JPH1088254A - Production of porous metal - Google Patents

Production of porous metal

Info

Publication number
JPH1088254A
JPH1088254A JP8239580A JP23958096A JPH1088254A JP H1088254 A JPH1088254 A JP H1088254A JP 8239580 A JP8239580 A JP 8239580A JP 23958096 A JP23958096 A JP 23958096A JP H1088254 A JPH1088254 A JP H1088254A
Authority
JP
Japan
Prior art keywords
metal
gas
porous
oxygen
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8239580A
Other languages
Japanese (ja)
Other versions
JP3868546B2 (en
Inventor
Hideo Nakajima
英雄 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
Kagaku Gijutsu Shinko Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17046911&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH1088254(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kagaku Gijutsu Shinko Jigyodan filed Critical Kagaku Gijutsu Shinko Jigyodan
Priority to JP23958096A priority Critical patent/JP3868546B2/en
Publication of JPH1088254A publication Critical patent/JPH1088254A/en
Application granted granted Critical
Publication of JP3868546B2 publication Critical patent/JP3868546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a porous metal excellent in workability, formability, machinability, etc., by melting and solidifying a metal, having an eutectic point in the metal-gas phase diagram under a uniform pressure gas atmosphere under a pressurized gas atmosphere. SOLUTION: A metal having an eutectic point in the metal-gas phase diagram under a uniform pressure gas atmosphere, (e.g. Ag-O), is placed in a melting crucible 2 in a high pressure gas vessel of <=about 20atm. As the gas, hydrogen, oxygen, inert gas, etc., are used. This crucible 2 is heated under pressure by means of a high frequency coil 1 for melting to melt the metal, and the resultant molten metal is cast via an opening/closing valve 3 in a mold 4 cooled by means of a water cooling part 5, followed by solidification by cooling. By this method, a porous metal 6, useful for lightweight structural material, aerospace and aircraft material, catalyst material, etc., can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ポーラス金属の
製造方法に関するものである。さらに詳しくは、この発
明は、触媒材料、水素吸蔵合金、防震材料、衝撃緩衝
材、電磁波シールド材、自動車等の各種の機械部品、消
音器装置、フィルター、自己潤滑性ベアリング、熱交換
器、電解セル、液体分離器、ロケットジェットエンジン
のセラミックスサポート、宇宙材料の軽量パネル、水の
純化のための酸素処理器などに有用な、ポーラス金属の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous metal. More specifically, the present invention relates to a catalyst material, a hydrogen storage alloy, an anti-seismic material, a shock absorbing material, an electromagnetic wave shielding material, various mechanical parts such as automobiles, a silencer device, a filter, a self-lubricating bearing, a heat exchanger, an electrolytic device. The present invention relates to a method for producing a porous metal useful for a cell, a liquid separator, a ceramic support for a rocket jet engine, a lightweight panel of a space material, an oxygenator for purifying water, and the like.

【0002】[0002]

【従来の技術とその課題】従来より、シラスポーラスガ
ラスや、セルメット、アルポラスなどの製品等として、
無機質や金属のポーラス(多孔質)材の各種のものが知
られており、これらのポーラス材の利用分野も多岐にわ
たっている。しかしながら、当然にもポーラスガラスは
金属に比べて強度や加工性、成形性が極端に劣り、また
発泡樹脂に金属を充填しているセルメットの場合や水素
ガスによる発泡法を利用しているアルポラスの場合は、
適用金属が限定され、多くの金属への応用は不可能とな
っている。
2. Description of the Related Art Conventionally, as products such as Shirasu porous glass, Celmet, and Alporus, etc.
Various types of inorganic and metal porous materials are known, and the fields of use of these porous materials are also wide-ranging. However, naturally, porous glass is extremely inferior in strength, workability and moldability as compared to metal.Also, in the case of Celmet where the metal is filled in the foamed resin or Alporus using the foaming method with hydrogen gas. If
Applicable metals are limited, and application to many metals is impossible.

