果、繊維
塊数は実用的に問題がない良好なレベルであった。
Example 3 A dyeing bag containing conjugate short fibers was prepared in the same manner as in Example 1, and the drum tank of the rotary drum dyeing machine was continuously rotated at a gentle rotation condition at a peripheral speed of 10 m / min. The circulation of the alkaline aqueous solution by the circulation pump was stopped, and the copolymerized polyester component was decomposed and removed under the same flow conditions as in Example 1 under all other conditions. The diameter of the single yarn of the obtained ultrafine polyester short fiber was substantially uniform, and the dispersion of the single yarn was also substantially uniform. As a result of the evaluation of the fiber lump, the number of the fiber lump was at a satisfactory level without any practical problem.

【0045】 [浴比] 5.4 [減量率] 36.1(%) [単糸の分散性評価] ○ [単糸の直径] 2.19(μm) [L/D] 1372 [繊維塊数] 0.3(個/m2 [Bath ratio] 5.4 [Weight loss rate] 36.1 (%) [Evaluation of dispersibility of single yarn] ○ [Diameter of single yarn] 2.19 (μm) [L / D] 1372 [Fiber lump] Number] 0.3 (pcs / m 2 )

【0046】(比較例1)実施例1と同様に複合短繊維
を封入した染色袋を準備し、回転ドラム染色機のドラム
槽を回転させずに、さらに循環ポンプによるアルカリ水
溶液の循環も止めて、他の条件は全て実施例1と同様に
して共重合ポリエステル成分を分解除去した。得られた
極細ポリエステル短繊維の単糸の分散性評価、繊維塊評
価の結果、単糸の分散は良好であるが、一部、共重合エ
ステル成分が未抽出なまま残っている複合短繊維が繊維
塊を形成していた。
Comparative Example 1 A dyeing bag containing conjugate short fibers was prepared in the same manner as in Example 1, and the circulation of the alkaline aqueous solution by the circulation pump was stopped without rotating the drum tank of the rotary drum dyeing machine. All other conditions were the same as in Example 1 to remove the copolyester component by decomposition. The dispersibility of the single yarn of the obtained ultrafine polyester short fiber was evaluated, and as a result of the fiber lump evaluation, the dispersion of the single yarn was good, but the conjugate short fiber in which the copolymer ester component remained unextracted was partially removed. Fiber mass was formed.

【0047】 [浴比] 5.4 [減量率] 32.3(%) [単糸の分散性評価] ○ [単糸の直径] 2.32(μm) [L/D] 1295 [繊維塊数] 2.8(個/m2 [Bath ratio] 5.4 [Weight loss rate] 32.3 (%) [Evaluation of dispersibility of single yarn] ○ [Diameter of single yarn] 2.32 (μm) [L / D] 1295 [Fiber lump] Number] 2.8 (pieces / m 2 )

【0048】[0048]

【表1】 [Table 1]

【0049】(実施例4)実施例1と同様に複合短繊維
を封入した染色袋を準備し、回転ドラム染色機のドラム
槽をさらに穏和な回転条件、周速5m/分で連続回転さ
せ、その他の条件は全て実施例1と同様な流動状態で共
重合ポリエステル成分を分解除去した。得られた極細ポ
リエステル短繊維の単糸の分散性評価、繊維塊評価の結
果、単糸の分散は良好で、繊維塊も全く無い非常に良好
なレベルであった。 [浴比] 5.4 [減量率] 35.6(%) [単糸の分散性評価] ○ [単糸の直径] 2.20(μm) [L/D] 1351 [繊維塊数] 0.0(個/m2
Example 4 A dyeing bag containing conjugate short fibers was prepared in the same manner as in Example 1, and the drum tank of the rotary drum dyeing machine was continuously rotated at a gentler rotating condition at a peripheral speed of 5 m / min. In all other conditions, the copolymerized polyester component was decomposed and removed in the same fluidized state as in Example 1. As a result of evaluating the dispersibility of the single yarn and the evaluation of the fiber lump of the obtained ultrafine polyester short fiber, the dispersion of the single yarn was good and the level was very good without any fiber lump. [Bath ratio] 5.4 [Weight loss rate] 35.6 (%) [Evaluation of dispersibility of single yarn] ○ [Diameter of single yarn] 2.20 (μm) [L / D] 1351 [Number of fiber mass] 0 0.0 (pieces / m 2 )