【0003】一方、粉末冶金焼結法や溶解鋳造プロセス
においてもポーラス(多孔質)な組織が生成されるが、
これらの場合には、ポーラス組織は、成形加工、圧延プ
ロセスにおけるクラックの発生源になるなどの理由で、
材料の機械的性質や機能的特性を著しく損なわせる有害
なものと扱われてきた。ポーラス(多孔質)材は、各種
の機械部品や軽量構造パネル、防震材、消音材、電磁波
シールド材、水素吸蔵合金、触媒、ベアリング、熱交換
器、電解セル等の広範囲な分野に応用され、さらに様々
な分野での用途の拡大が期待されているにもかかわら
ず、上記のとおり、特に金属ポーラス材としては、強
度、加工性、成形性などの点で、満足な結果が得られて
いないため、従来の製品では、その応用の範囲を広げる
ことができないでいる。
On the other hand, a porous (porous) structure is also generated in the powder metallurgy sintering method and the melt casting process.
In these cases, the porous structure becomes a source of cracks in the forming and rolling processes, and so on.
It has been treated as a hazardous material that significantly impairs the mechanical and functional properties of the material. Porous (porous) materials are applied to a wide range of fields such as various mechanical parts, lightweight structural panels, earthquake-proof materials, sound-absorbing materials, electromagnetic wave shielding materials, hydrogen storage alloys, catalysts, bearings, heat exchangers, and electrolytic cells. In spite of the expected expansion of applications in various fields, satisfactory results have not been obtained in terms of strength, workability, moldability, etc., as described above, especially for metal porous materials. Thus, conventional products cannot expand the range of application.

【0004】そこで、この発明は、以上のような従来技
術の問題点を解消し、加工性、成形性、切削性などに優
れた金属ポーラス材を実現することのできる、新しい手
法によるポーラス金属の製造方法を提供することを目的
としている。
Therefore, the present invention solves the above-mentioned problems of the prior art and realizes a porous metal material having excellent workability, formability, machinability, and the like by a new method. It is intended to provide a manufacturing method.

【0005】[0005]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、等圧気体雰囲気下における金属
−ガス系状態図が共晶点を有する金属を、加圧されたガ
ス雰囲気下に溶融して凝固させることを特徴とするポー
ラス金属の製造方法を提供する。
The present invention solves the above-mentioned problems by providing a metal-gas phase diagram under an equal-pressure gas atmosphere in which a metal having a eutectic point is formed under a pressurized gas atmosphere. The present invention provides a method for producing a porous metal, characterized by being melted and solidified.

【0006】[0006]

【発明の実施の形態】この発明は、等圧気体雰囲気下に
おける金属−ガス共晶反応を利用して、ポーラス金属を
製造するものである。そして、この発明では、ポア
(孔)の形態、大きさを制御したポーラス金属を提供す
る。さらに詳しく説明すると、図1に示すように、ある
等圧下で金属−ガス系状態図が共晶点を有するとき、そ
の共晶反応(L(液体)→α+G(気体))により、気
体状のラメラ−組織が凝固過程中に金属内に生成され
る。このことによってポーラス金属が生成されることに
なる。つまり、この発明では、金属−ガス共晶反応とし
て、ガス原子が溶融状態の金属に溶け込み、固体状態の
金属には溶け込まないことを利用する。ガスを溶かし込
んだ溶融状態の金属を冷却すると、ガスは金属材料内部
で気泡となり、均一な大きさのポア(孔)をもつポーラ
ス金属が生成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is to produce a porous metal by utilizing a metal-gas eutectic reaction under an equal pressure gas atmosphere. Further, the present invention provides a porous metal in which the shape and size of pores (holes) are controlled. More specifically, as shown in FIG. 1, when a metal-gas phase diagram has a eutectic point under a certain isobar pressure, the eutectic reaction (L (liquid) → α + G (gas)) causes a gaseous phase. Lamellar tissue is formed in the metal during the solidification process. This results in the generation of a porous metal. In other words, the present invention utilizes, as the metal-gas eutectic reaction, the fact that gas atoms dissolve in metal in a molten state but do not dissolve in metal in a solid state. When the molten metal in which the gas is dissolved is cooled, the gas becomes bubbles inside the metal material, and a porous metal having pores of uniform size is generated.

【0007】実際には、この発明の製造法では、常圧か
ら高圧に至るまでに加圧されたガス雰囲気において金属
を溶融し、凝固する。この場合、溶融および凝固は、鋳
造法や、チョクラルスキー法、改良チョクラルスキー法
等の引き上げ法等により行うことができ、ガスについて
も、たとえば、水素や酸素、不活性ガス等の比較的取扱
いや入手が容易で、しかも金属との相関性が良好なガス
の任意のものが用いられる。もちろん、このガスの種類
の選択は、金属の種類との関係において、等圧気体雰囲
気下における金属−ガス系状態図が共晶点を持たねばな
らない。
Actually, in the manufacturing method of the present invention, metal is melted and solidified in a gas atmosphere pressurized from normal pressure to high pressure. In this case, melting and solidification can be performed by a casting method, a Czochralski method, a lifting method such as an improved Czochralski method, and the like. Any gas that is easy to handle and obtain and that has a good correlation with the metal is used. Of course, the selection of the type of gas must have a eutectic point in the metal-gas phase diagram under an equal-pressure gas atmosphere in relation to the type of metal.

【0008】水素および酸素は、利用されるガスとして
代表例として示されるもので、これらは単独で用いても
よいが、アルゴン(Ar)等の不活性ガスと混合して用
いることで、後述のように、ポア(孔)の制御を容易と
するという利点もある。図2(a)(b)(c)は、こ
の発明の製造法の方式として、鋳型への鋳造と引き上げ
による方法とを例示したものである。
[0008] Hydrogen and oxygen are typical examples of gases to be used. These gases may be used alone. However, when they are used by mixing with an inert gas such as argon (Ar), they will be described later. Thus, there is an advantage that the control of the pores (holes) is facilitated. FIGS. 2A, 2B and 2C exemplify a method of casting into a mold and pulling up as a method of the manufacturing method of the present invention.

【0009】たとえば鋳造法においては、たとえば図2
(a)(b)の装置が20気圧程度までの高圧ガス容器
内に置かれており、金属は、溶解るつぼ(2)内におい
て溶解用高周波コイル(1)で加熱されて溶融され、開
閉弁(3)を通じて、水冷却部(5)により冷却された
鋳型(4)内に鋳込まれる。そして冷却により、凝固さ
れてポーラス金属(6)が生成される。
For example, in the casting method, FIG.
(A) The apparatus of (b) is placed in a high-pressure gas container up to about 20 atm, and the metal is heated and melted by the melting high-frequency coil (1) in the melting crucible (2), and is opened and closed. Through (3), it is cast into the mold (4) cooled by the water cooling unit (5). Then, by cooling, it is solidified to generate a porous metal (6).

【0010】また、引き上げ法においては、同様に、図
2(c)の装置が高圧ガス容器内に置かれており、金属
が溶解るつぼ(2)内で高周波コイル(1)によって溶
解され、引き上げ用金属棒(7)により引き上げられて
凝固されたポーラス金属が生成される。たとえばこのよ
うな方式において、ガスの種類やガス圧、あるいは凝固
速度を変えることによって、さらには、温度勾配を負荷
することによって共晶反応生成ガスに由来するポア
(孔)の形態や大きさを制御することができる。可能な
形態としては、図3に示すように(a)ランダム分布の
球状ポア、(b)中心方向に向いた針状ポア、(c)母
線と平行なハス状ポア、さらには、ハス状の不連続ポ
ア、渦巻き状ポア等々が例示され、これらのポアからな
る層は、非ポーラス層との多層構造とすることもでき
る。
In the lifting method, similarly, the apparatus shown in FIG. 2 (c) is placed in a high-pressure gas container, and the metal is melted by a high-frequency coil (1) in a melting crucible (2). Porous metal solidified by being pulled up by the metal rod (7) is generated. For example, in such a system, the shape and size of pores derived from the eutectic reaction product gas can be changed by changing the type and gas pressure of the gas or the solidification rate, and further by applying a temperature gradient. Can be controlled. As shown in FIG. 3, possible forms are (a) spherical pores with random distribution, (b) needle-like pores oriented toward the center, (c) lotus-like pores parallel to the generating line, and lotus-like pores. Examples thereof include discontinuous pores, spiral pores, and the like, and a layer formed of these pores may have a multilayer structure with a nonporous layer.