【0050】(実施例5)実施例1と同様に複合短繊維
を封入した染色袋を準備し、回転ドラム染色機のドラム
槽を穏和な回転条件、周速10m/分で連続回転させ、
その他の条件は全て実施例1と同様な流動状態で共重合
ポリエステル成分を分解除去した。得られた極細ポリエ
ステル短繊維の単糸の分散性評価、繊維塊評価の結果、
および単糸の分散は良好であった。繊維塊数も実用的に
問題がない良好なレベルであった。 [浴比] 5.4 [減量率] 35.9(%) [単糸の分散性評価] ○ [単糸の直径] 2.24(μm) [L/D] 1342 [繊維塊数] 0.6(個/m2
Example 5 A dyeing bag containing conjugate short fibers was prepared in the same manner as in Example 1, and the drum tank of the rotary drum dyeing machine was continuously rotated at a gentle rotation condition at a peripheral speed of 10 m / min.
In all other conditions, the copolymerized polyester component was decomposed and removed in the same fluidized state as in Example 1. Dispersibility evaluation of single yarn of the obtained ultrafine polyester short fiber, the result of fiber lump evaluation,
And the dispersion of the single yarn was good. The number of fiber lumps was also at a good level without practical problems. [Bath ratio] 5.4 [Weight loss rate] 35.9 (%) [Evaluation of dispersibility of single yarn] ○ [Diameter of single yarn] 2.24 (μm) [L / D] 1342 [Number of fiber mass] 0 .6 (pieces / m 2 )

【0051】(実施例6)実施例1と同様に複合短繊維
を封入した染色袋を準備し、回転ドラム染色機のドラム
槽を穏和な回転条件、周速23m/分で連続回転させ、
その他の条件は全て実施例1と同様な流動状態で共重合
ポリエステル成分を分解除去した。得られた極細ポリエ
ステル短繊維の単糸の分散性評価、繊維塊評価の結果、
および単糸の分散は良好であった。繊維塊数も実用的に
問題がない良好なレベルであった。 [浴比] 5.4 [減量率] 36.2(%) [単糸の分散性評価] ○ [単糸の直径] 2.19(μm) [L/D] 1371 [繊維塊数] 0.8(個/m2
Example 6 A dyeing bag containing conjugate short fibers was prepared in the same manner as in Example 1, and the drum tank of the rotary drum dyeing machine was continuously rotated at a gentle rotation condition at a peripheral speed of 23 m / min.
In all other conditions, the copolymerized polyester component was decomposed and removed in the same fluidized state as in Example 1. Dispersibility evaluation of single yarn of the obtained ultrafine polyester short fiber, the result of fiber lump evaluation,
And the dispersion of the single yarn was good. The number of fiber lumps was also at a good level without practical problems. [Bath ratio] 5.4 [Weight loss rate] 36.2 (%) [Evaluation of dispersibility of single yarn] ○ [Diameter of single yarn] 2.19 (μm) [L / D] 1371 [Number of fiber mass] 0 .8 (pieces / m 2 )

【0052】(実施例7)実施例1と同様に複合短繊維
を封入した染色袋を準備し、回転ドラム染色機のドラム
槽を穏和な回転条件、周速23m/分で間歇回転(回転
10秒、停止60秒の繰り返し)させ、その他の条件は
全て実施例1と同様な流動状態で共重合ポリエステル成
分を分解除去した。得られた極細ポリエステル短繊維の
単糸の直径はほぼ均一であり、単糸の分散もほぼ均一で
良好であった。繊維塊数も実用的に問題がない良好なレ
ベルであった。 [浴比] 5.4 [減量率] 35.7(%) [単糸の分散性評価] ○ [単糸の直径] 2.21(μm) [L/D] 1355 [繊維塊数] 0.5(個/m2
(Example 7) A dyeing bag containing conjugate short fibers was prepared in the same manner as in Example 1, and the drum tank of the rotary drum dyeing machine was intermittently rotated under a gentle rotation condition at a peripheral speed of 23 m / min (rotation 10). For 2 seconds and stopping for 60 seconds), and the copolymerized polyester component was decomposed and removed under the same flow conditions as in Example 1 under all other conditions. The diameter of the single yarn of the obtained ultrafine polyester short fiber was almost uniform, and the dispersion of the single yarn was almost uniform and good. The number of fiber lumps was also at a good level without practical problems. [Bath ratio] 5.4 [weight loss rate] 35.7 (%) [Evaluation of dispersibility of single yarn] ○ [diameter of single yarn] 2.21 (μm) [L / D] 1355 [number of fiber mass] 0 .5 (pieces / m 2 )

【0053】(比較例2)実施例1と同様に複合短繊維
を封入した染色袋を準備し、回転ドラム染色機のドラム
槽を周速50m/分で激しく連続回転させ、その他の条
件は全て実施例1と同様な流動状態で共重合ポリエステ
ル成分を分解除去した。得られた極細ポリエステル短繊
維の単糸の分散性評価、繊維塊評価の結果、極細ポリエ
ステル短繊維の単糸が絡み合って繊維塊が多発し、単糸
の分散性が著しく悪化していた。 [浴比] 5.4 [減量率] 37.4(%) [単糸の分散性評価] × [単糸の直径] 2.17(μm) [L/D] 1383 [繊維塊数] 5.3(個/m2
Comparative Example 2 A dyeing bag containing conjugate short fibers was prepared in the same manner as in Example 1, and the drum tank of the rotary drum dyeing machine was vigorously continuously rotated at a peripheral speed of 50 m / min. The copolymerized polyester component was decomposed and removed in the same fluidized state as in Example 1. As a result of the evaluation of the dispersibility of the single yarn of the obtained ultrafine polyester short fiber and the evaluation of the fiber lump, the single yarn of the ultrafine polyester short fiber was entangled, the fiber lump was frequently generated, and the dispersibility of the single yarn was remarkably deteriorated. [Bath ratio] 5.4 [Weight loss rate] 37.4 (%) [Evaluation of dispersibility of single yarn] × [Diameter of single yarn] 2.17 (μm) [L / D] 1383 [Number of fiber lumps] 5 .3 (pieces / m 2 )