【0011】これらのポアの形態については、透過型ポ
ーラス金属としての中心方向に向いた針状ポアや、母線
と平行なハス状ポア(貫通型)などを有するものは、血
液ろ過フィルター、空気浄化、触媒担体、構造材料の軽
量化、電池、電極、乳化製品の構造に利用され、非透過
型ポーラス金属としてのランダム分布のポア、母線と平
行なハス状ポア(不貫通型)、渦巻き状ポアなどを有す
るものは、構造材料の軽量化、吸音材、建材、音響機
器、電磁波シールド材に利用されることになる。
Regarding the form of these pores, those having needle-like pores facing the center direction as a transmission type porous metal and lotus-like pores (penetration type) parallel to the generatrix, include a blood filtration filter, an air purification filter, and the like. It is used for the structure of batteries, electrodes, emulsified products, and has a random distribution of pores as a non-permeable porous metal, a lotus-shaped pore parallel to the bus (non-penetrating type), and a spiral-shaped pore. Those having such properties are used for weight reduction of structural materials, sound absorbing materials, building materials, acoustic equipment, and electromagnetic wave shielding materials.

【0012】なお、ガスの圧力は、対象とする金属の種
類、目的とするポア(孔)の形状や大きさに応じて、た
とえば数気圧〜数十気圧等の範囲で適宜に選択されるこ
とになる。金属は、当然にも合金であってもよい。この
発明は、金属−ガス共晶反応を起こす金属または合金系
すべてに適用できる点で画期的であり、また、製造され
るポーラス金属は、共晶組織であるため、加工性、成形
性、切削性などに優れている。
The pressure of the gas is appropriately selected, for example, in the range of several atmospheres to several tens of atmospheres according to the type of the target metal and the shape and size of the target pore. become. The metal may of course be an alloy. The present invention is epoch-making in that it can be applied to all metals or alloys that cause a metal-gas eutectic reaction, and since the produced porous metal has a eutectic structure, it has processability, formability, Excellent cutting properties.

【0013】さらに、種々の形態を有するポーラス金属
の複合化を行い、付加価値を高めることが考えられる。
たとえば、ポーラス金属に高温ガス浸炭などを施し、ポ
ア内壁の硬化や強化を図ること、ポア内部に異種材料を
充填して複合材料を作製することなどがあげられる。こ
のような処理を行うことにより、ポーラス化によって生
じるマイナスの効果としての劣化を阻止するばかりでは
なく、バルク材よりもさらに優れた特性を持つ材料を開
発することができる。
Further, it is conceivable to increase the added value by combining porous metals having various forms.
For example, the method includes carburizing a porous metal with a high-temperature gas to harden or strengthen the inner wall of the pore, and filling the inside of the pore with a different material to produce a composite material. By performing such a treatment, it is possible not only to prevent the deterioration as a negative effect caused by the formation of the porous material, but also to develop a material having more excellent characteristics than the bulk material.

【0014】以下、実施例を示し、さらに詳しくこの発
明の実施の形態について説明する。
Hereinafter, examples will be shown, and embodiments of the present invention will be described in more detail.

【0015】[0015]

【実施例】【Example】

(実施例1)Ag−O系の等圧雰囲気下での状態図から
は、931℃でAg─Oの共晶点を有し、溶融状態で
は、Agは多量の酸素を吸収するが、931℃以下では
凝固して銀と酸素の2相に分離することと、銀中には室
温ではほとんど酸素が固溶しないことがわかる。
(Example 1) From a phase diagram under an equal pressure atmosphere of an Ag-O system, it has a eutectic point of Ag─O at 931 ° C, and in a molten state, Ag absorbs a large amount of oxygen. It can be seen that when the temperature is lower than 0 ° C., the solidification separates into two phases of silver and oxygen, and oxygen hardly dissolves in silver at room temperature.

【0016】そこで、100気圧までの耐圧を持つ高圧
高周波溶解装置を用いて、図2(c)に沿った改良型チ
ョクラルスキー法によって0.1MPaから11MPa
までの酸素雰囲気中でAgの溶解・凝固を行った。自然
放冷で、0.1mm/sec〜1mm/sec程度の条
件とした。純銀(99.99%)を0.1MPa(1気
圧)の酸素下で溶解すると、るつぼの中の溶融銀面に
は、多数の斑点が見られる。これは酸素が吹き出してい
るために生じたものである。また、上方に引き上げつつ
ある凝固銀の棒状表面は、酸素が吹き出して凝固したざ
らざらな形跡を示していた。
Therefore, using a high-pressure high-frequency melting apparatus having a pressure resistance up to 100 atm, the pressure is increased from 0.1 MPa to 11 MPa by the improved Czochralski method shown in FIG.
Ag was dissolved and solidified in an oxygen atmosphere up to the above. The condition was set to about 0.1 mm / sec to 1 mm / sec by natural cooling. When pure silver (99.99%) is dissolved under oxygen of 0.1 MPa (1 atm), a number of spots are observed on the surface of the molten silver in the crucible. This is due to the blowing of oxygen. Further, the rod-shaped surface of the solidified silver which was being pulled upward showed a rough trace of the solidification due to the blowing of oxygen.

【0017】同様にして、0.6MPaおよび1.1M
Paの酸素圧下で引き上げて銀試料を作製した。これら
の場合の試料を比較してみると、0.1MPaではAg
表面は比較的滑らかであるが、0.6MPaおよび1.
1MPaでは、溶岩石のように表面がでこぼこになって
いることが観察される。一方、比較のために、全圧が
1.1MPaとなるように、0.55MPaの酸素と
0.55MPaのアルゴンとの混合ガスの加圧雰囲気下
では、ほぼ同じ酸素圧でありながら、0.55MPaの
未反応のアルゴンガスが加圧された場合、インゴット表
面が滑らかになっていることが特筆される。これは、
0.55MPaの未反応のアルゴンガスが負荷されたこ
とによって、凝固時の酸素の吹き出しが抑制されたもの
と考えられる。
Similarly, 0.6 MPa and 1.1 M
The sample was pulled up under an oxygen pressure of Pa to produce a silver sample. Comparing the samples in these cases, it was found that 0.1 MPa
The surface is relatively smooth, but 0.6 MPa and 1.
At 1 MPa, it is observed that the surface is rough like lava rock. On the other hand, for comparison, under a pressurized atmosphere of a mixed gas of 0.55 MPa of oxygen and 0.55 MPa of argon so that the total pressure becomes 1.1 MPa, while maintaining the same oxygen pressure, the pressure is 0.1 MPa. It is notable that when the unreacted argon gas of 55 MPa is pressurized, the surface of the ingot is smooth. this is,
It is considered that the supply of the unreacted argon gas of 0.55 MPa suppressed the blowing of oxygen during coagulation.