【0054】[0054]

【表2】 [Table 2]

【0055】(実施例8)実施例1と同じ複合短繊維を
実施例1と同じ染色袋に2kgずつ4袋封入し、アルカ
リ濃度を3.0重量%、アルカリ減量時間を30分間と
短くし、その他の条件は全て実施例1と同様にした流動
状態で共重合ポリエステル成分を分解除去した。得られ
た極細ポリエステル短繊維の単糸の分散性は良好で、繊
維塊も全く無い非常に良好なレベルであった。 [浴比] 16.3 [減量率] 35.3(%) [単糸の分散性評価] ○ [単糸の直径] 2.25(μm) [L/D] 1335 [繊維塊数] 0.0(個/m2
(Example 8) The same conjugate short fibers as in Example 1 were sealed in 4 bags of 2 kg each in the same dyeing bag as in Example 1, and the alkali concentration was shortened to 3.0% by weight and the alkali reduction time was shortened to 30 minutes. The copolymerized polyester component was decomposed and removed under the same flow conditions as in Example 1 under all other conditions. The dispersibility of the single yarn of the obtained ultrafine polyester short fiber was good, and was a very good level without any fiber mass. [Bath ratio] 16.3 [Weight loss rate] 35.3 (%) [Evaluation of dispersibility of single yarn] ○ [Diameter of single yarn] 2.25 (μm) [L / D] 1335 [Number of fiber mass] 0 0.0 (pieces / m 2 )

【0056】(比較例3)実施例1と同じ複合短繊維を
実施例1と同じ染色袋に2kgずつ30袋封入し、その
他の条件は全て実施例1と同様な流動状態下で共重合ポ
リエステル成分を分解除去した。得られた極細ポリエス
テル短繊維の単糸の分散性を評価した結果、共重合ポリ
エステル成分の抽出が不完全な繊維束(繊維長3mmの
束)、短繊維の表面に於ける再結着による枝分かれした
パルプ状物の繊維塊、繊維塊と繊維塊が絡み合った双子
スラリーが等多発した。また、双子スラリーの頭部を断
面方向にカミシリの刃で切ると、ほとんど減量を受けて
いない部分があった。 [浴比] 2.2 [減量率] 34.4(%) [単糸の分散性評価] × [単糸の直径] 2.30(μm) [L/D] 1304 [繊維塊数] 3.2(個/m2
(Comparative Example 3) The same conjugate staple fiber as in Example 1 was sealed in 30 bags of 2 kg each in the same dyeing bag as in Example 1; The components were decomposed and removed. As a result of evaluating the dispersibility of the single yarn of the obtained ultrafine polyester short fiber, a fiber bundle (bundle having a fiber length of 3 mm) in which extraction of the copolymerized polyester component was incomplete, branching due to rebinding on the surface of the short fiber Fiber lumps of the pulp-like material, twin slurries in which the fiber lumps were entangled, and the like frequently occurred. In addition, when the head of the twin slurry was cut in the cross-sectional direction with a razor blade, there was a portion where the weight was hardly reduced. [Bath ratio] 2.2 [Weight loss rate] 34.4 (%) [Evaluation of dispersibility of single yarn] × [Diameter of single yarn] 2.30 (μm) [L / D] 1304 [Number of fiber mass] 3 .2 (pieces / m 2 )

【0057】[0057]

【表3】 [Table 3]

【0058】(比較例4)実施例1と同じポリプロピレ
ン繊維からなる開口率が25%のトリコット編物の染色
袋に、実施例1と同じ海島短繊維を2kgずつ12袋封
入し、その他の条件は全て実施例1と同様にした流動状
態で共重合ポリエステル成分を分解除去した。アルカリ
減量減量開始からほぼ20分位で、アルカリ減量を受け
た極細ポリエステル短繊維が染色袋の編目から抜け出て
しまい、液循環ラインの循環ポンプの前に設置している
フィルターが目詰りし、回転ドラム染色機が自動停止し
た。単糸の分散性評価、繊維塊評価は行わなかった。 [浴比] 5.4
Comparative Example 4 Twelve bags of the same sea-island staple fibers as in Example 1 were sealed in dyed bags of the same polypropylene fibers as in Example 1 with a tricot knitted fabric having an opening ratio of 25% and 2 kg each. The copolymerized polyester component was decomposed and removed in the same fluidized state as in Example 1. Almost 20 minutes after the start of the alkali weight loss, the ultra-fine polyester short fibers which received the alkali weight loss came out of the stitches of the dyeing bag, and the filter installed in front of the circulation pump in the liquid circulation line was clogged and rotated. The drum dyeing machine stopped automatically. Evaluation of dispersibility of single yarn and evaluation of fiber lump were not performed. [Bath ratio] 5.4