【0018】このようにして作製されたポーラス銀の試
料を放電加工機によって歪みを生じさせないようにして
切断した。図4および図5は、各々、0.1MPaの酸
素加圧下で製造したポーラス銀の上部分のロッドの横断
面と縦断面を走査電子顕微鏡によって観察したものであ
る。この図4および図5からもわかるように、引き上げ
方向、すなわち凝固方向にポアが成長しており、ポアは
直径200μmから数100μmに及ぶ大きなポアと直
径50〜100μm程度の小さいポアの2種類から成っ
ている。また、ポアの長さは250〜1500μmであ
った。ところが、0.55MPaの酸素と0.55MP
aのアルゴンとの混合ガスの下では、図6に、同様部位
の横断面の走査電子顕微鏡像を示したように、直径50
〜200μmの均一サイズのポアが生成されていること
がわかる。実用的にはポアのサイズが均一であることが
望まれるので、この1.1MPaの混合ガスの下での凝
固のほうがポーラス銀の生成には好ましいとも考えられ
る。
The porous silver sample thus produced was cut by an electric discharge machine without causing distortion. FIG. 4 and FIG. 5 are observations of a cross section and a vertical section of a rod on an upper portion of porous silver produced under an oxygen pressure of 0.1 MPa, respectively, by a scanning electron microscope. As can be seen from FIGS. 4 and 5, pores grow in the pulling direction, that is, in the solidification direction. The pores are divided into two types: large pores ranging from 200 μm to several hundred μm in diameter and small pores having a diameter of about 50 to 100 μm. Made up of Further, the length of the pore was 250 to 1500 μm. However, 0.55MPa of oxygen and 0.55MPa
Under the mixed gas with argon gas a, as shown in FIG.
It can be seen that pores having a uniform size of about 200 μm are generated. Practically, it is desired that the pores have a uniform size. Therefore, it is considered that solidification under a mixed gas of 1.1 MPa is more preferable for formation of porous silver.

【0019】もちろん、この発明は、以上の例によって
限定されるものではない。細部において様々な態様が可
能である。
Of course, the present invention is not limited by the above examples. Various aspects are possible in detail.

【0020】[0020]

【発明の効果】以上詳しく説明したとおり、この発明に
より、軽量化構造材料、宇宙航空材料、多孔性を利用し
た触媒、防震材、消音材、フィルター、ベアリング、熱
交換器、電解セル等への種々の広範な用途を開くことが
でき、金属質材料としての強度、加工性、切削性等の特
性にも優れた、新しいポーラス金属の製造が可能とな
る。
As described above in detail, according to the present invention, a lightweight structural material, an aerospace material, a porous catalyst, an anti-vibration material, a sound deadening material, a filter, a bearing, a heat exchanger, an electrolytic cell, etc. A wide variety of applications can be opened, and the production of a new porous metal having excellent properties such as strength, workability, and machinability as a metallic material becomes possible.

【0021】この製造においては、鋳造や引き上げ法等
の手段を用いることができ、簡便な製造が可能とされ
る。
In this production, means such as a casting method and a pulling-up method can be used, and simple production can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の基本原理としての金属−ガス系状態
図を例示した関係図である。
FIG. 1 is a relationship diagram illustrating a metal-gas phase diagram as a basic principle of the present invention.

【図2】(a)(b)(c)は、各々、この発明の方法
のための装置として高圧容器内に取り付けられる装置を
例示した概略図である。
FIGS. 2 (a), (b) and (c) are schematic diagrams each illustrating a device mounted in a high-pressure vessel as a device for the method of the present invention.

【図3】(a)(b)(c)は、各々、種々のポアの形
態について例示した概念図である。
FIGS. 3A, 3B, and 3C are conceptual diagrams illustrating various types of pores; FIG.

【図4】0.1MPaの酸素下でのポーラス銀の上部分
のロッドの横断面を示した図面に代わる走査電子顕微鏡
写真である。
FIG. 4 is a scanning electron micrograph instead of a drawing showing a cross section of a rod of the upper part of porous silver under 0.1 MPa of oxygen.

【図5】図4に対応する縦断面を示した図面に代わる走
査電子顕微鏡観察写真である。
FIG. 5 is a scanning electron microscope observation photograph instead of a drawing showing a longitudinal section corresponding to FIG. 4;

【図6】0.55MPaの酸素と0.55MPaのアル
ゴンとの混合ガス下で作製されたポーラス銀の横断面を
示した図面に代わる走査電子顕微鏡写真である。
FIG. 6 is a scanning electron micrograph instead of a drawing showing a cross section of porous silver produced under a mixed gas of 0.55 MPa of oxygen and 0.55 MPa of argon.

【符号の説明】[Explanation of symbols]

1 熔解用高周波コイル 2 熔解るつぼ 3 開閉弁 4 鋳型 5 水冷却部 6 試料 7 引き上げ用金属棒状試料 DESCRIPTION OF SYMBOLS 1 High frequency coil for melting 2 Melting crucible 3 On-off valve 4 Mold 5 Water cooling unit 6 Sample 7 Metal rod sample for lifting

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 等圧気体雰囲気下における金属−ガス系
状態図が共晶点を有する金属を、加圧されたガス雰囲気
下に溶融して凝固させることを特徴とするポーラス金属
の製造方法。
1. A method for producing a porous metal, wherein a metal having a eutectic point in a metal-gas phase diagram under an equal-pressure gas atmosphere is melted and solidified in a pressurized gas atmosphere.
【請求項2】 鋳造法において溶融および凝固させる請
求項1の製造方法。
2. The production method according to claim 1, wherein the mixture is melted and solidified in a casting method.
【請求項3】 引き上げ法において溶融および凝固させ
る請求項1の製造方法。
3. The production method according to claim 1, wherein the material is melted and solidified in a pulling method.
【請求項4】 ガスが水素、酸素または不活性ガスであ
る請求項1ないし3のいずれかの製造方法。
4. The method according to claim 1, wherein the gas is hydrogen, oxygen or an inert gas.
【請求項5】 ガスが水素または酸素と不活性ガスとの
混合ガスである請求項1ないし3のいずれかの製造方
法。
5. The method according to claim 1, wherein the gas is a mixed gas of hydrogen or oxygen and an inert gas.
【請求項6】 急冷凝固させる請求項1ないし5のいず
れかの製造方法。
6. The method according to claim 1, wherein the solidification is carried out rapidly.
JP23958096A 1996-09-10 1996-09-10 Method for producing porous silver Expired - Fee Related JP3868546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23958096A JP3868546B2 (en) 1996-09-10 1996-09-10 Method for producing porous silver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23958096A JP3868546B2 (en) 1996-09-10 1996-09-10 Method for producing porous silver

Publications (2)

Publication Number Publication Date
JPH1088254A true JPH1088254A (en) 1998-04-07
JP3868546B2 JP3868546B2 (en) 2007-01-17

Family

ID=17046911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23958096A Expired - Fee Related JP3868546B2 (en) 1996-09-10 1996-09-10 Method for producing porous silver

Country Status (1)