【0059】(実施例9)実施例1と同じ海島短繊維を
実施例1と同じ染色袋に0.2kgずつ4袋封入し、該
袋と4.5重量%の水酸化ナトリウム水溶液4(リット
ル)、4(cc)のアニオン界面活性剤を回転オートク
レイブ染色機に入れ、回転オートクレイブ染色機自体を
穏和な回転条件、周速7m/分で連続回転させ、該袋と
アルカリ水溶液を流動状態にした。アルカリ減量処理温
度90℃、処理時間40分間の条件で共重合ポリエステ
ル成分を分解除去した。アルカリ減量終了後、該染色袋
を取り出し、湯洗を3回繰り返し、最後に遠心脱水を行
った。
Example 9 The same sea-island staple fiber as in Example 1 was sealed in four bags of 0.2 kg each in the same dyeing bag as in Example 1, and the bag and a 4.5% by weight aqueous sodium hydroxide solution 4 (liter) were added. 4) Anionic surfactant (4 cc) is put into a rotary autoclave dyeing machine, and the rotary autoclave dyeing machine itself is continuously rotated at a gentle rotation condition at a peripheral speed of 7 m / min. I made it. The copolymerized polyester component was decomposed and removed under the conditions of an alkali weight loss treatment temperature of 90 ° C. and a treatment time of 40 minutes. After the alkali reduction, the stained bag was taken out, washed with hot water three times, and finally centrifuged and dehydrated.

【0060】得られた極細ポリエステル短繊維の単糸の
直径はほぼ均一であり、極細ポリエステル短繊維が収束
した様な部分は無く、単糸の分散は良好であった。繊維
塊数も実用的に問題がない良好なレベルであった。 [浴比] 5.0 [減量率] 35.3(%) [単糸の分散性評価] ○ [単糸の直径] 2.23(μm) [L/D] 1348 [繊維塊数] 0.2(個/m2
The diameter of the single yarn of the obtained ultrafine polyester short fiber was substantially uniform, there was no portion where the ultrafine polyester short fiber converged, and the dispersion of the single yarn was good. The number of fiber lumps was also at a good level without practical problems. [Bath ratio] 5.0 [Weight loss rate] 35.3 (%) [Evaluation of dispersibility of single yarn] ○ [Diameter of single yarn] 2.23 (μm) [L / D] 1348 [Number of fiber mass] 0 .2 (pieces / m 2 )

【0061】(実施例10)ポリエチレングリコールを
10重量%共重合したブロックエーテルエステルを海成
分とし、ナイロン6を37本の島成分とする3.0d/
fの海島繊維(共重合ポリエステル分解除去後、0.0
5d/fになる、海/島=35重量%/65重量%)の
トウを繊維長3mmにロータリーカッターを使用してカ
ットした。得られた海島短繊維を実施例1と同じ染色袋
に、0.2kgずつ4袋封入した。アルカリ濃度を6.
0重量%、アルカリ減量処理温度105℃、処理時間を
30分間と短くし、その他の条件は全て実施例9と同様
な流動状態で共重合ポリエステル成分を分解除去した。
(Example 10) A block ether ester obtained by copolymerizing 10% by weight of polyethylene glycol was used as a sea component, and nylon 6 was used as 37 island components.
f sea-island fiber (0.0% after copolyester decomposition removal)
5 d / f, sea / island = 35 wt% / 65 wt%) tow was cut to a fiber length of 3 mm using a rotary cutter. The resulting sea-island staple fiber was sealed in the same dyeing bag as in Example 1 in four bags of 0.2 kg each. 5. Increase the alkali concentration to 6.
The copolyester component was decomposed and removed in the same fluidized state as in Example 9 except that the weight was 0% by weight, the alkali reduction treatment temperature was 105 ° C., and the treatment time was as short as 30 minutes.

【0062】得られた極細ナイロン短繊維の単糸の直径
はほぼ均一であり、極細ナイロン短繊維が収束した様な
部分は無く、単糸の分散は良好であった。繊維塊評価の
結果、繊維塊数は実用的に問題がない良好なレベルであ
った。 [浴比] 5.0 [減量率] 35.1(%) [単糸の分散性評価] ○ [単糸の直径] 2.37(μm) [L/D] 1264 [繊維塊数] 0.3(個/m2
The diameter of the single yarn of the obtained ultrafine nylon short fiber was substantially uniform, there was no portion where the ultrafine nylon short fiber converged, and the dispersion of the single yarn was good. As a result of the evaluation of the fiber lump, the number of the fiber lump was at a satisfactory level without any practical problem. [Bath ratio] 5.0 [Weight loss rate] 35.1 (%) [Evaluation of dispersibility of single yarn] ○ [Diameter of single yarn] 2.37 (μm) [L / D] 1264 [Number of fiber mass] 0 .3 (pieces / m 2 )

【0063】(実施例11)ポリエチレングリコールを
15重量%共重合したブロックエーテルエステルとポリ
プロピレンが交互に存在する2.0d/fの20分割繊
維(共重合ポリエステル分解除去後、0.1d/fにな
る、共重合ポリエステル/ポリプロピレン=50重量%
/50重量%)のトウをロータリーカッターを使用して
繊維長3mmにカットした。得られた分割短繊維を実施
例1と同様な染色袋に、0.2kgずつ4袋封入した。
アルカリ濃度を3.0重量%、アルカリ減量時間を30
分間と短くし、その他の条件は全て実施例9と同様な流
動状態で共重合ポリエステル成分を分解除去した。
(Example 11) A 2.0 d / f 20-split fiber in which a block ether ester obtained by copolymerizing 15% by weight of polyethylene glycol and polypropylene alternately exists (to 0.1 d / f after the copolyester is decomposed and removed). , Copolyester / polypropylene = 50% by weight
/ 50 wt%) was cut to a fiber length of 3 mm using a rotary cutter. The divided short fibers thus obtained were sealed in the same dyeing bag as in Example 1 in four bags of 0.2 kg each.
An alkali concentration of 3.0% by weight and an alkali weight loss time of 30
The copolymerized polyester component was decomposed and removed under the same flow conditions as in Example 9 under all other conditions.

【0064】得られた極細ポリプロピレン短繊維の単糸
の分散性評価結果、単糸の直径がほぼ均一であり、極細
ポリプロピレン短繊維が収束した様な部分は無く、単糸
の分散は良好であった。繊維塊評価の結果、繊維塊数は
実用的に問題がない良好なレベルであった。 [浴比] 5.0 [減量率] 50.4(%) [単糸の分散性評価] ○ [単糸の直径] 4.00(μm) [L/D] 750 [繊維塊数] 0.3(個/m2
As a result of evaluating the dispersibility of the single yarn of the obtained ultrafine polypropylene short fiber, the diameter of the single yarn was substantially uniform, there was no portion where the ultrafine polypropylene short fiber was converged, and the dispersion of the single yarn was good. Was. As a result of the evaluation of the fiber lump, the number of the fiber lump was at a satisfactory level without any practical problem. [Bath ratio] 5.0 [weight loss rate] 50.4 (%) [Evaluation of dispersibility of single yarn] ○ [diameter of single yarn] 4.00 (μm) [L / D] 750 [number of fiber mass] 0 .3 (pieces / m 2 )

【0065】(実施例12)実施例1と同じ海島短繊維
を実施例1と同じ染色袋に、3kgずつ23袋封入し、
該袋と4.5重量%の水酸化ナトリウム水溶液300
(リットル)、300(cc)のアニオン界面活性剤を
チーズ染色機に入れた。反応槽内のアルカリ水溶液が約
7分間で1回置換される様、循環ポンプでアルカリ水溶
液を液循環させながら、海島短繊維を封入した袋とアル
カリ水溶液を穏和な流動状態にした。アルカリ減量処理
温度90℃、処理時間40分間の条件で共重合ポリエス
テル成分を分解除去した。
(Example 12) The same sea-island staple fiber as in Example 1 was sealed in the same dyeing bag as in Example 1 in 23 bags of 3 kg each.
The bag and a 4.5% by weight aqueous sodium hydroxide solution 300
(Liters), 300 (cc) of an anionic surfactant were placed in a cheese dyeing machine. While the alkaline aqueous solution was circulated by a circulation pump so that the alkaline aqueous solution in the reaction tank was replaced once in about 7 minutes, the bag containing the sea-island short fibers and the alkaline aqueous solution were brought into a mild fluid state. The copolymerized polyester component was decomposed and removed under the conditions of an alkali weight loss treatment temperature of 90 ° C. and a treatment time of 40 minutes.

【0066】引き続き、湯洗を3回繰り返した後、チー
ズ染色機から極細ポリエステル短繊維が封入された染色
袋を取り出し、最後に遠心脱水を行った。得られた極細
ポリエステル短繊維の単糸の直径はほぼ均一であり、極
細ポリエステル短繊維が収束した様な部分は無く、単糸
の分散は良好であった。繊維塊評価の結果、繊維塊数は
実用的に問題がない良好なレベルであった。 [浴比] 4.3 [減量率] 35.2(%) [単糸の分散性評価] ○ [単糸の直径] 2.22(μm) [L/D] 1353 [繊維塊数] 0.8(個/m2
Subsequently, after washing with hot water was repeated three times, the dyeing bag containing the ultrafine polyester short fiber was taken out of the cheese dyeing machine and finally centrifugally dewatered. The diameter of the single yarn of the obtained ultrafine polyester short fiber was substantially uniform, there was no portion where the ultrafine polyester short fiber converged, and the dispersion of the single yarn was good. As a result of the evaluation of the fiber lump, the number of the fiber lump was at a satisfactory level without any practical problem. [Bath ratio] 4.3 [Weight loss rate] 35.2 (%) [Evaluation of dispersibility of single yarn] ○ [Diameter of single yarn] 2.22 (μm) [L / D] 1353 [Number of fiber mass] 0 .8 (pieces / m 2 )

【0067】[0067]

【表4】 [Table 4]

【0068】(比較例5)実施例1と同じ海島短繊維
0.8kgを染色袋に入れず、その他の条件は全て実施
例9と同様な流動状態で共重合ポリエステル成分を分解
除去した。アルカリ減量後、染色機の内容物をナイロン
網上に移し取り、湯洗、遠心脱水を行った。得られた極
細ポリエステル短繊維は繭玉状態の形態を成していた。
繭玉状態のものを水中に分散させ、攪拌羽根で攪拌をし
たが、最後まで短繊維の絡まりが解けないものがあっ
た。
Comparative Example 5 The same 0.8 kg of sea-island staple fiber as in Example 1 was not put in a dyeing bag, and the copolymerized polyester component was decomposed and removed under the same flow conditions as in Example 9 under all other conditions. After the alkali was reduced, the contents of the dyeing machine were transferred onto a nylon net, washed with hot water and centrifugally dehydrated. The obtained ultrafine polyester short fiber was in the form of a cocoon ball.
The cocoon balls were dispersed in water and stirred with stirring blades, but there were some that did not disentangle short fibers until the end.

【0069】繭玉状態のものを家庭用ミキサー(松下電
器産業(株)製、MXーV350)で2分間叩解処理し
たが、まだ極細短繊維の絡まりが解けない部分があっ
た。 [浴比] 5.0 [減量率] 36.6(%) [単糸の分散性評価] × [単糸の直径] 2.26(μm) [L/D] 1325 [繊維塊数] 6.0(個/m2
The cocoon balls were beaten with a household mixer (MX-V350, manufactured by Matsushita Electric Industrial Co., Ltd.) for 2 minutes, but there was still a portion where the entanglement of ultrafine short fibers could not be unraveled. [Bath ratio] 5.0 [Weight loss rate] 36.6 (%) [Evaluation of dispersibility of single yarn] × [Diameter of single yarn] 2.26 (μm) [L / D] 1325 [Number of fiber mass] 6 0.0 (pieces / m 2 )

【0070】[0070]

【表5】 [Table 5]

【0071】(比較例6)短繊維にカットすることな
く、実施例1と同じ海島繊維を多孔性のアクリルボビン
に巻着しチーズ染色機に入れ、その他の条件は全て実施
例12と同様な流動状態で共重合ポリエステル成分を分
解除去した。湯洗を3回繰り返した後、脱水処理するこ
となく、チーズ染色機からアクリルボビンに巻かれた極
細ポリエステル繊維の束を取り出した。得られた極細ポ
リエステル繊維の束は、一部巻き形態が崩れ、部分的に
単糸切れが起こりフィブリル状態になっている部分が存
在した。引き続き、濡れたままの極細ポリエステル繊維
の束をロータリーカッターで繊維長3mmにカットした
が、極細ポリエステル繊維の単糸が一部糸切れを起こし
たり、ロータリーカッターのガイド部分にフィブリル状
態の毛羽が絡まりして、ロータリーカッターの連続運転
が出来なかった。
Comparative Example 6 The same sea-island fiber as in Example 1 was wound around a porous acrylic bobbin and cut into a cheese dyeing machine without cutting into short fibers, and all other conditions were the same as in Example 12. The copolymerized polyester component was decomposed and removed in a fluidized state. After repeating the hot water washing three times, a bundle of ultrafine polyester fibers wound on an acrylic bobbin was taken out of the cheese dyeing machine without dehydration treatment. In the obtained bundle of ultrafine polyester fibers, the winding form partially collapsed, and there was a portion in which a single yarn was partially broken and in a fibril state. Subsequently, the bundle of ultrafine polyester fibers that had been wet was cut to a fiber length of 3 mm with a rotary cutter. However, single yarns of the ultrafine polyester fibers were partially broken, or fibrils in the guide portion of the rotary cutter were entangled. As a result, the rotary cutter could not be operated continuously.

【0072】得られた極細ポリエステル短繊維はカット
断面方向で多数融着していた。融着した繊維長3mmの
短繊維の束を水中に分散したが、単糸の分散は不良で、
繊維長3mmの束のままであった。 [浴比] 4.3 [減量率] 35.5(%) [単糸の分散性評価] × [単糸の直径] 5.67(μm) [L/D] 529 [繊維塊数] 00個以上(個/m2
Many of the obtained ultrafine polyester short fibers were fused in the cut section direction. A bundle of short fibers with a fiber length of 3 mm fused was dispersed in water, but the dispersion of single yarn was poor.
The bundle was 3 mm in fiber length. [Bath ratio] 4.3 [Weight loss rate] 35.5 (%) [Evaluation of dispersibility of single yarn] x [Diameter of single yarn] 5.67 (μm) [L / D] 529 [Number of fiber mass] 00 Pieces or more (pieces / m 2 )

【0073】[0073]

【表6】 [Table 6]

【0074】[0074]

【発明の効果】本発明によって得られた極細短繊維は、
均一な繊維径とL/Dを有するので、水に分散させる
と、通常の攪拌で容易に均一な繊維塊などの無いスラリ
ーが得られ、かつ得られる抄造シートを柱状流交絡等の
方法で不織布化することにより、均一な3次元交絡処理
ができ、高強度の不織布が得られる。
The ultrafine short fibers obtained according to the present invention are:
Since it has a uniform fiber diameter and L / D, when it is dispersed in water, a uniform slurry without fiber lumps can be easily obtained by ordinary stirring, and the obtained paper sheet is nonwoven fabric by a method such as columnar flow entanglement. By doing so, uniform three-dimensional entanglement processing can be performed, and a high-strength nonwoven fabric can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の均一な抄造用極細繊維を製造
する設備の内、回転ドラム染色機について説明するため
の概略図である。
FIG. 1 is a schematic diagram for explaining a rotary drum dyeing machine in a facility for producing uniform ultrafine fibers for papermaking of the present invention.

【符号の説明】[Explanation of symbols]

1 外胴 2 ドラム槽 3 蓋 4 覗き窓 5 循環ポンプ 6 熱交換機 7 ドラムの回転方向 8 複合短繊維を封入した非アルカリ加水分解性袋 9 アルカリ水溶液 DESCRIPTION OF SYMBOLS 1 Outer body 2 Drum tank 3 Lid 4 Viewing window 5 Circulation pump 6 Heat exchanger 7 Drum rotation direction 8 Non-alkali hydrolysable bag containing compound short fiber 9 Alkaline aqueous solution

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 易アルカリ加水分解性ポリマー(ポリマ
ーA)と、該易アルカリ加水分解性ポリマーと加水分解
性が異なる少なくとも1成分以上のポリマー(ポリマー
B)からなる複合短繊維を非アルカリ加水分解性繊維製
の袋に封入し、該袋及び/又はアルカリ水溶液を流動状
態に晒しながら、易アルカリ加水分解性のポリマー成分
を分解除去することによって得られる、繊維の単糸直径
が1〜10μmで、単糸の直径 [D] と長さ [L] の
比、L/Dが300〜2000である均一な抄造用極細
短繊維。
1. A non-alkali hydrolyzed conjugate short fiber comprising an alkali-hydrolyzable polymer (polymer A) and at least one polymer (polymer B) having a different hydrolyzability from the alkali-hydrolyzable polymer. A single fiber diameter of 1 to 10 μm, obtained by decomposing and removing the easily hydrolysable polymer component while exposing the bag and / or the aqueous alkali solution to a fluidized state, And ultrafine short fibers for uniform papermaking, wherein the ratio of the diameter [D] to the length [L] of the single yarn and the L / D are 300 to 2,000.
【請求項2】 易アルカリ加水分解性ポリマー(ポリマ
ーA)と、該易アルカリ加水分解性ポリマーと加水分解
性が異なる、少なくとも1成分以上のポリマー(ポリマ
ーB)からなる複合繊維を長さ5mm以下にカットして
得た複合短繊維を非アルカリ加水分解性繊維製の袋に封
入し、該複合短繊維の重量の3倍以上のアルカリ水溶液
に浸積し、該袋及び/又はアルカリ水溶液を流動状態に
晒しながら、易アルカリ加水分解性のポリマー成分(ポ
リマーA)を分解除去することによる、繊維の単糸直径
が1〜10μmで、単糸の直径 [D] と長さ [L] の
比、L/Dが300〜2000である均一な抄造用極細
短繊維の製造方法。
2. A composite fiber comprising an alkali easily hydrolysable polymer (polymer A) and a polymer (polymer B) having at least one component having a different hydrolyzability from the alkali easily hydrolysable polymer, having a length of 5 mm or less. The composite staple fiber obtained by cutting into a bag is sealed in a bag made of non-alkali hydrolyzable fiber, immersed in an alkali aqueous solution having a weight of at least three times the weight of the composite staple fiber, and the bag and / or the alkaline aqueous solution is allowed to flow. The ratio of the diameter [D] of the single yarn to the length [L] of the single yarn of the fiber is 1 to 10 μm by decomposing and removing the easily hydrolyzable polymer component (polymer A) while being exposed to a state. And a method for producing uniform ultrafine short fibers for papermaking having an L / D of 300 to 2,000.
JP25733596A 1996-09-09 1996-09-09 Ultrafine short fiber for papermaking and method for producing the same Expired - Fee Related JP3678511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25733596A JP3678511B2 (en) 1996-09-09 1996-09-09 Ultrafine short fiber for papermaking and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25733596A JP3678511B2 (en) 1996-09-09 1996-09-09 Ultrafine short fiber for papermaking and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1088476A true JPH1088476A (en) 1998-04-07
JP3678511B2 JP3678511B2 (en) 2005-08-03

Family

ID=17304941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25733596A Expired - Fee Related JP3678511B2 (en) 1996-09-09 1996-09-09 Ultrafine short fiber for papermaking and method for producing the same

Country Status (1)

Country Link
JP (1) JP3678511B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064055A1 (en) * 2003-12-26 2005-07-14 Kolon Industries, Inc A cleansing polyester fabrics, and a process of preparing the same
JP2006299474A (en) * 2005-04-22 2006-11-02 Kuraray Co Ltd Ultrafine melt-anisotropic aromatic polyester fiber
JP2007092235A (en) * 2005-09-29 2007-04-12 Teijin Fibers Ltd Staple fiber, method for producing the same and precursor for forming the fiber
JP2007107160A (en) * 2005-10-17 2007-04-26 Teijin Fibers Ltd Method for producing short-cut nanofiber and wet nonwoven fabric

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2138634B1 (en) 2007-04-17 2012-08-22 Teijin Fibers Limited Wet-laid non-woven fabric and filter
EP2138633B1 (en) 2007-04-18 2012-05-30 Teijin Fibers Limited Thin paper
JP5865058B2 (en) 2011-12-19 2016-02-17 株式会社マーレ フィルターシステムズ Filter media, method for producing the same, and filter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064055A1 (en) * 2003-12-26 2005-07-14 Kolon Industries, Inc A cleansing polyester fabrics, and a process of preparing the same
US7850741B2 (en) 2003-12-26 2010-12-14 Kolon Industries, Inc. Cleansing polyester fabrics, and a process of preparing the same
US8808845B2 (en) 2003-12-26 2014-08-19 Kolon Industries, Inc. Cleansing polyester fabrics, and a process of preparing the same
JP2006299474A (en) * 2005-04-22 2006-11-02 Kuraray Co Ltd Ultrafine melt-anisotropic aromatic polyester fiber
JP2007092235A (en) * 2005-09-29 2007-04-12 Teijin Fibers Ltd Staple fiber, method for producing the same and precursor for forming the fiber
JP2007107160A (en) * 2005-10-17 2007-04-26 Teijin Fibers Ltd Method for producing short-cut nanofiber and wet nonwoven fabric

Also Published As

Publication number Publication date
JP3678511B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
JP5082192B2 (en) Method for producing nanofiber synthetic paper
CN101657573B (en) Splittable conjugate fiber, fiber structure using the same, and wiping cloth
JPH10504858A (en) Lyocell fiber and method for producing the same
GB2324064A (en) Modified lyocell fibre and method of its formation
KR100225318B1 (en) Fibrillatable fiber of a sea- islands structure
EP1327013B1 (en) Crimped fibre and its production
JP2020504791A (en) Lyocell fiber, nonwoven fiber aggregate including the same, and mask pack sheet including the same
JP3678511B2 (en) Ultrafine short fiber for papermaking and method for producing the same
JP4677919B2 (en) Tow and short fiber bundles and pulp and liquid dispersions and papers composed of polyphenylene sulfide nanofibers
KR102184471B1 (en) Organic resin non-crimped staple fiber
JP4665579B2 (en) Tow and short fiber bundles and pulp and liquid dispersions and paper comprising polymer alloy fibers containing polyphenylene sulfide
JP2918988B2 (en) Modified polyolefin ultrafine fiber generating composite fiber and woven or non-woven fabric
JP2000192335A (en) Fiber capable of forming ultra fine fiber, ultra fine fiber generated from it and sheet using the ultra fine fiber
JP3704576B2 (en) Cotton swab using a sliver made of extra fine fibers
JP2906183B2 (en) Microfiber-generated fiber
JPH08284021A (en) Readily fibrillated fiber comprising polyvinyl alcohol and cellulosic polymer
JP2000160432A (en) Fiber from which superfine fibers can be generated, superfine fibers generated therefrom and fiber sheet using the superfine fibers
JP2000328352A (en) Polyvinyl alcohol-based water-soluble fiber and paper and method for discriminating solidified state
US5145622A (en) Improvements in process for preparing water-dispersible polyester fiber
JP2765947B2 (en) Bulky paper
JPH1136172A (en) Improvement in processability in producing spun yarn, production of fibrous structural product and spun yarn
JP3207968B2 (en) Mixed yarn
JP3301672B2 (en) Aromatic polyester pulp and method for producing the same
JPWO2018139651A1 (en) Method for producing non-crimped staple fiber, and wet non-woven fabric comprising the obtained non-crimped staple fiber
JPS6330432B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050510

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050510

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080520

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090520

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090520

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110520

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110520

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120520

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20130520

LAPS Cancellation because of no payment of annual fees