Country Link
JP (1) JP3868546B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004367A1 (en) * 1999-07-09 2001-01-18 Hideo Nakajima Production method for porous metal body
JP2003094109A (en) * 2001-09-21 2003-04-02 Hideo Nakajima Metal wire of metal plate, and thin wire and thin sheet for medical equipment
KR20040011853A (en) * 2002-07-31 2004-02-11 최성조 Process method for the making micropore on the metal surface
WO2007017945A1 (en) 2005-08-11 2007-02-15 Mitsubishi Denki Kabushiki Kaisha Heat sink and method of producing the same
JP2016207889A (en) * 2015-04-24 2016-12-08 日立化成株式会社 Radiation fin using porous metal and heat sink and module mounted with the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436956A (en) * 1990-05-31 1992-02-06 Sanyo Electric Co Ltd Manufacture of hydrogen absorption alloy electrode
US5181549A (en) * 1991-04-29 1993-01-26 Dmk Tek, Inc. Method for manufacturing porous articles
JPH06507579A (en) * 1991-05-31 1994-09-01 アルキャン・インターナショナル・リミテッド Method and apparatus for producing molded slabs of particle-stabilized foam metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436956A (en) * 1990-05-31 1992-02-06 Sanyo Electric Co Ltd Manufacture of hydrogen absorption alloy electrode
US5181549A (en) * 1991-04-29 1993-01-26 Dmk Tek, Inc. Method for manufacturing porous articles
JPH06507579A (en) * 1991-05-31 1994-09-01 アルキャン・インターナショナル・リミテッド Method and apparatus for producing molded slabs of particle-stabilized foam metal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004367A1 (en) * 1999-07-09 2001-01-18 Hideo Nakajima Production method for porous metal body
US7073558B1 (en) 1999-07-09 2006-07-11 Hideo Nakajima Production method for porous metal body
JP2003094109A (en) * 2001-09-21 2003-04-02 Hideo Nakajima Metal wire of metal plate, and thin wire and thin sheet for medical equipment
KR20040011853A (en) * 2002-07-31 2004-02-11 최성조 Process method for the making micropore on the metal surface
WO2007017945A1 (en) 2005-08-11 2007-02-15 Mitsubishi Denki Kabushiki Kaisha Heat sink and method of producing the same
JPWO2007017945A1 (en) * 2005-08-11 2009-02-19 三菱電機株式会社 Heat sink and manufacturing method thereof
JP4721193B2 (en) * 2005-08-11 2011-07-13 三菱電機株式会社 heatsink
US8371367B2 (en) 2005-08-11 2013-02-12 Mitsubishi Denki Kabushiki Kaisha Heat sink and fabricating method of the same
JP2016207889A (en) * 2015-04-24 2016-12-08 日立化成株式会社 Radiation fin using porous metal and heat sink and module mounted with the same

Also Published As

Publication number Publication date
JP3868546B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
Kulshreshtha et al. Preparation of metal foam by different methods: A review
RU2281980C2 (en) Method of production of porous metal body
Körner et al. Processing of metal foams—challenges and opportunities
EP1755809B1 (en) Method of production of porous metallic materials
Nakajima Fabrication, properties and application of porous metals with directional pores
Rajak et al. TECHNICAL OVERVIEW OF ALUMINUM ALLOY FOAM.
JP4344141B2 (en) Metal foam manufacturing
Srivastava et al. Processing, stabilization and applications of metallic foams. Art of science
WO2006083375A2 (en) Metal foam comprising hollow metal spheres and solid matrix and methods of preparation thereof
Nakajima Porous metals with directional pores
KR100659247B1 (en) Production method for porous metal body
Kucharczyk et al. Current status and recent developments in porous magnesium fabrication
Rabiei et al. Processing and characterization of a new composite metal foam
Renger et al. Vacuum foaming of magnesium slurries
Drenchev et al. Gasars: a class of metallic materials with ordered porosity
Sánchez-Martínez et al. Main process parameters for manufacturing open-cell Zn-22Al-2Cu foams by the centrifugal infiltration route and mechanical properties
Bisht et al. Future of metal foam materials in automotive industry
Nawaz et al. Fabrication methods and property analysis of metal foams–a technical overview
JPH1088254A (en) Production of porous metal
Wada et al. Effect of volume fraction and geometry of pores on mechanical properties of porous bulk glassy Pd 42.5 Cu 30 Ni 7.5 P 20 alloys
Papantoniou et al. Metal foaming by powder metallurgy process: investigation of different parameters on the foaming efficiency
Surace et al. Investigation and comparison of aluminium foams manufactured by different techniques
Khare et al. An overview of aluminium foam production methods
Li-Yin et al. The development of porous metallic materials: A short review of fabrication, characteristics, and applications
Nakahata et al. Fabrication of lotus-type silver with directional pores by unidirectional solidification in oxygen atmosphere

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees